首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In summer, atmospheric ozone was measured from an aircraft platform simultaneously with nitric oxide (NO), oxides of nitrogen (NO y ), and water vapor over the Pacific Ocean in east Asia from 34° N to 19° N along the longitude of 138±3°E. NO y was measured with the aid of a ferrous sulfate converter. The altitude covered was from 0.5 to 5 km. A good correlation in the smoothed meridional distributions between ozone and NO y was seen. In particular, north of 25° N, ozone and NO y mixing ratios were considerably higher than those observed in tropical marine air south of 25° N. NO y and O3 reached a minimum of 50 pptv and 4 ppbv respectively in the boundary layer at a latitude of 20° N. The NO concentration between 2 and 5 km at the same latitude was 30 pptv. The profiles of ozone and water vapor mixing ratios were highly anti-correlated between 25° N and 20° N. In contrast, it was much poorer at the latitude of 33° N, suggesting a net photochemical production of ozone there.  相似文献   

2.
Surface NO and NO2 mixing ratios were measured aboard the research vessel Polarstern during the mission ANT VII/1 from 24 September to 5 October 1988. The measurements were taken along the meridian at 30° W in the Atlantic region covering latitudes between 30° N and 30° S. The average mixing ratios were about 12 pptv NO/30 pptv NO2 in the Northern Hemisphere and about 7 pptv NO/22 pptv NO2 in the Southern. Elevated mixing ratios of 20 pptv NO/70 pptv NO2 were found at 12° N (probably due to air masses originating from the surface of West Africa) and in the region of the ITCZ between 8° N and 5° N. Because of probable contamination by the ship, the measured mixing ratios mostly represent upper limits.  相似文献   

3.
A series of 72 measurements of the acetaldehyde (CH3CHO) mixing ratio were made in the lower troposphere during TROPOZ II. These measurements are the first ever made of the background level of this trace gas in the free troposphere. The data show a vertical decrease of the CH3CHO mixing ratio with increasing altitude and indicate higher CH3CHO concentrations in the Northern Hemisphere — in general agreement with a model-derived average CH3CHO distribution. Deviations of the observed CH3CHO mixing ratios from the modelled mean distribution are correlated with similar deviations in the corresponding HCHO mixing ratios.  相似文献   

4.
The set of high-resolution infrared solar observations made with the Atmospheric Trace Molecule Spectroscopy (ATMOS)-Fourier transform spectrometer from onboard Spacelab 3 (30 April-1 May 1985) has been used to evaluate the total budgets of the odd chlorine and fluorine chemical families in the stratosphere. These budgets are based on volume mixing ratio profiles measured for HCl, HF, CH3Cl, ClONO2, CCl4, CCl2F2, CCl3F, CHClF2, CF4, COF2, and SF6 near 30° north latitude. When including realistic concentrations for species not measured by ATMOS, i.e., the source gases CH3CCl3 and C2F3Cl3 below 25 km, and the reservoirs ClO, HOCl and COFCl between 15 and 40 km (five gases actually measured by other techniques), the 30° N zonal 1985 mean total mixing ratio of chlorine, Cl, was found to be equal to (2.58±0.10) ppbv (parts per billion by volume) throughout the stratosphere, with no significant decrease near the stratopause. The results for total fluorine indicate a slight, but steady, decrease of its volume mixing ratio with increasing altitude, around a mean stratospheric value of (1.15±0.12) ppbv. Both uncertainties correspond to one standard deviation. These mean springtime 1985 stratospheric budgets are commensurate with values reported for the tropospheric Cl and F concentrations in the early 1980s, when allowance is made for the growth rates of their source gases at the ground and the time required for tropospheric air to be transported into the stratosphere. The results are discussed with emphasis on conservation of fluorine and chlorine and the partitioning among source, sink, and reservoir gases throughout the stratosphere.  相似文献   

