首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Common variogram models, such as spherical or exponential functions, increase monotonically with increasing lag distance. On the other hand, a hole-effect variogram typically exhibits sinusoidal waves that form peaks and troughs, thereby conveying the cyclicity of the underlying phenomenon. In order to incorporate this cyclicity into a stochastic simulation, hole effects in the experimental variogram must be fitted appropriately. In this paper, we recommend use of several multiplicative-composite variogram models to fit hole-effect experimental variograms. These consist of a cosine function to provide wavelength and phase of cyclicity, multiplied by a monotonic model (e.g., spherical) to attenuate amplitudes of the cyclical peaks and troughs. These composite models can successfully fit experimental lithology-indicator variograms that contain a range of cyclicities, although experimental variograms with poor cyclicity require special considerations.  相似文献   

2.
Variograms calculated from binary variables, such as from two lithologies, tend to show sinusoidal forms with decreasing amplitudes for increasing lag distances. This cyclicity is observed often when analyzing drill-hole data for rock sequences with alternating lithologies, and the variograms are thus labeled “hole-effect variograms.” Such variograms show a variety of forms: (1) Low to moderate variation in lithologic-body dimensions causes variograms to have strong cyclicity with decaying amplitude. (2) Variograms with one or more peaks and troughs usually result from a binary variable for which lithologies are about equally abundant but possibly large variations exist in the size of lithologic bodies. (3) Variograms show poor cyclicity if one lithology has highly variable body sizes and the other has moderately variable body dimensions. (4) Variograms that attain a plateau at short lag distances represent extremely high or low sandstone fraction, high variability in size of the most abundant lithology, and low variability in the other. Information about the dimensions of lithologic bodies makes it possible to approximate characteristics of the variogram of the lithology variable without numerous wells. Conversely, a hole-effect variogram of lithology may be used to estimate lithologic dimensions.  相似文献   

3.
Variograms calculated from binary variables, such as from two lithologies, tend to show sinusoidal forms with decreasing amplitudes for increasing lag distances. This cyclicity is observed often when analyzing drill-hole data for rock sequences with alternating lithologies, and the variograms are thus labeled hole-effect variograms. Such variograms show a variety of forms: (1) Low to moderate variation in lithologic-body dimensions causes variograms to have strong cyclicity with decaying amplitude. (2) Variograms with one or more peaks and troughs usually result from a binary variable for which lithologies are about equally abundant but possibly large variations exist in the size of lithologic bodies. (3) Variograms show poor cyclicity if one lithology has highly variable body sizes and the other has moderately variable body dimensions. (4) Variograms that attain a plateau at short lag distances represent extremely high or low sandstone fraction, high variability in size of the most abundant lithology, and low variability in the other. Information about the dimensions of lithologic bodies makes it possible to approximate characteristics of the variogram of the lithology variable without numerous wells. Conversely, a hole-effect variogram of lithology may be used to estimate lithologic dimensions.  相似文献   

4.
Covariance and variogram functions have been extensively studied in Euclidean space. In this article, we investigate the validity of commonly used covariance and variogram functions on the sphere. In particular, we show that the spherical and exponential models, as well as power variograms with 0<α≤1, are valid on the sphere. However, two Radon transforms of the exponential model, Cauchy model, the hole-effect model and power variograms with 1<α≤2 are not valid on the sphere. A table that summarizes the validity of commonly used covariance and variogram functions on the sphere is provided.  相似文献   

5.
A critical step for kriging in geostatistics is estimation of the variogram. Traditional variogram modeling comprise of the experimental variogram calculation, appropriate variogram model selection and model parameter determination. Selecting of the variogram model and fitting of model parameters is the most controversial aspect of geostatistics. Shapes of valid variogram models are finite, and sometimes, the optimal shape of the model can not be fitted, leading to reduced estimation accuracy. In this paper, a new method is presented to automatically construct a model shape and fit model parameters to experimental variograms using Support Vector Regression (SVR) and Multi-Gene Genetic Programming (MGGP). The proposed method does not require the selection of a variogram model and can directly provide the model shape and parameters of the optimal variogram. The validity of the proposed method is demonstrated in a number of cases.  相似文献   

