首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Janusfjellet Subgroup is a marine shelf to prodeltaic succession dominated by shales with subordinate siltstones and sandstones. The subgroup comprises a lower Agardhf jellet (Upper Bathonian - Berriasian) and an upper Rurikf jellet (Berriasian - Hauterivian) formation. Based on field work in central Spitsbergen the following subdivisions of the formations are proposed (units listed in ascending order).
The Agardhf jellet Formation (up to 290 m thick) contains four members: Oppdalen - a fining upwards succession from conglomerates to shales; Lardyfjellet - black paper shales; Oppdalsata - grey shales with siltstones and sandstones; and Slottsmøya - grey shales and black paper shales. Within the Oppdalen Member three beds are recognised: Brentskardhaugen - phosphoritic conglomerate; Marhøgda - glauconitic sandstones', and Drønbreen - siltstones and shales.
The Rurikfjellet Formation (thickness up to 226 m) is composed of two members: Wimanfjellet - grey and partly silty shale sequence, containing the Myklegardfjellet Bed (of plastic clays) at its base; and Ullaberget - silty and sandy shales with siltstones and sandstones.  相似文献   

2.
Skuamounds are peaty hillocks up to 70 cm high used by Arctic Skuas (Stercorarius parasiticus (L.)) for surveying their breeding territory. Well-developed skua-mounds in Svalbard can be considered as small guanogenic bogs', because the peat formation depends on manuring by birds and the water-table in the mound is higher than the surrounding tundra. Peat sections measuring 34 cm and 40 cm from two skuamounds from Edgeøya and Spitsbergen were radiocarbon dated and studied for pollen and spores. Peat formation on the two skua-mounds started c. 4500 calendar years ago. Concentration values of longdistance transported pollen were used to detect time gaps in the records. The time gap in the skua-mound from Spitsbergen was found to be considerably greater than in the skuamound from Edgeøya. Erosion has progressed considerably further on the Edgeøya skua-mound than on the skua-mound from Spitsbergen due to differences in hydrology: the peat of the former mound is dry and unfrozen in summer, whereas in the latter mound it is wet and frozen. Time gaps and erosion are probably associated with phases of decreased manuring by birds. At two levels in the Edgeøya skua-mound there is evidence of a climatic change towards cooler conditions, one being an early major climatic shift and the other a later minor climatic shift. A similar major climatic shift is associated with one level in the skuamound from Spitsbergen.  相似文献   

3.
Persistent polynyas have been observed over several winters in Storfjorden, situated between Spitsbergen and Barentsøya/Edgeøya in the south of the Svalbard archipelago. Polynyas are in general active regions with respect to ocean-atmosphere heat exchange, presenting strong convection phenomena and as such being involved in important water mass formation and having an impact on the marine ecosystem. Hydrographic observations have revealed very dense (cold and saline) brine-enriched bottom waters leaving the continental shelf as gravity driven plumes into the deep sea west of Spitsbergen. Satellite observations, using ERS-2 SAR imagery, reveal the evolution of the Storfjorden polynya during winter 1997/98. After forming a complete ice cover until mid-January, Storfjorden responds dynamically to northerly winds by opening a large latent heat polynya. It occupies at its largest extent a region of up to 6000 km2 of open water, thin ice and brash ice. Comparable in size to other large Arctic polynyas, the Storfjorden polynya might have the same or even greater importance in the thermohaline circulation and bottom water mass formation. Ice production is estimated at 30 km3 in Storfjorden, rejecting around 700 Mt (Megatons) of salt that can raise the salinity in Storfjorden by 0.9-1.0 PSU. First studies and the winter 1997/98 evolution of this polynya are presented in this paper.  相似文献   

4.
Four relative sea-level curves from Edgeøya and Barentsøya are constructed based on 81 radiocarbon age determinations on carefully selected and levelled samples in raised beaches, mostly driftwood embedded in beach gravel. All the dates, covering the period from the deglaciation to the present, are calibrated to calendar years, and the sea-level curves are defined by fitting the data with a least square regression curve. The dates are internally very consistent, and the results are some of the most precise sea-level curves from the Arctic.
The four curves are quite similar, and from the marine limit at 85-90 m a.s.l. they show a rapid emergence (ca 40 mm/year), formed about 11,000 cal yrs BP (∼10,00014C yrs BP). A minimum rate of emergence close to 8000 cal years ago is explained by a decreased rate in isostatic uplift parallel with a sustained rate of eustatic sea-level rise. During the last 7000 cal years, the emergence rate has decreased linearly. The uplift rates have been slightly higher on southern Edgeøya than further north during the last 7000 years. By comparing the sea-level curves from Storøya (ca 270 km to the north) and Hopen (ca 150 km to the south), we suggest that a memory of an earlier and larger glacio-isostatic downwarping in the southern Barents Sea is detected in the sea-level curves from Hopen and southern Edgeøya.  相似文献   

