首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 796 毫秒
1.
Based on the requirement of the new technology for producing potassium sulfate and N-Mg compound fertilizer,boussingaultite,by the reaction of the mineral shoenite from Kunteyi Salt Lake,Qinghai province,and the industrial byproduct ammonium sulfate,the solubilities of the quaternary system (NH_4)_2SO_4-Mg SO_4-K_2SO_4-H_2O at 25.0oC in the isothermal evaporation and crystallization process were measured using the isothermal evaporation method,and the corresponding phase diagrams were plotted.According to the diagram,this system contains six saturation points and six solid phase fields of crystallization,which correspond to (K_(1-m),(NH_4)_m)_2SO_4,(NH_4)_2SO_4·Mg SO_4·6H_2O,K_2SO_4·Mg SO_4·6H_2O,Mg SO_4·6H_2O,(K_(1-n),(NH_4)_n)_2SO_4·Mg SO_4·6H_2O and Mg SO_4·7H_2O,respectively.By analyzing and calculating the isothermal evaporation and dissolution phase diagram of this quaternary system at 25.0oC,K_2SO_4 and (NH_4)_2SO_4·Mg SO_4·6H_2O can be separated via K_2SO_4·Mg SO_4·6H_2O and (NH_4)_2SO_4 as raw materials.Theoretical calculations about the proposed process were carried out and verified by experiment,which indicated that the yield of potassium sulfate was improved and the magnesium resources were fully utilized.  相似文献   

2.
正1 Introduction China has very abundant liquid mineral resources.Especially,the brine resources in the west of Sichuan Basin are pushed into the first place in China,whose K and B contents are unusually high.These rare liquid mineral resources have very good exploitation prospect(Lin,2001;2006).Generally speaking,phase equilibrium  相似文献   

3.
谷树起  郭志强等 《中国地球化学学报》1991,10(3):232-243,T001,T002
This paper presents the results of experiments on the physicochemical conditions for the formation of picaromerite in the five-component brine system K-Na-Mg-Cl-SO4-H2O and the process of isothermal evaporation-crystallization of picromerite from brines.The metastable phase fields of picromerite at 15,10 and 5℃and its stable equilibrium phase field at -5℃ have been established.In addition,the phase equilibrium relationships have also been established for other salt minerals.The lower limit of formation temperature of picromerite has been deduced on the basis of experi-mental results.The isothermal evaporation crystallization path of the invariant assemblage(point D) of picromerite,epsomite,sylvite and halite at 25,15,10 and 5℃ has been revealed.Furthermore,some controversial problems are approached concerning the 25℃“solar” diagram and the 25℃ metastable phase diagram of this system.  相似文献   

4.
Liquid–liquid immiscibility has crucial influences on geological processes, such as magma degassing and formation of ore deposits. Sulfate, as an important component, associates with many kinds of deposits. Two types of immiscibility, including (i) fluid–melt immiscibility between an aqueous solution and a sulfate melt, and (ii) fluid–fluid immiscibility between two aqueous fluids with different sulfate concentrations, have been identified for sulfate–water systems. In this study, we investigated the immiscibility behaviors of a sulfate- and quartz-saturated Na2SO4–SiO2–H2O system at elevated temperature, to explore the phase relationships involving both types of immiscibility. The fluid–melt immiscibility appeared first when the Na2SO4–SiO2–H2O sample was heated to ~270°C, and then fluid–fluid immiscibility emerged while the sample was further heated to ~450°C. At this stage, the coexistence of one water-saturated sulfate melt and two aqueous fluids with distinct sulfate concentrations was observed. The three immiscible phases remain stable over a wide pressure–temperature range, and the appearance temperature of the fluid–fluid immiscibility increases with the increased pressure. Considering that sulfate components occur extensively in carbonatite-related deposits, the fluid–fluid immiscibility can result in significant sulfate fractionation and provides implications for understanding the formation of carbonatite-related rare earth deposits.  相似文献   

