首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphological features associated with Co-rich manganese deposits, the size variations of nodules, and the occurrence of different substrates have been analyzed, to evaluate the influence of various seabed slope angles on the distribution of these features. The coverage and size of the crusts depend on their surface morphology and seabed topography, resulting in cobble-type, lineated, or step-like outcrops. Small nodules (1 - 4 cm in diameter) dominate all seabed slopes, with a few locations having nodules ranging from 1 to 8 or 1 to 10 cm. Sediments invariably occur as substrates for nodules and as cover for crusts, their coverage being inversely proportional to that of the nodules and crust outcrops. Steeper seafloor areas have large crust outcrops exposed with no or few nodules and sediments associated with them. The intermediate slopes have a combination of nodules, sediments, and crusts in various proportions, depending on topography and gradient. Large-scale nodule occurrences, followed by sediment fields and crust outcrops on seabed slopes of greater than 3 degrees, 3 - 7 degreees, and less than 15 degrees, respectively, represent typical morphological distribution zones of the Co-rich manganese deposits on a seamount in the central Pacific Ocean. A transition zone between nodule-dominated fields and large crust outcrops occurs for slopes from 7 degrees to 15 degrees. This detailed study on distribution of Co-rich deposits gives a better understanding for purposes of their exploitation.  相似文献   

2.
Abstract

The morphological features associated with Co-rich manganese deposits, the size variations of nodules, and the occurrence of different substrates have been analyzed, to evaluate the influence of various seabed slope angles on the distribution of these features. The coverage and size of the crusts depend on their surface morphology and seabed topography, resulting in cobble-type, lineated, or step-like outcrops. Small nodules (1–4 cm in diameter) dominate all seabed slopes, with a few locations having nodules ranging from 1 to 8 or 1 to 10 cm. Sediments invariably occur as substrates for nodules and as cover for crusts, their coverage being inversely proportional to that of the nodules and crust outcrops.

Steeper seafloor areas have large crust outcrops exposed with no or few nodules and sediments associated with them. The intermediate slopes have a combination of nodules, sediments, and crusts in various proportions, depending on topography and gradient. Large-scale nodule occurrences, followed by sediment fields and crust outcrops on seabed slopes of < 3°, 3–7°, and > 15°, respectively, represent typical morphological distribution zones of the Co-rich manganese deposits on a seamount in the central Pacific Ocean. A transition zone between nodule-dominated fields and large crust outcrops occurs for slopes from 7° to 15°. This detailed study on distribution of Co-rich deposits gives a better understanding for purposes of their exploitation.  相似文献   

3.
Methods developed for quantitative estimation of seafloor features from seabed photographs and their application for estimation of nodule sizes, coverage, abundance, burial, sediment thickness, extent of rock exposure, density of benthic organisms, and their lebensspuren have been presented. Digitization of the photographs shows variable nodule size (< 1 to 10 cm), coverage (< 1 to 75%) and abundance (< 1 to 20 kg/m2). Nodule population is inversely proportional to the coverage of the sediment (10–100%) and its thickness (0 to > 10 cm), which causes differential burial (0–100%) of nodules. Correlation between nodule parameters (diameter and coverage) in the photographs and grab recovery is used to evolve empirical relationships for estimating nodule abundance in different seabed settings. The rock outcrops (basalts) with a coverage of 6–100% are the sources of nuclei for the nodules, the distribution of which is controlled by the local topography. Higher concentrations of nodules are observed along the slopes, followed by the crests of seamounts, and are lowest in the valleys and plains. A population density of 6–7 benthic organisms per 100 m2 belonging to 7 different phyla is observed, with a high frequency of lebensspuren (4–12 traces/m2) in association with nodules. Estimation of these parameters can be used as important inputs in the design of the nodule collector, as it will have to encounter a variety of seafloor conditions, such as patchy nodule distribution, rock outcrops, steep slopes, and frequent microtopographic changes, as well as benthic life. The distribution and relation of various features with one another can also be used to understand the possible impact of nodule mining on the seabed. Estimates show that for a yield of 3 million tonnes of nodules per year, the volume of sediment disturbed will be between 200 × 107 and 500 × 107 m3over an area of 300–600 km2, depending upon the average abundance of nodules. Hence, the nodule collector will have to be a self‐propelled system, with photographic and acoustic sensors, to enable selective mining and avoid unfavorable areas.  相似文献   