5.
The age of the uppermost part of the Rurikfjellet Member, Janusfjellet Formation, underlying the Helvetiafjellet Formation, is discussed on the basis of the occurrence of dinoflagellate cysts. Samples collected from thirteen localities in western and central Spitsbergen were examined. Forty-eight dinoflagellate cyst species were recorded during the study, but only a few provide good time resolution. They show that the youngest beds of the Rurikfjellet Member, previously regarded to be of Hauterivian age, belong to the Barremian. The presence of Barremian sediments below the base of the Helvetiafjellet Formation at several widely separated localities constrains the diachronism of the Rurikfjellet Member -Helvetiafjellet Formation transition.  相似文献   

6.
The Middle to Upper Triassic Tanzhuang Formation represents part of the infill of the early Mesozoic Jiyuan-Yima Basin. The upper part of this stratigraphic unit records deposition within prevailing shallow lake conditions. Well-developed sequences crop out near Jiyuan, western Henan Province, central China. Six sedimentary facies clustered into two facies assemblages were recognized in the lacustrine section. Facies assemblage 1 consists of stacked coarsening-upward sequences composed, from base to top, of organic-rich shales (facies E, type I), laminated siltstones (facies A) and current-rippled laminated sandstones (facies B). Units of assemblage 1 record progradation of small mouth-bar deltas within a perennial open lacustrine system under temperate and humid conditions. Facies assemblage 2 lacks a clear vertical pattern and consists of interbedded fine-grained carbonates and siltstones (facies C); deformed and wave-reworked sandstones (facies D); organic-rich shales (facies E, type II) and clayey mudstones (facies F). The assemblage also represents a perennial, hydrologically-open, shallow lacustrine system, but characterized by strong seasonal climatic control. Water stratification probably occurred in several periods of the lake history. Pangaean megamonsoonal influence is envisaged to explain the strong seasonality imprint evidenced toward the upper part of the Tanzhuang lacustrine column.This is the fourth paper in a series of papers published in this issue on Climatic and Tectonic Rhythms in Lake Deposits.  相似文献   

7.
The eastern part Svalbard archipelago and the adjacent areas of the Barents Sea were subject to extensive erosion during the Late Weichselian glaciation. Small remnants of older sediment successions have been preserved on Edgeeya, whereas a more complete succession on Kongsøya contains sediments from two different ice-free periods, both probably older than the Early Weichselian. Ice movement indicators in the region suggest that the Late Weichselian ice radiated from a centre east of Kong Karls Land. On Bjørnøya, on the edge of the Barents Shelf, the lack of raised shorelines or glacial striae from the east indicates that the western parts of the ice sheet were thin during the Late Weichselian. The deglaciation of Edgeøya and Barentsøya occurred ca 10,300 bp as a response to calving of the marine-based portion of the ice sheet. Atlantic water, which does not much influence the coasts of eastern Svalbard today, penetrated the northwestern Barents Sea shortly after the deglaciation. At that time, the coastal environment was characterised by extensive longshore sediment transport and deposition of spits at the mouths of shallow palaeo-fjords.  相似文献   

8.
A new Lower Cretceous lithostratigraphic unit of the Western Barents Shelf, named the Klippfisk Formation, is formally introduced. The formation represents a condensed carbonate succession deposited on platform areas and structural highs, where it consists of limestones and marls, often glauconitic. The limestones may have a nodular appearance, and fossil debris, which are dominated by Inoceramus prisms, may be abundant. The Klippfisk Formation is composed of two members: the Kutling Member defined herein from cores drilled on the Bjarmeland Platform, and the coeval Tordenskjoldberget Member described on Kong Karls Land. The base of the formation is defined by the abrupt decrease in gamma-ray intensity, where the dark shales of the underlying Hekkingen or Agardhfjellet formations are replaced by marls. It is often unconformable. The Klippfisk Formation is of Berriasian to Early Barremian age and appears to be time-transgressive over parts of the Western Barents Shelf (including Kong Karls Land). It passes laterally into the basinal Knurr Formation. On Kongsøya (Kong Karls Land) a thin shale unit, bounded by unconformities, earlier included in the Tordenskjoldberget Member, represents the northernmost extension of the overlying Kolje Formation in the Barents Shelf.  相似文献   