5.
As part of the TROPOZ II large-scale measurement campaign in January 1991 we deployed a Four Laser Airborne Infra Red (FLAIR) tunable diode laser spectrometer on board a Caravelle 116 research aircraft. We report here in situ CO measurements which were obtained with one of the four channels of the FLAIR instrument at a time resolution of either one or two minutes. The flight route of the TROPOZ II campaign followed the Atlantic coasts of North America, the Pacific and Atlantic coasts of South America and the Atlantic coasts of West Africa and Europe. A total of 48 CO vertical profiles extending from the surface to 10.5 km altitude were obtained. In the meridional direction adjacent profiles were separated by less than 10° latitude. Polewards of 30°S the CO distribution was very homogeneous with a mean mixing ratio of 55 ppbv. Between 30°S and the equator, the CO mixing ratio above 8 km altitude ranged up to 130 ppbv and was 20–60 ppbv higher than in the mid free troposhere. Three day backward trajectories for these CO rich airmasses originated over Amazonia. Earlier trace gas measurements as well as circulation studies suggested that these airmasses were of Northern Hemispheric origin and had been rapidly convected to the upper troposphere over central South America. The influence of biomass burning is clearly apparent from the measurements performed at 10°N on the African side of the Atlantic with CO mixing ratios being 100–300% higher than on the Central American side. CO mixing ratios further north ranged from 80 to 130 ppbv in the free troposphere and increased to 130–150 ppbv at lower altitudes.  相似文献   

6.
During a cruise of RV Polarstern over the Atlantic in September/October 1988, C2–C4 hydrocarbons were measured in surface sea water. The ship passed through three different ocean regions divided by divergences at 8° N and 3° S. Hydrocarbon concentrations differed considerably in these regions. The highest values were obtained for ethene with mean concentrations of 246 pMol/l between 35° N and 8° N, 165 pMol/l between 8° N and 3° S, and 63 pMol/l between 3° S and 30° S. Low values were found for i- and n-butane and acetylene between 32 pMol/l and 1 pMol/l. The alkene concentrations were in general higher than the concentrations of their saturated homologs. Concentrations decreased with increasing carbon numbers. The various alkenes were well correlated with one another as were the various alkanes. Oceanic emission rates of the light hydrocarbons were calculated from their sea water concentrations using an ocean atmosphere exchange model. The averaged fluxes ranged from about 108 molec cm-2 s-1 for the alkenes and ethane to less than 107 molec cm-2 s-1 for the C4 alkanes. Acetylene emissions were below 3×106 molec cm-2 s-1. Based upon these rates budget estimates of NMHC in the ocean surface layer were made with a simple model considering production and destruction processes in the water. The emissions to the atmosphere appear to be the dominant loss process between 35° N and 8° N, whereas destruction in the water seems to be dominant in the latitude ranges 8° N-3° S and 3° S-30° S.  相似文献   

7.
Monthly mean total vertical column abundances of acetylene have been determined from series of infrared solar spectra recorded at the Jungfraujoch station, Switzerland, between June 1986 and April 1991. The data have been obtained by nonlinear least-squares fittings of the 5 band R19 transition of C2H2 at 776.0818 cm-1. The average of 22 monthly mean total vertical columns of C2H2 retrieved during that time interval of almost 5 years was found to be equal to (1.81±0.12)×1015 molec/cm2, which corresponds to an average mixing ratio of (0,22±0.013) ppbv (parts per billion by volume) in a troposphere extending from the altitude of the station (3.58 km), up to 10.5 km. Despite the large variability found from year to year, a least-squares sine fit to the data reveals a seasonal variation with an amplitude of about ±40% of the mean; the maximum occurs during mid-winter and the minimum in the summer. The present results are compared critically with similar in-situ data found in the literature. A sinusoidal fit to all such free troposphere measurements made in-situ between 30°N and 60°N indicates good agreement in shape and phase with the seasonal variation derived above the Jungfraujoch, but their average column abundance, 2.3×1015 molec/cm2, is about 30% higher; this difference is explained on the basis of non-upwelling meteorological conditions generally prevailing during ground-based remote solar observations.  相似文献   

8.
Hydrogen peroxide, one of the key compounds in multiphase atmospheric chemistry, was measured on an Atlantic cruise (ANT VII/1) of the German research vessel Polarstern from 15 September to 9 October 1988, in rain and ambient air by a chemiluminescence technique. For gas phase H2O2 cryogenic sampling was employed. The presented results show an increase of gas-phase mixing ratios of about 45 pptv per degree latitude between 50° N and 0°, and a maximum of 3.5 ppbv around the equator. Generally higher mixing ratios were observed in the Southern Hemisphere, with a clear diurnal variation. The H2O2 mixing ratio is correlated to the UV radiation intensity and to the temperature difference between air and ocean surface water.  相似文献   