5.
采用等温溶解平衡法研究了288K时Li+, Mg2+//SO2-4, B4O2-7- H2O四元体系的固液相平衡关系,测定了该四元体系在288K时平衡液相的溶解度和密度.依据实验测定的平衡溶解度数据及对应的平衡固相,绘制了该四元体系的平衡相图及密度组成图.研究结果表明:交互四元体系Li+, Mg2+//SO2-4, B4O2-7- H2O 288K时平衡相图中有2个共饱点,5条单变量曲线,4个结晶区对应的平衡固相分别为Li2B4O7·3H2O,Li2SO4·H2O,MgB4O7·9H2O和MgSO4·7H2O.  相似文献   

6.
Zabuye Salt Lake in Tibet, China is a carbonate-type salt lake, which has some unique characteristics that make it different from other types of salt lakes. The lake is at the latter period in its evolution and contains liquid and solid resources. Its brine is rich in Li, B, K and other useful minor elements that are of great economic value. We studied the concentration behavior of these elements and the crystallization paths of salts during isothermal evaporation of brine at 15°C and 25°C. The crystallization sequence of the primary salts from the brine at 25°C is halite (NaCl) → aphthitalite (3K2SO4·Na2SO4) → zabuyelite (Li2CO3)→ trona (Na2CO3·NaHCO3·2H2O) → thermonatrite (Na2CO3·H2O) → sylvite (KCl), while the sequence is halite (NaCl) → sylvite (KCl) → trona (Na2CO3·NaHCO3·2H2O) → zabuyelite (Li2CO3) → thermonatrite (Na2CO3·H2O) → aphthitalite (3K2SO4·Na2SO4) at 15°C. They are in accordance with the metastable phase diagram of the Na+, K+-Cl?, CO32?, SO42?-H2O quinary system at 25°C, except for Na2CO3·7H2O which is replaced by trona and thermonatrite. In the 25°C experiment, zabuyelite (Li2CO3) was precipitated in the early stage because Li2CO3 is supersaturated in the brine at 25°C, in contrast with that at 15°C, it precipitated in the later stage. Potash was precipitated in the middle and late stages in both experiments, while boron was concentrated in the early and middle stages and precipitated in the late stage.  相似文献   

7.
正Polyhalite(K2SO4·Mg SO4·2Ca SO4·2H2O)is one of the insoluble potassium mineral which is widely distributed in sulfate-type potassium-bearing deposit,and the theoretical concentration of K2SO4 is 28%.It can be directly used as a  相似文献   

8.
This paper reviews the features of several tungsten ore deposits in southern China, including the Shezhuyuan, Yaogangxian, Xihuashan, Danping, Yiatang and Dajishan mines. The authors think that the formation depth of greisen-type deposits is intermediate between the depths of pegmatite- and porphyry- type deposits. Using phase diagrams of the model system K2O-AhO3-SiO2-H2O-HF, the formation mechanism of greisens has been argued. The variation of mineral assemblages from K-feldspar, muscovite to topaz reflects a gradual increase in acidity. This variation can be used as a criterion to appreciate the depth of mineralization. Equilibria of tungsten minerals in greisen and skarn deposits can be depicted on chemical potential diagrams of the model system CaO-FeO-WO3-CO2-F2O-1. The assemblage wolframite fluorite is shown to have been transformed to scheelite magnetite with decreasing μHP. Depending on CO2 activity in the fluids, there are two distinct phase diagrams.One shows that wolframite is incompatible with calcite, and the other demonstrates that scheelite is incompatible with rhodochrosite. On the phase diagrams of the model system FeO-MnO-WO3-F2S-1, huebnerite is transformed to ferberite with increasing μP1O-1orμF2S-1,During the replacement of wolframite by scheelite, the wolframite residue must have been enriched in Mn.  相似文献   