9.
The Triassic succession of Bjørnøya (200 m) comprises the Lower Triassic Urd Formation (65 m) of the Sassendalen Group, and the Middle and Upper Triassic Skuld Formation (135 m) of the Kapp Toscana Group. These units are separated by a condensed '.'Middle Triassic sequence represented by a phosphatic remainé conglomerate (0.2m).
The Urd Formation consists of grey to dark grey shales with yellow weathering dolomitic beds and nodules. Palynology indicates the oldest beds to be Diencrian; ammonoid faunas in the middle and upper part of the formation arc of Smithian age. The organic content (c. 1 %) includes kerogen of land and marine origin, reflecting a shallow marine depositional environment.
The Skuld Formation is dominated by grey shales with red weathering siderite nodules. There are minor coarsening upwards sequences; the highest bed exposed is a 20 m thick, very fine-grained sandstone. Palynomorphs indicate a late Ladinian age for the lower part of the formation, and macrofossils and palynomorphs indicate Ladinian to Carnian ages for the upper part. Sedimentary structures, a sparse marine fauna and microplankton indicate deposition in a shallow marine environment. The organic residues contain dominantly terrestrially derived kerogen.  相似文献   

10.
The upper Bashkirian-Moscovian Kapp KIre Formation is well-exposed in coastal cliff sections along the west coast of Bjørnøya, Svalbard. It is composed of stacked cycles of nixed siliciclastics and carbonates in the lower Bogevika Member and of cyclic shelf carbonates in the overlying Efuglvika Member. The uppermost Kobbebukta Member consists of shelf carbonates and syntectonic conglomerates and sandy turbidites. The shift in cycle types reflects an overall transgression of the region during the Moscovian combined with renewed tectonic activity and uplift of eastern Bjørnøya during the late Moscovian. Twelve carbonate facies and 6 siliciclastic facies are distinguished. The carbonate facies range from intertidal dolomitic mudstones with pseudomorphs after gypsum to subwavebase, intensely bioturbated wackestones. Most carbonates are deeper subtidal facies and shallow marine carbonate facies are only common in the transgressive part of mixed siliciclastic-carbonate cycles of the Bogevika Member. Incorporating the effects of high amplitude, high frequency glacioeustacy and active extensional tectonism, a dynamic model is developed to explain the spatial variability of facies observed within the Kapp Kke Formation. Observations from Bjørnøya are placed within the context of the regional structural and stratigraphic framework so that significance of the study to ongoing exploration efforts in the Barents Sea can be evaluated. Most important, our observations suggest that dolomitized, porous carbonate buildups are most likely to be found in the upper Moscovian succession in areas where accommodation space increased temporarily due to local tectonism.  相似文献   

11.
The Present foraminiferal distribution (live + dead) in Freemansundet between Barentsøya and Edgeøya, Svalbard, has been compared with assemblages in raised marine Holocene deposits in Guldalen on Edgeeya. Four distinct foraminiferal assemblages were identified in Freemansundet, the Elphidium excavatum-Cassidulina reniforme assemblage, the Elphidium hallandense assemblage, the Cibicides lobatulus assemblage and the Elphidium incertum-Haynesina orbiculare assemblage. Four assemblage zones (Zones A-D) have been established in the glaciomarine to marine sediment sequence in Guldalen. Only two of the recent fauna! types were represented here. The Elphidium excavatum-Cassidulina reniforme assemblage, which reflects a proximal glacier environment, was found in the lowermost Zone A (the Elphidium excavatum Zone) and in Zone C (the Elphidium excavatum-Cassidulina reniforme Zone) in the Guldalen stratigraphy; the Elphidium incertum-Haynesina orbiculare assemblage, which reflects ameliorated shallow water conditions, was found in the uppermost Zone D in Guldalen. The marine sequence in Guldalen represents a relatively short period of time during the Early Holocene (ca 9700 to 8300 BP). The succession of the foraminiferal assemblages suggests that the deglaciation was interrupted by a cold period with glacial stagnation just after 9600 bp (Zone B. the Astrononion gallowayi-Nonionellina labradorica Zone).  相似文献   