9.
Aircraft observations of oxides of nitrogen (NO y ), measured with a ferrous sulfate converter, over the sea surrounding the Japanese islands (30–43° N, 131–141° E) were carried out in the winter of 1983 and 1984 at altitudes mostly between 3 and 8 km. NO y defined here is the sum of NO, NO2, and other unstable oxides of nitrogen that are converted to NO by ferrous sulfate. The main observations were:
  1. Over the Pacific Ocean between the latitudes of 30–35° N, the observed NO y mixing ratio between 3 and 8 km was a fairly constant 200 pptv. The NO mixing ratio increased with altitude from 15 pptv at 3 km to 35 pptv at 7 km.
  2. Over the Sea of Japan, tropospheric NO y mesured between 1 and 6 km started increasing with latitude North of 35° N and reached about 1000 pptv at 40° N.
  3. NO y was measured in an air mass transported from the stratosphere near a tropopause fold region. When the ozone mixing ratio was between 80 and 140 ppbv, the NO y mixing ratio was about 200 pptv.
  相似文献   

10.
Hydrogen peroxide (H2O2) and organic hydroperoxides (ROOH) were measured on board of theRV Polarstern during its cruise across the Atlantic Ocean from 20 October to 12 November 1990 (54° N to 51° S latitude) by the enzyme fluorometric method. The H2O2 mixing ratio varied from below the detection limit of about 0.12 ppbv up to 3.89 ppbv, showing a latitudinal dependence with generally higher values around the equator and decreasing values poleward. The shape of the latitudinal H2O2 distribution agrees well with an analytical steady state expression for H2O2 using the measured H2O and O3 distribution and a wind dependent H2O2 deposition rate. The ROOH mixing ratio varied from below the detection limit of about 0.08 ppbv up to 1.25 ppbv with qualitatively the same latitudinal dependence as H2O2. The observed ratio ROOH/(ROOH + H2O2) varied between 0.17 and 0.98 showing higher values at the lowest H2O2 mixing ratios at high latitudes. The measured H2O2 mixing ratio shows a significant diurnal variation with a maximum around 14:00 local time, explicable by a superposition of the photochemical H2O2 production with a constant H2O2 deposition rate. Four independent estimations of the average effective H2O2 deposition rate inferred from the H2O2 decrease in the night, from the midday H2O2 production deficit (as derived from comparison with a photochemical model and from the daily ozone loss), and from the offset in the latitudinal H2O2 distribution, were consistent. An episode of maximum H2O2 concentration suggests the possibility of its formation in clouds.  相似文献   

11.
The vertical distribution of the CH3Cl mixing ratio in the stratosphere has been measured from samples collected during two balloon flights on the 21 October 1982 and 10 September 1983. Measurements were made with two analytical techniques that were also employed for previous analyses of stratospheric samples: gas chromatography (GC) and a gas chromatograph/mass spectrometer (GC/MS) combination. The results from all balloon flights performed to date are combined to derive an average experimental profile of CH3Cl at midlatitudes. The profile shows that the CH3Cl mixing ratio decreases by about one order of magnitude between 20 and 30 km altitude. A comparison of the new observations with model profiles reveals discrepancies in the lower stratosphere that amount to a factor of about 3. Possible causes for these discrepancies are discussed.  相似文献   

12.
A new gas chromatographic technique with a modified photoionization detector connected in series with a conventional flame ionization detector was used to determine low concentrations of atmospheric hydrocarbons in remote atmospheres. Average mixing ratios of five aromatic hydrocarbons measured between 42°N and 30°S latitude in the Pacific Ocean in October/November 1983 were highest in the Northern Hemisphere. The average mixing ratios in the northern and southern marine atmospheres were 49±25 ppt (n=35) and 10±2 ppt (n=21) for benzene, 20±12 ppt (n=32) and 5.6±1.6 ppt (n=12) for toluene, 7.6±3.7 ppt (n=35) and 3.7±1.6 ppt (n=21) for ethylbenzene, 25±12 ppt (n=35) and 13±5 ppt (n=20) for the sum of m- and p-xylenes, and 14±6 ppt (n=35) and 6.6±3.0 ppt (n=21) for o-xylene, respectively. The first latitudinal gradients for these five aromatic compounds are reported. Benzene and toluene mixing ratios measured between July 1982 and October 1983 at a rural, mid-latitude continental site in eastern Washington state gave average values of 226±108 ppt and 133±84 ppt, respectively, with higher wintertime than summertime benzene levels. These continental samples gave calculated air mass ages averaging six days based on benzene-to-toluene ratios.  相似文献   