9.
Subsolidus phase relations have been determined in the systems SiO2-Cr-O and MgO-SiO2-Cr-O in equilibrium with metallic Cr, at 1100 to 1500℃ and 0 to 2.88 GPa. The results show that there are no ternary phases in the SiO2-Cr-O system at these conditions, i.e., only the assemblage eskolaite-Cr-metal-quartz (or tridymite) is found. In the MgO-containing system, however, extensive substitution of Cr2+ for Mg is observed in (Mg, Cr2+)2SiO4 olivine, (Mg, Cr2+)2Si2O6 pyroxene, and (Mg, Cr2+)Cr2O4 spinel. Cr3+ levels in olivine and pyroxene are below detection limits. The pyroxene is orthohombic at XCrPx2+ < 0.2, monoclinic at higher XCrPx2+ . Thestructure of the spinels becomes tetragonally distorted at XCr2+Sp >0.2. The experimental datahave been fitted to a thermodynamic model, and the authors obtained the mixing parameter (W) of Mg-Cr2+ in olivine, pyroxene and spinel, and the relation between temperatures and free energies of formation for the end-members: Cr2+-olivine (Cr2SiO4), Cr2+-pyroxene (Cr2Si2O6)  相似文献   

10.
<正>Zabuye Salt Lake in Tibet,China is a carbonate-type salt lake,which has some unique characteristics that make it different from other types of salt lakes.The lake is at the latter period in its evolution and contains liquid and solid resources.Its brine is rich in Li,B,K and other useful minor elements that are of great economic value.We studied the concentration behavior of these elements and the crystallization paths of salts during isothermal evaporation of brine at 15℃and 25℃.The crystallization sequence of the primary salts from the brine at 25℃is halite(NaCl)→aphthitalite (3K_2SO_4·Na_2SO_4)→zabuyelite(Li_2CO_3)→trona(Na_2CO_3·NaHCO_3·2H_2O)→thermonatrite (Na_2CO_3·H_2O)→sylvite(KCl),while the sequence is halite(NaCl)→sylvite(KCl)→trona (Na_2CO_3·NaHCO_3·2H_2O)→zabuyelite(Li_2CO_3)→thermonatrite(Na_2CO_3·H_2O)→aphthitalite (3K_2SO_4·Na_2SO_4) at 15℃.They are in accordance with the metastable phase diagram of the Na~+,K~+-Cl~-, CO_3~(2-),SO_4~(2-)-H_2O quinary system at 25℃,except for Na_2CO_3·7H_2O which is replaced by trona and thermonatrite.In the 25℃experiment,zabuyelite(Li_2CO_3) was precipitated in the early stage because Li_2CO_3 is supersaturated in the brine at 25℃,in contrast with that at 15℃,it precipitated in the later stage.Potash was precipitated in the middle and late stages in both experiments,while boron was concentrated in the early and middle stages and precipitated in the late stage.  相似文献   

11.
According to the compositions of the underground brine resources in the west of Sichuan Basin, solubilities of the ternary systems NaBr–Na2SO4–H2O and KBr–K2SO4–H2O were investigated by isothermal method at 348 K. The equilibrium solid phases, solubilities of salts, and densities of the solutions were determined. On the basis of the experimental data, the phase diagrams and the density-composition diagrams were plotted. In the two ternary systems, the phase diagrams consist of two univariant curves, one invariant point and two crystallization fields. Neither solid solution nor double salts were found. The equilibrium solid phases in the ternary system NaBr–Na2SO4–H2O are NaBr and Na2SO4, and those in the ternary system KBr–K2SO4–H2O are KBr and K2SO4. Using the solubilities data of the two ternary subsystems at 348 K, mixing ion-interaction parameters of Pitzer’s equation θxxx, Ψxxx and Ψxxx were fitted by multiple linear regression method. Based on the chemical model of Pitzer’s electrolyte solution theory, the solubilities of phase equilibria in the two ternary systems NaBr–Na2SO4–H2O and KBr–K2SO4–H2O were calculated with corresponding parameters. The calculation diagrams were plotted. The results showed that the calculated values have a good agreement with experimental data.  相似文献   