4.
The megabenthos plays an important role in the abyssal ecosystem. The holothuroids have been proposed as indicators of physical disturbance of the seabed caused, for example, by commercial deep-sea mining of manganese nodules. Environmental studies at seabed mining claims have resulted in numerous still photographs that provide an overview of the megabenthos in manganese nodule fields. Data from these investigations and from the large-scale disturbance and recolonization experiment DISCOL have been used to summarize knowledge of the taxonomy and ecology of holothurians at manganese nodule sites.  相似文献   

5.
Factors such as non-uniform illumination of seafloor photographs and partial burial of polymetallic nodules and crusts under sediments have prevented the development of a fully automatic system for evaluating the distribution characteristics of these minerals, necessitating the involvement of a user input. A method has been developed whereby spectral signatures of different features are identified using a software ‘trained’ by a user, and the images are digitized for coverage estimation of nodules and crusts. Analysis of >20,000 seafloor photographs was carried out along five camera transects covering a total distance of 450 km at 5,100–5,300 m water depth in the Central Indian Ocean. The good positive correlation (R2 > 0.98) recorded between visual and computed estimates shows that both methods of estimation are highly reliable. The digitally computed estimates were ∼10% higher than the visual estimates of the same photographs; the latter have a conservative operator error, implying that computed estimates would more accurately predict a relatively high resource potential. The fact that nodules were present in grab samples from some locations where photographs had nil nodule coverage emphasises that nodules may not always be exposed on the seafloor and that buried nodules will also have to be accounted for during resource evaluation. When coupled with accurate positioning/depth data and grab sampling, photographic estimates can provide detailed information on the spatial distribution of mineral deposits, the associated substrates, and the topographic features that control their occurrences. Such information is critical for resource modelling, the selection of mine sites, the designing of mining systems and the planning of mining operations.  相似文献   

6.
Distribution characteristics of cobalt‐rich manganese deposits were evaluated from stereo photographs and video data on a seamount in the central Pacific Ocean by image analysis, photogrammetric technique, and visual observations. The results show that many locations have high crust coverages with highly undulating micro‐topography. High nodule coverages occur on relatively flat seafloor, and the nodule size distribution varies from uniform to inhomogeneous among different locations. Distribution of these deposits along detailed topographic sections show that the seafloor can be divided into nodule dominant zones between 0° and 3° slopes, with sediment patches up to 4° slopes; and crust dominant zones, which occur on slopes higher than 15°. The transition zone, between 4° and 15° slopes, has many locations, where nodules and crusts co‐occur in varying percentages. The observation of crust outcrops among sediments and nodules, as well as in the gravity core samples, indicates the presence of shallow buried crusts as well, which can substantially enhance resource evaluation of the deposits.  相似文献   

7.
Possibilities of using the GLORIA system for manganese nodule assessment   总被引:1,自引:0,他引:1  
The I.O.S. long range side-scan sonar GLORIA has been widely used over a variety of seabed types, but until recently had not been used over an independently authenticated field of manganese nodules. In the Eastern Atlantic Ocean at approximately 31°25 N 25°15 W, a field of nodules approximately 3–6 cm in diameter covering up to 18% of the seafloor was observed using an underwater camera. The nodule field occurred over approximately 2.8 km of the 8.3 km camera run. The corresponding GLORIA image shows an area of medium intensity backscattering, approximately 3.7 km in diameter. Considering the likely contrast in acoustic reflectivity between manganese nodules and deep sea sediments, we propose a correlation between the nodules observed in the photographs and the medium intensity echo target revealed by the GLORIA system.  相似文献   