12.
Glacial striae and other ice movement indicators such as roche moutonées, glacial erratics, till fabric and glaciotectonic deformation have been used to reconstruct the Late Weichselian ice movements in the region of eastern Svalbard and the northern Barents Sea. The ice movement pattern may be divided into three main phases: (1) a maximum phase when ice flowed out of a centre east or southeast of Kong Karls Land. At this time the southern part of Spitsbergen was overrun by glacial ice from the Barents Sea; (2) the phase of deglaciation of the Barents Sea Ice Sheet, when an ice cap was centred between Kong Karls Land and Nordaustlandet. At the same time ice flowed southwards along Storfjorden; and (3) the last phase of the Late Weichselian glaciation in eastern Svalbard is represented by local ice caps on Spitsbergen, Nordaustlandet, Barentsoya and Edgeøya.
The reconstructed ice flow pattern during maximum glaciation is compatible with a centre of uplift in the northern Barents Sea as shown by isobase reconstructions and suggested by isostatic modelling.  相似文献   

13.
Analysis of benthic foraminiferal assemblages was performed in Bathonian to Kimmeridgian deposits through a section covering the lower half of the Agardhfjellet Formation in central Spitsbergen. The section consists mainly of organic-rich shales, which contain low-diversity agglutinated assemblages. In this foraminiferal succession five morphogroups were differentiated according to shell architecture (general shape, mode of coiling and number of chambers), integrated with the supposed microhabitat (epifaunal, shallow infaunal and deep infaunal) and feeding strategy (suspension-feeder, herbivore, bacterivore, etc.). The environmental evolution of the analysed section is interpreted by using the stratigraphic distribution of morphogroups, combined with species diversities and sedimentary data, in a sequence stratigraphic framework. The section comprises two depositional sequences, which demonstrate that species diversity and relative frequency of morphogroups are correlative with transgressive–regressive trends controlling depth and oxygenation of the water column. In both sequences, the maximum flooding interval is characterized by increased organic carbon content, dominance of the epifaunal morphogroups and reduced species diversity: features reflecting the increased degree of stagnation separating the transgressive phase from the regressive phase.  相似文献   

14.
Eleven shallow cores display 315 m of the >700 m thick Lower and Middle Triasic successional of the Svalis Dome, a Salt diapir in the central south-western Barents Sea. The Svalis Dome was uplifted in the late Mesozoic. and Trisassic rocks suherop below Quaternary till around the Upper Palaeozoic core of the dome. Deposition of the Triassic succession took place in deep shelf to basinal environments below storm wave base. The succession is dated by macrofossils and palynomorphs and can be assigned to four formations. The basal beds of the shaly greenish grey Havert Formation (Griesbachian) occur above Permian bioclastic carbonate. The Klappmyss Formation (Smithian) in the lower part contains gravity flow sands deposited as submarine fans pussible triggered by tectonic movements along the adjacent ault zones overlian by silty claystones. An organic-rich dark shale unit is here formally defined as the Steinkobbe overlain by silty claystones. An organic-rich dark shale unit is here formally defined as the Steinkobbe Formation, and was deposited in a large bight by restricted water circulation. The Snadd Formation. on top, representes a marine shelf unit deposited in front of an emerging land area in the north-east. A minimum of six higher order transgressive-regressive sequences are recognized at the Svalis Dome and these are correlated with other Arctic areas.  相似文献   

15.
A part of the Carboniferous basin stratigraphy, the clastic to carbonaceous Minkinfjellet "Member" of the Nordenskioldbreen Formation in Central Spitsbergen, is deposited in an asymmetric basin structure (here referred to as the Minkinfjellet Basin), similar to the underlying Ebbadalen Formation. The western boundary -situated within the Billcfjorden Fault Zone -has probably been a little farther east than during deposition of the Ebbadalen strata. The thickness attains ca. 350 m in central parts of the basin, and the strata strongly attenuates to the east and south. The base and top are interpreted as low-angle stratigraphical unconformities. The boundary with the overlying Cadcllfjellet Member of the Nordenskioldbreen Formation is locally disrupted by carbonate breccias of suggested earthquake origin. Formation rank is suggested for the sedimentary succession of the Minkinfjellet basin.  相似文献   