6.
Estimating Variogram Uncertainty   总被引:10,自引:0,他引:10  
The variogram is central to any geostatistical survey, but the precision of a variogram estimated from sample data by the method of moments is unknown. It is important to be able to quantify variogram uncertainty to ensure that the variogram estimate is sufficiently accurate for kriging. In previous studies theoretical expressions have been derived to approximate uncertainty in both estimates of the experimental variogram and fitted variogram models. These expressions rely upon various statistical assumptions about the data and are largely untested. They express variogram uncertainty as functions of the sampling positions and the underlying variogram. Thus the expressions can be used to design efficient sampling schemes for estimating a particular variogram. Extensive simulation tests show that for a Gaussian variable with a known variogram, the expression for the uncertainty of the experimental variogram estimate is accurate. In practice however, the variogram of the variable is unknown and the fitted variogram model must be used instead. For sampling schemes of 100 points or more this has only a small effect on the accuracy of the uncertainty estimate. The theoretical expressions for the uncertainty of fitted variogram models generally overestimate the precision of fitted parameters. The uncertainty of the fitted parameters can be determined more accurately by simulating multiple experimental variograms and fitting variogram models to these. The tests emphasize the importance of distinguishing between the variogram of the field being surveyed and the variogram of the random process which generated the field. These variograms are not necessarily identical. Most studies of variogram uncertainty describe the uncertainty associated with the variogram of the random process. Generally however, it is the variogram of the field being surveyed which is of interest. For intensive sampling schemes, estimates of the field variogram are significantly more precise than estimates of the random process variogram. It is important, when designing efficient sampling schemes or fitting variogram models, that the appropriate expression for variogram uncertainty is applied.  相似文献   

7.
Characteristic behavior and order relations for indicator variograms   总被引:7,自引:0,他引:7  
Heuristic models for indicator variograms and their parameters (practical nugget effect and range) are proposed for a bivariate normal distribution with spherical correlogram. These models can be used conveniently as a preliminary check for bivariate normality. In the general non-Gaussian case, indicator variogram models for multiple threshold values must verify a certain number of order relations (inequalities) established directly from the properties of a general bivariate cumulative distribution function. An interesting, little-known maximum hole effect for indicator correlation is pointed out.  相似文献   

8.
Kriging with imprecise (fuzzy) variograms. I: Theory   总被引:2,自引:0,他引:2  
Imprecise variogram parameters are modeled with fuzzy set theory. The fit of a variogram model to experimental variograms is often subjective. The accuracy of the fit is modeled with imprecise variogram parameters. Measurement data often are insufficient to create good experimental variograms. In this case, prior knowledge and experience can contribute to determination of the variogram model parameters. A methodology for kriging with imprecise variogram parameters is developed. Both kriged values and estimation variances are calculated as fuzzy numbers and characterized by their membership functions. Besides estimation variance, the membership functions are used to create another uncertainty measure. This measure depends on both homogeneity and configuration of the data.  相似文献   

9.
概述了克里格法应用于北方某煤矿的储量计算结果,并将其与传统方法的计算结果进行比较,说明了该法的应用价值。   相似文献   

10.
In the present paper, we propose a new method for the estimation of the variogram, which combines robustness with efficiency under intrinsic stationary geostatistical processes. The method starts by using a robust estimator to obtain discrete estimates of the variogram and control atypical observations that may exist. When the number of points used in the fit of a model is the same as the number of parameters, ordinary least squares and generalized least squares are asymptotically equivalent. Therefore, the next step is to fit the variogram by ordinary least squares, using just a few discrete estimates. The procedure is then repeated several times with different subsets of points and this produces a sequence of variogram estimates. The final estimate is the median of the multiple estimates of the variogram parameters. The suggested estimator will be called multiple variograms estimator. This procedure assures a global robust estimator, which is more efficient than other robust proposals. Under the assumed dependence structure, we prove that the multiple variograms estimator is consistent and asymptotically normally distributed. A simulation study confirms that the new method has several advantages when compared with other current methods.  相似文献   

11.
Four variogram models for regional groundwater geochemical data are presented. These models were developed from an empirical study of the sample variograms for more than 10 elements in groundwaters from two geologic regions in the Plainview quandrangle, Texas. A procedure is given for the estimation of the variogram in the isotropic and anisotropic case. The variograms were found useful for quantifying the differences in spatial variability for elements within a geologic unit and for elements in different geologic units. Additionally, the variogram analysis enables assessment of the assumption of statistical independence of regional samples which is commonly used in many statistical procedures. The estimated variograms are used in computation of kriged estimates for the Plainview quadrangle data. The results indicate that an inverse distance weighting model was superior for prediction than simple kriging with the particular variograms used.  相似文献   

12.
Design-based sampling strategies based on classical sampling theory offer unprecedented potentials for estimation of non-ergodic variograms. Unbiased and uncorrelated estimates of the semivariance at the selected lags and of its sampling variance can be simply obtained. These estimates are robust against deviations from an assumed spatial autocorrelation model. The same holds for the variogram model parameters and their sampling (co)variances. Moreover, an objective measure for lack of fit of the fitted model can simply be derived. The estimators for two basic sampling designs, simple random sampling and stratified simple random sampling of pairs of points, are presented. The first has been tested in real world for estimating the non-ergodic variograms of three soil properties. The parameters of variogram models and their sampling (co)variances were estimated with 72 pairs of points distributed over six lags.  相似文献   