12.
Brine extremely rich in potassium, boron and bromine has been discovered from the Middle Triassic Leikoupo Formation at a depth of 4300 m in Sichuan Province. It contains ~50 g/L of K+, >92 g/L of Na+, >12 g/L of B2O3, >2.36 g/L of Br? and ~0.030 g/L of I+. The solid precipitates during evaporation at 25°C include KB5O8·4H2O, K2B4O7·3H2O, MgCl2·6H2O and KMgCl3·6H2O. The brine ranges from 2.2‰ to 2.8‰ (SMOW) in δ18O, ? 38‰ – ? 53‰ (SMOW) in δD, 15.6‰ in δ34S, and 13.5‰–15.1‰ in δ11B. These data, particularly the isotopic composition of boron, indicate that the brine has a composite derivation from marine and nonmarine brines and dissolved marine evaporites in the Triassic system.  相似文献   

13.
《Chemical Geology》2006,225(3-4):256-265
SeO42− ions can substitute for sulphate in the gypsum structure. In this work crystals of different Ca(SO4,SeO4)·2H2O solid solutions were precipitated by mixing a CaCl2 solution with solutions containing different ratios of Na2SO4 and Na2SeO4. The compositions of the precipitates were analysed by EDS and the cell parameters were determined by X-ray powder diffraction. Moreover, a comparative study on dehydration behaviour of selenate rich and sulfate rich Ca(SO4,SeO4)·2H2O solid solutions was carried out by thermogravimetry.The experimental results show that the Ca(SO4,SeO4)·2H2O solid solution presents a symmetric miscibility gap for compositions ranging from XCaSO4·2H2O = 0.23 to XCaSO4·2H2O = 0.77. By considering a regular solution model a Guggenheim parameter a0 = 2.238 was calculated. The solid phase activity coefficients obtained with this parameter were used to calculate a Lippmann diagram for the system Ca(SO4,SeO4)·2H2O–H2O.  相似文献   

14.
Boron-bearing kornerupine was synthesized in the simplest possible model system at fluid pressures and temperatures both within and outside the stability field of boron-free kornerupine. Best conditions for synthesis of single-phase products are 7 kb and 830 °C. Microprobe and wet chemical analyses as well as X-ray studies indicate compositional variations of kornerupines regarding all five constituent components: Increasing B-contents (from 0.37 to 3.32 wt% B2O3) are correlated with decreasing OH? values largely according to the Eq. B3+?3 H+; the ratio MgO∶Al2O3SiO2 varies from 4∶3∶4 in the direction towards 1∶1∶1. Thus kornerupine exhibits an at least ternary range of solid solution in the system studied. Crystallochemically speaking it is significant that, although the Mg∶Al∶Si ratio of kornerupine may remain constant with increasing boron contents, the total number of cations per formula unit increases beyond the ideal number of 14.0 as given by Moore and Bennett (1968). Considering the presence of an additional structural site at (000) it is suggested that the introduction of boron initiates a sequence of substitutions such as $$B^{[4]} \to Si^{[4] } \to A1^{[4]} \to Mg^{[6]} \to \square$$ . The filling of this site, empty in boron-free kornerupine, by Mg is connected with a loss of hydrogen located near this site. Petrologically speaking an exchange reaction relation exists between kornerupine and its coexisting fluid according to the equation Boron-free kornerupine+B2O3=boron-kornerupine+H2O. The molar fractions $$X_{B_2 O_3 } = B_2 O_3 /\left( {B_2 O_3 + H_2 O} \right)$$ of kornerupines exceed those of their coexisting fluids by about one order of magnitude. Fluids with relatively low XB 2 O 3 lead to the coexistence of kornerupine with boron-free minerals such as enstatite and sapphirine, fluids with relatively high XB 2 O 3 produce the boron-minerals grandidierite, sinhalite, and tourmaline (in the present system without Na!) in addition to kornerupine.  相似文献   