8.
东太平洋CC区板块构造和多金属结核资源效应探讨   总被引:4,自引:0,他引:4  
利用东太平洋CC区多波束海底地形测量、结核覆盖率深拖系统探测、结核丰度地质采样和地球物理地震勘探资料,运用板块构造和沉积动力学理论,并与丰度趋势面和神经网络分析结果对比,对东太平洋CC区构造与多金属结核资源效应关系进行了探讨,并认为:(1)富集在研究区约200亿t结核的最主要控制因素是东太平洋海隆、莱恩山脉、克拉里昂-克利伯顿大断裂(Clarion-Clipperton Fracture Zone),东、西、南、北的四个构造单元为结核大量富集起到了框架性的关键作用;(2)本区经历了和遵循着海底扩张的基本过程,这个过程对结核物质来源、成矿作用、结核分布有重大影响,结核丰度、覆盖率与地形变化非常一致,重大相变距离为10~15km,基底自形成以来一直影响着地表结核;(3)地球深部地质作用过程对结核成矿作用也有一定影响,影响因素可能涉及基底岩浆房及其大小等.  相似文献   

9.
The deep ocean floor between the Clarion and Clipperton fracture zones (NE equatorial Pacific) has the highest known manganese nodule abundance in the world oceans. A detailed analysis of MR1 (Mapping Researcher 1, 11–12?kHz) sonar images and free-fall grab data in the Korean manganese nodule field areas reveals a close relationship between side-scan sonar characteristics of the seafloor and manganese nodule abundance. Eight sonar facies are identified based on back-scattering intensity and distribution patterns. These sonar facies can be interpreted as (1) volcanic seamounts (facies I-1), (2) bounding faults of abyssal hills (facies I-2 and II-1), (3) lava flows or volcanoclastic mass-flow deposits around the volcanic seamounts (facies I-3 and II-2), (4) crests of abyssal hills (facies II-1), (5) abyssal troughs between abyssal hills (facies III-1), (6) relatively flat areas (facies II-3 and III-2). In the areas where facies II-1 (abyssal hill crests with thin sediment cover) and II-3 (relatively flat areas draped by thin sediments) are dominant, manganese nodules occur abundantly. In contrast, zones comprising facies III-1 (abyssal troughs with thick sediment cover) and III-2 (relatively flat areas covered by thick sediments) are characterized by low abundance of manganese nodules. This relationship between distribution of sonar facies and manganese nodule abundance implies that (1) the qualitative difference in acoustic reflectivity of long-range side-scan sonar with some ground truth data is useful for regional assessment of manganese nodule occurrence over wide areas in a reasonable time, and (2) seafloor topography and sediment thickness are important controlling factors for regional occurrences of manganese nodules.  相似文献   

10.
The deep ocean floor between the Clarion and Clipperton fracture zones (NE equatorial Pacific) has the highest known manganese nodule abundance in the world oceans. A detailed analysis of MR1 (Mapping Researcher 1, 11-12 kHz) sonar images and free-fall grab data in the Korean manganese nodule field areas reveals a close relationship between side-scan sonar characteristics of the seafloor and manganese nodule abundance. Eight sonar facies are identified based on back-scattering intensity and distribution patterns. These sonar facies can be interpreted as (1) volcanic seamounts (facies I-1), (2) bounding faults of abyssal hills (facies I-2 and II-1), (3) lava flows or volcanoclastic mass-flow deposits around the volcanic seamounts (facies I-3 and II-2), (4) crests of abyssal hills (facies II-1), (5) abyssal troughs between abyssal hills (facies III-1), (6) relatively flat areas (facies II-3 and III-2). In the areas where facies II-1 (abyssal hill crests with thin sediment cover) and II-3 (relatively flat areas draped by thin sediments) are dominant, manganese nodules occur abundantly. In contrast, zones comprising facies III-1 (abyssal troughs with thick sediment cover) and III-2 (relatively flat areas covered by thick sediments) are characterized by low abundance of manganese nodules. This relationship between distribution of sonar facies and manganese nodule abundance implies that (1) the qualitative difference in acoustic reflectivity of long-range side-scan sonar with some ground truth data is useful for regional assessment of manganese nodule occurrence over wide areas in a reasonable time, and (2) seafloor topography and sediment thickness are important controlling factors for regional occurrences of manganese nodules.  相似文献   