13.
Understanding Anisotropy Computations   总被引:2,自引:0,他引:2  
  相似文献   

14.
Positive definiteness is not enough   总被引:2,自引:0,他引:2  
Geostatisticians know that the mathematical functions chosen to represent spatial covariances and variograms must have the appropriate type of positive definiteness, but they may not realize that there are restrictions on the types of covariances and variograms that are compatible with particular distributions. This paper gives some examples showing that (1) the spherical model is not compatible with the multivariate lognormal distribution if the coefficient of variation is 2.0 or more (even in 1-D), and (2) the Gaussian covariance and several other models are not compatible with indicator random functions. As these examples concern quite different types of random functions, it is clear that there is a general problem of compatibility between spatial covariance models (or variograms) and a specified multivariate distribution. The problem arises with all distributions except the multivariate normal, and not just the two cited here. The need for a general theorem giving the necessary and sufficient conditions for a covariance or a variogram to be compatible with a particular distribution is stressed.  相似文献   

15.
理论变异函数球状模型的加权线性规划法似合   总被引:8,自引:1,他引:8       下载免费PDF全文
对理论变异函数球状模型及其套合结构拟合这一问题作了探讨,提出了加权线性规划拟合法。同于该法在目标函数中既可考虑到对不同滞后h下所得实验变异函数值进行加权,又可保证拟合成功,同时还可进行人工干预,因此,方法综合了现有加权多项式拟合法及线性规划拟合法的各自优点,且在计算上较目标规划拟合法更为简单。  相似文献   

16.
When concerned with spatial data, it is not unusual to observe a nonstationarity of the mean. This nonstationarity may be modeled through linear models and the fitting of variograms or covariance functions performed on residuals. Although it usually is accepted by authors that a bias is present if residuals are used, its importance is rarely assessed. In this paper, an expression of the variogram and the covariance function is developed to determine the expected bias. It is shown that the magnitude of the bias depends on the sampling configuration, the importance of the dependence between observations, the number of parameters used to model the mean, and the number of data. The applications of the expression are twofold. The first one is to evaluate a priori the importance of the bias which is expected when a residuals-based variogram model is used for a given configuration and a hypothetical data dependence. The second one is to extend the weighted least-squares method to fit the variogram and to obtain an unbiased estimate of the variogram. Two case studies show that the bias can be negligible or larger than 20%. The residual-based sample variogram underestimates the total variance of the process but the nugget variance may be overestimated.  相似文献   

17.
The theory of mononodal variography developed in the preceeding paper is checked against a simulated deposit consisting of 60,500 grade values, called Stanford II. In the case of this deposit at least, assumptions underlying the concept of mononodal variography are borne out accurately. In particular, a linear relationship does exist indeed between indicator and grade variogram values of Stanford II at corresponding lags. Furthermore, such grade-indicator plots, and the information deduced from them, are robust under reduction of data at the mononodal cutoff. The method thus has predictive potential for grade variograms of highly variant deposits. Forecasting a grade variogram from the associated mononodal indicator variogram and grade-indicator plot is illustrated. Agreement with the experimental variogram is shown to be excellent.  相似文献   

18.
Although there are multiple methods for modeling matrix covariance functions and matrix variograms in the geostatistical literature, the linear coregionalization model is still widely used. In particular it is easy to check to ensure whether the matrix covariance function is positive definite or that the matrix variogram is conditionally negative definite. One of the difficulties in using a linear coregionalization model is in determining the number of basic structures and the corresponding covariance functions or variograms. In this paper, a new procedure is given for identifying the basic structures of the space–time linear coregionalization model and modeling the matrix variogram. This procedure is based on the near simultaneous diagonalization of the sample matrix variograms computed for a set of spatiotemporal lags. A case study using a multivariate spatiotemporal data set provided by the Environmental Protection Agency of Lombardy, Italy, illustrates how nearly simultaneous diagonalization of the empirical matrix variograms simplifies modeling of the matrix variograms. The new methodology is compared with a previous one by analyzing various indices and statistics.  相似文献   

19.
The aim of this short article is to stress the importance of using only positive-definite functions as models for covariance functions and variograms.The two examples presented show that a negative variance can easily be obtained when a nonadmissible function is chosen for the variogram model.  相似文献   

20.
根据变差函数的随机性和空间结构性,综合利用变差函数计算方法和加权线性规划拟合方法,分别拟合出各主要方向上的模型参数,再根据各向异性情况进行结构套合,实现了变差函数的计算及球状模型的自动拟合.针对样本中存在特异值的情况,算法中还提供了相对变差函数方法,有效地抑制了特异值对变差函数的影响,保证了球状模型拟合的精度.本算法在VC++6.0中实现,利用拟合出的模型,对样本区域进行插值得到网格文件,调用Surfer8.0绘制了等值线图.通过交叉验证和综合法验证,表明拟合度较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号