15.
A series of alumina-free micas was synthesized hydrothermally in the potassium-poor portion of the system K2O-MgO-SiO2-H2O. One end member of this series has the composition KMg2.5[Si4O10](OH)2, which, because of its octahedral occupancy, is intermediate between the dioctahedral and trioctahedral micas.From this end member a series of mica solid solutions extends towards more Mg-rich compositions. Single phase micas were obtained along the substitution line 2Mg for Si which appears to involve incorporation of part of the Mg in tetrahedral sites. It leads to a theoretical end member with a structural formula KMg3[Si3.5Mg0.5O10](OH)2. Solid solutions containing up to 75 mole % of this theoretical end member could be synthesized. The observed densities, water contents, and a one-dimensional Fourier synthesis are consistent with the assumed substitution.At 1 kb fluid pressure and 620° C the Si-rich end member KMg2.5[Si4O10](OH)2 decomposes to a more Mg-rich mica, the roedderite phase K2Mg5Si12O30, liquid, and H2O-rich vapor. With increasing Mg-content the thermal stability of the mica solid solutions increases up to 860°C at a composition of about K2O·6.2MgO·7.4SiO2·2H2O, i.e. KMg2.8[Si3.7Mg0.3O10](OH)2. This mica disintegrates directly into forsterite + liquid + H2O-rich vapor. The mica phase richest in Mg with a composition of about K2O·6.5MgO·7.25SiO2·2H2O, i.e. KMg2.875 [Si3.625Mg0.375O10](OH)2, breaks down at 765° C into forsterite, a more Si-rich mica, liquid, and H2O-rich vapor.This binary series of alumina-free micas forms a complete series of ternary solid solutions with normal phlogopite, KMg3[Si3AlO10](OH)2. Analyses of some natural phlogopites showing Si in excess of 3.0 (up to 3.18) per formula unit can be explained through this ternary miscibility range.  相似文献   

16.
We report on the crystallization behavior and the salt weathering potential of Na2SO4, MgSO4 and an equimolar mixture of these salts in natural rock and porous stone. Geochemical modeling of the phase diagram of the ternary Na2SO4–MgSO4–H2O system was used to determine the equilibrium pathways during wetting (or deliquescence) of incongruently soluble minerals and evaporation of mixed electrolyte solutions. Model calculations include stable and metastable solubilities of the various hydrated states of the single salts and the double salts Na2Mg(SO4)2·4H2O (bloedite), Na2Mg(SO4)2·5H2O (konyaite), Na12Mg7(SO4)13·15H2O (loeweite) and Na6Mg(SO4)4 (vanthoffite). In situ Raman spectroscopy was used to study the phase transformations during wetting of pure MgSO4·H2O (kieserite) and of the incongruently soluble salts bloedite and konyaite. Dissolution of kieserite leads to high supersaturation resulting in crystallization of higher hydrated phases, i.e. MgSO4·7H2O (epsomite) and MgSO4·6H2O (hexahydrite). This confirms the high damage potential of magnesium sulfate in salt damage of building materials. The dissolution of the incongruently soluble double salts leads to supersaturation with respect to Na2SO4·10H2O (mirabilite). However, the supersaturation was insufficient for mirabilite nucleation. The damage potential of the two single salts and an equimolar salt mixture was tested in wetting–drying experiments with porous sandstone. While the high damage potential of the single salts is confirmed, it appears that the supersaturation achieved during wetting of the double salts at room temperature is not sufficient to generate high crystallization pressures. In contrast, very high damage potentials of the double salts were found in experiments at low temperature under high salt load.1  相似文献   