11.
A high level of confidence in resource data is a key prerequisite for conducting a reliable economic feasibility study in deep water seafloor mining. However, the acquisition of accurate resource data is difficult when employing traditional point-sampling methods to assess the resource potential of polymetallic nodules, given the vast size of the survey area and high spatial variability in nodule distribution. In this study, we analyzed high-resolution acoustic backscatter intensity images to estimate nodule abundance and increase confidence levels in nodule abundance data. We operated a 120 kHz deep-towed sidescan sonar (DSL-120) system (1×1 m resolution) across a 75 km2 representative area in the Korean Exploration Area for polymetallic nodules in the Northeastern Equatorial Pacific. A deep-towed camera system was also run along two tracks in the same area to estimate the abundance of polymetallic nodules on the seafloor. Backscatter data were classified into four facies based on intensity. The facies with the weakest and strongest backscatter intensities occurred in areas of high slope gradient and basement outcrops, respectively. The backscatter intensities of the two other facies correlated well with the nodule abundances estimated from still-camera images. A linear fit between backscatter intensity and mean nodule abundance for 10 zones in the study area yielded an excellent correlation (r2 = 0.97). This allowed us to compile a map of polymetallic nodule abundance that shows greater resolution than a map derived from the extrapolation of point-sampling data. Our preliminary analyses indicate that it is possible to greatly increase the confidence level of nodule resource data if the relationship between backscatter intensity and nodule abundance is reliably established. This approach has another key advantage over point sampling and image analyses in that detailed maps of mining obstacles along the seafloor are produced when acquiring data on the abundance of polymetallic nodules. The key limitation of this work is a poor correlation between nodule coverage, as observed from photographs, and nodule abundance. Significant additional ground truth sampling using well located box cores should be completed to determine whether or not there is a real correlation between the backscatter and abundance.  相似文献   

12.
Polymetallic nodule and sediment characteristics were investigated for two blocks (KR2 and KR5) in the Korea Deep Ocean Study (KODOS) area in order to better understand nodule distribution and the potential effects of sediments on nodule genesis. The northern block (KR2) is dominated by hydrogenetic nodules, whereas the southern block (KR5) is dominated by diagenetic nodules. Sediments in the study area are assigned to three major lithologic units which are distinctive in color and texture. The northern block is characterized by a thick, metalpoor Unit 1 sediment, which is thin in the southern block, where metal-rich Units 2b and 3 occur close to the surface. The distribution of different nodule genetic types in the northern and southern blocks can be attributed to topographic variations (topographic high near seamounts in KR2 and abyssal plain in KR5) and different sedimentation rates (0.1 and 0.32 mm/kyr in blocks KR2 and KR5, respectively). The southern block has a geologic setting more conducive to diagenetic nodule formation, such as flat topography and sediment composition. Nodule distribution in the studied blocks might also be explained by the distribution of the sediment units of different metal contents. The northern block, in which Unit 1 is thicker, has more abundant hydrogenetic nodules, possibly because Unit 1 prevents metals that are remobilized from the underlying sediments from reaching the seabed where the nodules are forming.  相似文献   