13.
Using a filter radiometer, the meridional profile of the NO2 photolysis frequency, J(NO2), was measured between 50° N and 30° S during the cruise ANTVII/1 September/October 1988 of the research vessel Polarstern on the Atlantic Ocean. Simultaneously, global broadband irradiance and acrosol were monitored. Clean marine background air with low aerosol loads (b sp=(1–2)×10-5 m-1) was encountered at the latitudes 25° N–30° N and 18° S–27° S, respectively. Under these conditions and an almost cloudless sky J(NO2) reached 7.3×10-3 s-1 (2 sr) for a zenith angle of 30°. Between 30° N and 30° S, the latitudinal variation of the J(NO2) noontime maxima was less than ± 10%, while the mean value at noon was 7.8×10-3 s-1. For the set of all data between 50° N and 30° S, a nearly linear correlation of J(NO2) vs. global broadland irradiance was found. The slope of (8.24±0.03)×10-5 s-1/mW cm-2 agrees within 10% with observations in Jülich (51° N, 6.2° E).  相似文献   

14.
A global data set on the geographic distribution and seasonality of freshwater wetlands and rice paddies has been compiled, comprising information at a spatial resolution of 2.5° by latitude and 5° by longitude. Global coverage of these wetlands total 5.7×106 km2 and 1.3×106 km2, respectively. Natural wetlands have been grouped into six categories following common terminology, i.e. bog, fen, swamp, marsh, floodplain, and shallow lake. Net primary productivity (NPP) of natural wetlands is estimated to be in the range of 4–9×1015 g dry matter per year. Rice paddies have an NPP of about 1.4×1015 g y–1. Extrapolation of measured CH4 emissions in individual ecosystems lead to global methane emission estimates of 40–160 Teragram (1 Tg=1012 g) from natural wetlands and 60–140 Tg from rice paddies per year. The mean emission of 170–200 Tg may come in about equal proportions from natural wetlands and paddies. Major source regions are located in the subtropics between 20 and 30° N, the tropics between 0 and 10° S, and the temperate-boreal region between 50 and 70° N. Emissions are highly seasonal, maximizing during summer in both hemispheres. The wide range of possible CH4 emissions shows the large uncertainties associated with the extrapolation of measured flux rates to global scale. More investigations into ecophysiological principals of methane emissions is warranted to arrive at better source estimates.  相似文献   

15.
Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the 9 band at 12.2 m, which have been identified in high-resolution ballon-borne and aircraft solar absorption spectra. The ballon-borne spectral data were recorded at sunset with the 0.02 cm-1 resolution University of Denver interferometer system from a float altitude of 33.5 km near Alamogordo, New Mexico, on 23 March 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06 cm-1 resolution interferometer aboard a jet aircraft at 12 km altitude, near 35°N, 96°W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the colum value obtained from the aircraft data.  相似文献   

16.
The 2.4-dinitrophenylhydrazine coated silica cartridge technique (DSC) was used for the measurements of HCHO and CH3CHO during the POPCORN campaign in August 1994. A total number of 505 measurements was carried out using an automatic sampling system. The sampling time for each measurement was 30 minutes. During the first two weeks of the campaign samples were taken every 3 hours and during the last two weeks every 30 minutes. No significant diurnal variation of HCHO and CH3CHO was observed. The average mixing ratios of HCHO and CH3CHO were 1.8 ±1.0 ppb and 1.4 ±1.3 ppb. The results for HCHO are in a good agreement with simultaneous measurements by differential optical absorption spectroscopy (DOAS). The absence of a strong diurnal variation of the HCHO mixing ratio can be explained by production and destruction processes during day and night. The measured mixing ratios of HCHO and CH3CHO, especially the mixing ratios during night, are a strong indication that during the POPCORN campaign the maize was a local source of HCHO and CH3CHO.  相似文献   

17.
A latitudinal profile (30° W, from 30° N to 30° S) of mixing ratios of nitric acid and particulate nitrate was determined on the Atlantic Ocean during the Polarstern cruise ANT VII/1 from Bremerhaven, Germany, to Rio Grande, Brazil. The detection of HNO3 was performed simultaneously by laser-photolysis fragment-fluorescence (LPFF) and by nylon filter packs. The detection limit was about 30 pptv for a signal accumulation time of 1 h for LPFF and about 5 pptv for the filters at a collection time of 4 h. In general, the mixing ratios of HNO3 in the Northern Hemisphere were found to be significantly higher than those in the Southern Hemisphere. The Atlantic background concentrations frequently varied between 80 pptv and the detection limit. Larger deviations from this trend were found for the more northern latitudes and for episodes like crossings of exhaust plumes from ships or from continental pollutions sources.  相似文献   