17.
Enthalpies of solution in molten 2 PbO · B2O3 at 974 K were measured for four spinelloids, phases I (0.75 NiAl2O4 · 0.25 Ni2SiO4), II (0.60 NiAl2O4 · 0.40 Ni2SiO4), III and IV (0.50 NiAl2O4 · 0.50 Ni2SiO4) in the system NiAl2O4 · Ni2SiO4. The enthalpies (in cal per 4-oxygen mol) of formation from NiAl2O4 and Ni2SiO4 spinels are: phase I, 945±366; phase II, 1072±360; phase III, 2253±390; phase IV, 3565±544. Using these enthalpy data in combination with phase relations at high pressure at 1373 K, positive entropies of formation of the spinelloids from NiAl2O4 and Ni2SiO4 spinels were estimated (in cal mol?1 K?1): phase I, 1.2; phase II, 1.5; phase III, 2.0–2.3; phase IV, 3.0–3.1. The thermochemical data obtained above suggest that the spinelloids are “entropy-stabilized” phases with partially disordered cation distributions. The configurational entropies of the spinelloids were calculated based on the observed cation distribution in each spinelloid phase. The positive entropies of formation of the spinelloids from the spinel endmembers are due primarily to the configurational entropies although small positive vibrational entropy changes may also exist.  相似文献   

18.
An increasing number of occurrences of margarite have been reported in the last years. However, previous experimental investigations in the system CaO-Al2O3-SiO2-H2O are limited to the synthesis of margarite and to the upper stability limit according to the reaction (1) 1 margarite?1 anorthite +1 corundum +1 H2O (Chatterjee, 1971; Velde, 1971). Since margarite often occurs together with quartz, the upper stability limit of margarite in the presence of quartz is of special interest. Therefore, the reactions (5) 1 margarite +1 quartz ?1anorthite +1 kyanite/andalusite +1 H2O and (6) 4 margarite+3 quartz ? 2 zoisite+5 kyanite+3 H2O were investigated experimentally using mixtures of natural margarite (from Chester, Mass., USA), quartz, kyanite, andalusite, zoisite, and synthetic anorthite. The indicated equilibrium temperatures at water pressures equal to total pressure are: 515± 25°C at 4 kb, 545 ±15°C at 5 kb, 590±10°C at 7 kb, and 650±10°C at 9 kb for reaction (5), and 651±11°C at 10 kb, 648 ± 8°C at 12.5kb, and 643±13°C at 15kb for reaction (6), respectively. Besides this, additional brackets for equilibrium temperatures were determined for the above cited reaction (1): 520±10°C at 3 kb, 580±10°C at 5 kb, and 640± 20°C at 7 kb. On the basis of these experimentally determined reactions (1), (5), and (6) and of the reactions (3) 2 zoisite +1 kyanite? 4 anorthite +1 corundum +1 H2O (7) 2 zoisite +1 kyanite +1 quartz ? 4 anorthite +1 H2O and (10) 1 pyrophyllite ? 1 andalusite/kyanite+3 quartz+1 H2O for which experimental or, in the case of reaction (3), calculated data were already available, a pressure-temperature diagram with 3 invariant points and 11 univariant reactions was developed using the method of Schreinemakers. This diagram, summarizing both experimental and phase relation studies, allows conclusions about the conditions under which margarite has been formed in nature. Margarite is limited to low grade metamorphism at water pressures up to approximately 3.5 kb; in the presence of quartz, margarite is even limited to low grade metamorphism at water pressures up to 5.5 kb. Only at water pressures higher than the values stated before margarite, and margarite+quartz, respectively, can occur in medium grade metamorphism (as defined by Winkler, 1970 and 1973). For the combined occurrence of margarite+quartz and staurolite as reported by Harder (1956) and Frey (personal communication, 1973) it may be estimated that water pressure has been greater than approximately 5.5 kb, wheras temperature has been in the range from 550 to 650°C. Furthermore, the present study shows that the assemblage zoisite+kyanite (+ H2O) is an indicator of both pressure [P H 2 O> approximately 9kb]and temperature [T> approximately 640 to 650° Cat water Pressures up to 15 kb].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号