13.
Twenty-four manganese nodules from the surface of the sea floor and fifteen buried nodules were studied. With three exceptions, the nodules were collected from the area covered by Valdivia Cruise VA 04 some 1200 nautical miles southeast of Hawaii.Age determinations were made using the ionium method. In order to get a true reproduction of the activity distribution in the nodules, they were cut in half and placed for one month on nuclear emulsion plates to determine the α-activity of the ionium and its daughter products. Special methods of counting the α-tracks resolution to depth intervals of 0.125 mm. For the first time it was possible to resolve zones of rapid growth (impulse growth) with growth rates, s > 50 mm/106 yr and interruptions in growth. With few exceptions the average rate of growth of all nodules was surprisingly uniform at 4–9 mm/10 yr. No growth could be recognized radioactively in the buried nodules. One exceptional nodule has had recent impulse growth and, in the material formed, the ionium is not yet in equilibrium with its daughter products. Individual layers in one nodule from the Indian Ocean could be dated and an average time interval of t = 2600±400 yr was necessary to form one layer. The alternation between iron and manganese-rich parts of the nodules was made visible by colour differences resulting from special treatment of cut surfaces with HCl vapour. The zones of slow growth of one nodule are relatively enriched in iron.Earlier attempts to find paleomagnetic reversals in manganese nodules have been continued. Despite considerable improvement in areal resolution, reversals were not detected in the nodules studied. Comparisons of the surface structure, microstructure in section and the radiometric dating show that there are erosion surfaces and growth surfaces on the outer surfaces of the manganese nodules. The formation of cracks in the nodules was studied in particular. The model of age-dependent nodule shrinkage and cracking surprisingly indicates that the nodules break after exceeding a certain age and/or size. Consequently, the breaking apart of manganese nodules is a continuous process not of catastrophic or discontinuous origin. The microstructure of the nodules exhibits differences in the mechanism of accretion and accretion rate of material, shortly referred to as accretion form. Thus non-directional growth inside the nodules as well as a directional growth may be observed. Those nodules with large accretion forms have grown faster than smaller ones. Consequently, parallel layers indicate slow growth. The upper surfaces of the nodules, protruding into the bottom water appear to be more prone to growth disturbances than the lower surfaces, immersed in the sediment. Features of some nodules show, that as they develop, they neither turned nor rolled. Yet unknown is the mechanism that keeps the nodules at the surface during continuous sedimentation. All in all, the nodules remain the objects of their own distinctive problems. The hope of using them as a kind of history book still seems to be very remote.  相似文献   

14.
Manganese nodules of the Clarion–Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment, in both water column and sediment, supports our ability to locate future nodule deposits and to evaluate the potential ecological and environmental effects of future deep-sea mining. For these purposes we studied the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180–300 cm at all four sites, while reduction of Mn and NO3 is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labeled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.  相似文献   

15.
The first attempt to exploit deep-sea manganese nodules ended in failure as a result of the collapse of world metal prices, the onerous provisions imposed by the U.N. Convention on the Law of the Sea (UNCLOS), and the overoptimistic assumptions about the viability of nodule mining. Attention then focused on Co-rich manganese crusts from seamounts. Since the mid-1980s, a number of new players have committed themselves to long-term programs to establish the viability of mining deep-sea manganese nodules. These programs require heavy subsidy by the host governments. Au-rich submarine hydrothermal deposits located at convergent plate margins are now emerging as a more promising prospect for mining than deep-sea manganese deposits.  相似文献   

16.
Deep Seabed Mining: Past Failures and Future Prospects   总被引:8,自引:0,他引:8  
The first attempt to exploit deep-sea manganese nodules ended in failure as a result of the collapse of world metal prices, the onerous provisions imposed by the U.N. Convention on the Law of the Sea (UNCLOS), and the overoptimistic assumptions about the viability of nodule mining. Attention then focused on Co-rich manganese crusts from seamounts. Since the mid-1980s, a number of new players have committed themselves to long-term programs to establish the viability of mining deep-sea manganese nodules. These programs require heavy subsidy by the host governments. Au-rich submarine hydrothermal deposits located at convergent plate margins are now emerging as a more promising prospect for mining than deep-sea manganese deposits.  相似文献   