16.
Palynological investigations of 16 sections from Spitsbergen, Svalbard, covering the uppermost Carboniferous, Permian and lowermost Triassic succession have been carried out. Because of general poor preservation and barrenness of the majority of the samples, it was not possible to establish a formal zonation for the Permian succession. The study resulted, however, in the recognition of three Permian palynological assemblages, restricted downwards by a Carboniferous assemblage and upwards by an earliest Triassic (Griesbachian) assemblage. The dating of these assemblages is based on palynological correlation with similar palynofloras elsewhere in the present Arctic region as well as dating by marine faunas, which in general give better stratigraphic resolution. The Permian assemblages recognised include (1) the Vittatina assemblage of late Gzhelian to early Asselian age recorded in the lower parts of the Tyrrellfjellet Member (Nordenskioldbreen Formation), (2) the Hamiapollenites tractiferinus assemblage of late Asselian to Artinskian age recorded in the upper parts of the Tyrrellfjellet Member and in the Gipshuken Formation and (3) the youngest Permian Kraeuselisporiles assemblage of late Artinskian to earliest Tatarian age recorded in the Kapp Starostin Formation.  相似文献   

17.
Early Holocene, near-shore marine sediments from Visdalen, Edgeøya, eastern Svalbard contain locally abundant allochthonous remains of land plants, notably bryophytes. Wetland species indicative of mineral rich and calcareous soils are frequent, but upland plants are also well represented. The fossil assemblages are indicative of ecological and climatic conditions similar to those on Edgeøya today. The sediments contain one of the first fossil beetles reported from Svalbard. Apparently, the modern flora of Svalbard was already established in the earliest Holocene, probably following immigration from northern Europe. A few Armeria scabra remains are believed to be derived from interglacial deposits.  相似文献   

18.
The change from continental to marine conditions in the Middle Carboniferous on Brøggerhalvøya started at the end of the Bashkirian with short-term transgressive events at the top of the Brøggertinden Formation. Local basin subsidence was responsible for the pulsatory nature of the transgression. The establishment of a shallow marine carbonate-dominated environment is represented by the Moscovian Scheteligfjellet Member which overlies the post-Caledonian red beds of the Brøggertinden Formation. The Scheteligfjellet Member is the lowermost member of the Nordenskioldbreen Formation and shows distinct lateral facies variations. Three facies associations can be distinguished: lagoonal facies, shoal facies and open marine facies. The succeeding two members were deposited in subtidal areas of the carbonate platform. A basin subsidence event at the Carboniferous/Permian boundary was responsible for a short shift into deeper depositional environments during a time of worldwide regression. After this a continuous regression led to supratidal conditions at the top of the Nordenskioldbreen Formation.  相似文献   

19.
OLA EIKEN 《Polar research》1985,3(2):167-176
The status of seismic exploration work mapping the post-Caledonian strata in the Svalbard area is presented. Compressional wave velocities are very high throughout the area, around 4km/s in the Tertiary and Mesozoic layers. In the Permian section velocities exceed 5 km/s, with refraction velocities > 6 km/s in the calcareous rocks of the Gipsdalen Group (early Permian/Late Carboniferous). Apart from correlation with carbonate and chert lithology, high velocities reflect the high degree of consolidation and the low porosities of shales and sandstones in the post-Caledonian strata in Svalbard. In van Mijenfjorden seismic reflection events are observed down to 3–4 km depth and associated with Carboniferous and younger strata. The thickness of the Mesozoic layers in this part of the central Spitsbergen syncline seems to be greater than previously suggested, and there is an apparent eastward divergence between the Jurassic and the Triassic reflectors. In south-western Storfjorden, reflections interpreted to originate from Carboniferous and Permian strata might represent the seaward extension of the central Spitsbergen syncline. In the northern part of Storfjorden, carbonate layers within the Gipsdalen Group are interpreted to lie about one kilometre below the sea floor. A prominent fault zone in this area trends NNW-SSE, like the main structural elements on Spitsbergen. It shows block-faulting, presumably caused by extensional movement in late Devonian-Carboniferous time.  相似文献   

20.
An 18.5 m thick shale sequence of Norian-Rhaetian age is described from the Bohemanfiya-Syltoppen area (north of Isfjorden, central Spitsbergen). Lithological, petrographical and palynological analyses show that the sequence represents a marginal development of the lower part of the Wilhelmeya Formation. The depositional history at the Triassic-Jurassic transition is discussed in the light of this new evidence. The Wilhelmøya Formation was probably deposited during a weak marine transgression over an area of low relief. Low sediment supply and current and wave reworking of the sediments characterized the depositional conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号