18.
Airborne measurements of stratospheric ozone and N2O from the SCIAMACHY (Scanning Imaging Absorption Spectrometer) Validation and Utilization Experiment (SCIA-VALUE) are presented. The campaign was conducted in September 2002 and February–March 2003. The Airborne Submillimeter Radiometer (ASUR) observed stratospheric constituents like O3 and N2O, among others, spanning a latitude from 5°S to 80°N during the survey. The tropical ozone source regions show high ozone volume mixing ratios (VMRs) of around 11 ppmv at 33 km altitude, and the altitude of the maximum VMR increases from the tropics to the Arctic. The N2O VMRs show the largest value of 325 ppbv in the lower stratosphere, indicating their tropospheric origin, and they decrease with increasing altitude and latitude due to photolysis. The sub-tropical and polar mixing barriers are well represented in the N2O measurements. The most striking seasonal difference found in the measurements is the large polar descent in February–March. The observed features are interpreted with the help of SLIMCAT and Bremen Chemical Transport Model (CTMB) simulations. The SLIMCAT simulations are in good agreement with the measured O3 and N2O values, where the differences are within 1 ppmv for O3 and 15 ppbv for N2O. However, the CTMB simulations underestimate the tropical middle stratospheric O3 (1–1.5 ppmv) and the tropical lower stratospheric N2O (15–30 ppbv) measurements. A detailed analysis with various measurements and model simulations suggests that the biases in the CTMB simulations are related to its parameterised chemistry schemes.  相似文献   

19.
A box model, involving simple heterogeneous reaction processes associated with the production of non-sea-salt sulfate (nss-SO 4 2– ) particles, is used to investigate the oxidation processes of dimethylsulfide (DMS or CH3SCH3) in the marine atmosphere. The model is applied to chemical reactions in the atmospheric surface mixing layer, at intervals of 15 degrees latitude between 60° N and 60° S. Given that the addition reaction of the hydroxyl radical (OH) to the sulfur atom in the DMS molecule is faster at lower temperature than at higher temperature and that it is the predominant pathway for the production of methanesulfonic acid (MSA or CH3SO3H), the results can well explain both the increasing tendency of the molar ratio of MSA to nss-SO 4 2– toward higher latitudes and the uniform distribution with latitude of sulfur dioxide (SO2). The predicted production rate of MSA increases with increasing latitude due to the elevated rate constant of the addition reaction at lower temperature. Since latitudinal distributions of OH concentration and DMS reaction rate with OH are opposite, a uniform production rate of SO2 is realized over the globe. The primary sink of DMS in unpolluted air is caused by the reaction with OH. Reaction of DMS with the nitrate radical (NO3) also reduces DMS concentration but it is less important compared with that of OH. Concentrations of SO2, MSA, and nss-SO 4 2– are almost independent of NO x concentration and radiation field. If dimethylsulfoxide (DMSO or CH3S(O)CH3) is produced by the addition reaction and further converted to sulfuric acid (H2SO4) in an aqueous solution of cloud droplets, the oxidation process of DMSO might be important for the production of aerosol particles containing nss-SO 4 2– at high latitudes.  相似文献   

20.
Total vertical column abundances of carbonyl fluoride (COF2) have been derived from observations made at the International Scientific Station of the Jungfraujoch (ISSJ; altitude 3.58 km, latitude 46.5°N, longitude 8.0°E), Switzerland. A systematic analysis of two microwindows containing lines of the 1 band was performed, based on a large set of high resolution infrared solar absorption spectra recorded with Fourier transform spectrometers, from 1985 to 1995. Examination of the whole available database indicates a significant increase of the burden of COF2 during the 1988–1995 period. The average exponential rate and the average linear rate referenced to 1992, calculated from daily mean measurements, are both equal to (4.0 ± 0.5)% yr-1 (one error). The results are also evaluated and discussed within the context of seasonal variability and correlation between carbonyl fluoride and hydrogen fluoride (HF) columns above the ISSJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号