17.
18.
Seafloor morphology and ferromanganese nodule occurrence were studied using a multibeam side scan sonar (SeaBeam, 2000) and a deep-sea camera system in the Korea Deep-sea Environmental Study (KODES) area, northeast equatorial Pacific. Seafloor morphology and nodule abundance are highly variable even in this small study area. The NNE-SSW oriented hills are parallel and about 100-200 m high. Valleys are very flat-floored, while hilltops are rugged with depressions of tens of meters. Cliffs to about 100 m bound the valleys and the hills. The study area can be classified into three types based both on nodule occurrence and seafloor morphology, mostly G- and B-types and some M-type. G-type is characterized by high nodule abundance, ubiquitous bioturbation, and flat seafloor morphology, while B-type is characterized by irregular-shaped nodules, variable nodule abundance, occurrence of giant nodules and sediment lumps, rugged bottom morphology with depressions, and white calcareous surface sediments. Medium nodule abundance and a generally flat seafloor characterize M-type. G-type occurs mostly in the valley regions, while B-type is on the hilltop areas. M-type is located between the hilltop and the valley. Tectonic movement of the Pacific plate resulted in the elongated abyssal hills and cliffs. The rugged morphology on hilltops resulted from erosion and redistribution of surface siliceous sediments on hilltops by bottom currents, outcropping of underlying calcareous sediments, and dissolution of the carbonate sediments by corrosive bottom water undersaturated with CaCO 3 . Sediment eroded from the hills, which is relatively young and organic-rich, is deposited in the valleys, and diagenetic metal supply to manganese nodules in the valley area is more active than on the hills. We suggest that tectonic movement ultimately constrains morphology, surface sediment facies, bottom currents and sediment redistribution, bioturbation, thickness of the sedimentary layer, and other conditions, which are all interrelated and control nodule occurrence. The best potential area for mining in the study area is the G-type valley zones with about 3-4 km width and NNW-SSE orientation.  相似文献   

19.
Abstract

Because of ever-growing demand for strategic metals, the focus of the international community has fallen on deep sea manganese nodules occurring at a water depth of more than 4500?m. We present an economic appraisal and strategy for mining of nodules from the Indian Ocean Nodule Field- one of the four economically potential areas in the world oceans. In contrast to the prevailing perception of non-viability of nodule mining, our analysis indicates a fair degree of economic feasibility and commercial sustainability to mine the deep-sea manganese nodules.  相似文献   

20.
Abstract

Seafloor morphology and ferromanganese nodule occurrence were studied using a multibeam side scan sonar (SeaBeam, 2000) and a deep-sea camera system in the Korea Deep-sea Environmental Study (KODES) area, northeast equatorial Pacific. Seafloor morphology and nodule abundance are highly variable even in this small study area. The NNE-SSW oriented hills are parallel and about 100–200 m high. Valleys are very flat-floored, while hilltops are rugged with depressions of tens of meters. Cliffs to about 100 m bound the valleys and the hills. The study area can be classified into three types based both on nodule occurrence and seafloor morphology, mostly G- and B-types and some M-type. G-type is characterized by high nodule abundance, ubiquitous bioturbation, and flat seafloor morphology, while B-type is characterized by irregular-shaped nodules, variable nodule abundance, occurrence of giant nodules and sediment lumps, rugged bottom morphology with depressions, and white calcareous surface sediments. Medium nodule abundance and a generally flat seafloor characterize M-type. G-type occurs mostly in the valley regions, while B-type is on the hilltop areas. M-type is located between the hilltop and the valley. Tectonic movement of the Pacific plate resulted in the elongated abyssal hills and cliffs. The rugged morphology on hilltops resulted from erosion and redistribution of surface siliceous sediments on hilltops by bottom currents, outcropping of underlying calcareous sediments, and dissolution of the carbonate sediments by corrosive bottom water undersaturated with CaCO3. Sediment eroded from the hills, which is relatively young and organic-rich, is deposited in the valleys, and diagenetic metal supply to manganese nodules in the valley area is more active than on the hills. We suggest that tectonic movement ultimately constrains morphology, surface sediment facies, bottom currents and sediment redistribution, bioturbation, thickness of the sedimentary layer, and other conditions, which are all interrelated and control nodule occurrence. The best potential area for mining in the study area is the G-type valley zones with about 3–4 km width and NNW-SSE orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号