首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升   总被引:36,自引:2,他引:36  
河西走廊新生代沉积敏感地记录了青藏高原北部的构造隆升过程. 酒泉盆地玉门老君庙剖面高分辨率磁性地层研究表明, 疏勒河组胳塘沟段和牛胳套段的年龄分别为>13~8.3 Ma和8.3~<4.9 Ma, 玉门砾岩、酒泉砾石层和戈壁砾石层的年龄分别为3.66~0.93, 0.84~0.14和0.14~0 Ma. 岩性和岩相变化表明祁连山自约8 Ma起, 6.6 Ma略有加速, 由较低的高度开始逐步隆起, 盆地沉积从细粒的湖相砂岩-泥岩逐步转变成粗粒的洪积扇沉积, 至约3.66 Ma后, 祁连山开始急剧地整体快速隆升, 并经约<2.94~2.58, <1.8~1.23, 0.93~0.84和0.14 Ma多次阶段性快速隆升, 祁连山最终被抬升到今天的高度.  相似文献   

2.
酒西盆地晚新生代地层的ESR年代   总被引:12,自引:3,他引:12  
史正涛 《中国科学D辑》2001,31(Z1):163-168
采用ESR(电子自旋共振)方法, 对酒西盆地老君庙剖面晚新生代地层进行了系统测年.结果表明,玉门砾岩开始沉积的年代为3.45 Ma ,结束时间为0.94 Ma;酒泉砾石层自0.84 Ma堆积.玉门砾岩开始堆积的时间大约是祁连山和青藏高原北部强烈隆升开始时.  相似文献   

3.
位于青藏高原东北缘的祁连山由一系列平行的山系及其山间盆地相间组成,其新生代山体隆升与盆地演化是关系到青藏高原隆升扩展乃至中国一二级阶梯地势形成的关键问题.本文以祁连山腹地及外围新生代沉积盆地为研究对象,综合考虑区域位置、盆地形成与演化等要素,基于不同盆地区域地层对比,进行动态地层区划,进而恢复祁连山地区构造-沉积演化过程.结果表明,古近纪早期(古-始新世)祁连山地区为一隆起带,南北两侧的柴达木盆地与酒泉盆地以及腹地兰州-西宁盆地独立演化;渐新世青藏高原隆升并向东北方向扩张逆冲,西秦岭北缘贵德-西宁-兰州-临夏压陷盆地形成,祁连山东部地区压陷盆地全面接受沉积,祁连山西部地区的南祁连古隆起与北祁连古隆起之间苏里盆地开始形成并接受沉积.中新世祁连山地区陆内挤压造山与盆地裂解,拉脊山、青海南山、积石山、六盘山等山体相继隆起,将古近纪统一大型压陷盆地分割为贵德、共和、青海湖、西宁、兰州、临夏及天水等盆地,分别归属新近纪贵德-西宁-兰州地层区中各地层分区,疏勒南山隆起将苏里盆地裂解为多个小盆地,同归新近纪苏里地层区.与此同时,南、北祁连开始向外逆冲扩展,柴达木盆地与酒泉盆地范围较古近纪缩小,且在盆地边缘形成次一级沉降中心,分属新近纪柴达木地层区和肃北-酒泉地层区.  相似文献   

4.
陇中盆地灞河期地层的发现及意义   总被引:3,自引:0,他引:3  
陇中盆地东南缘天水一带发育较完整的新近系地层, 其中蕴含丰富的哺乳动物化石, 特别是尧店组中产出典型的灞河期渭河三趾马等化石. 鉴于灞河期及灞河期沉积地层在中国北方环境变化中的重要意义, 开展了天水尧店典型剖面的古地磁测年. 结果表明, 尧店组(相当灞河组)年龄为11.67~7.43 Ma, 其中含渭河三趾马层位的古地磁年龄大致为10.3~10.54 Ma. 根据岩性、沉积结构和构造特征, 尧店组沉积演化从下部河道沉积(11.67~10.4 Ma)到中部洪泛平原沉积(10.4~9.23 Ma), 最后转变为浅湖沉积(9.23~7.43 Ma), 表明盆地南部的秦岭和北部的华家岭经过长期的侵蚀后, 地形高差变小, 水系搬运能力减弱, 最后水系解体, 在宽浅的湖泊里沉积稳定的泥岩和泥灰岩, 应代表夷平面发育接近老年期阶段. 孢粉资料也显示这一时期以针阔混交林为主, 气候温暖湿润. 7.4~7.7 Ma之后, 变为红黏土为主沉积, 森林草原植被发展, 三趾马动物群繁盛, 指示此时发生了显著环境变化. 目前的秦岭和现代水系均属上新世晚期以来强烈新构造运动和气候变化的产物.  相似文献   

5.
循化-贵德地区的循化盆地、贵德盆地和同仁盆地与拉鸡山和西秦岭北缘逆冲带相邻分布.盆地沉积地层主要由渐新统西宁群、渐新统上部至上新统贵德群和下更新统组成.它们由不整合界面分隔,划分为3个盆地相.盆地相1为西宁群,盆地相2为贵德群查让组、下东山组、贺尔加组和甘家砾岩组,盆地相3为共和组及下更新统.3个盆地相均在其中下部或底部发育湖泊沉积,向上转变为冲积扇-辫状河平原沉积体系,呈现出粒径向上不断加大的反序、进积沉积序列.盆地沉积、古流和沉积物碎屑成分分析表明,研究区在西宁群(盆地相1)沉积时期发育大型湖泊沉积盆地,盆地沉积物源主要来自于南侧的西秦岭逆冲带,而拉鸡山逆冲带处于沉积基准面之下,接受沉积;在贵德群(盆地相2)沉积时期,逆冲作用向北迁移,拉鸡山逆冲隆升,研究区盆地分割,主要沿拉鸡山逆冲带南北两侧发育点源扩散型冲积扇-辫状河平原沉积.研究区盆山系统演化对青藏高原远端增生过程具有重要的指示意义.研究结果表明,青藏高原新生代向北东的增生作用在渐新世(29~21.4Ma)已抵达西秦岭北缘地区,增生过程主要表现为向北的单向褶皱逆冲增厚隆升和前缘前陆盆地充填;中新世至上新世(20.8~2.6Ma)高原增生作用跨过研究区可能抵达祁连北缘和六盘山地区,增生过程主要表现为双向基底卷入式逆冲增厚隆升和分割式前陆盆地充填上新世至早更新世(2.6~1.7 Ma)高原远端主要表现为区域剥蚀夷平与山间盆地加积充填.  相似文献   

6.
循化-贵德地区新生代盆地发育及其对高原增生的指示   总被引:3,自引:0,他引:3  
循化-贵德地区的循化盆地、贵德盆地和同仁盆地与拉鸡山和西秦岭北缘逆冲带相邻分布.盆地沉积地层主要由渐新统西宁群、渐新统上部至上新统贵德群和下更新统组成.它们由不整合界面分隔,划分为3个盆地相.盆地相1为西宁群,盆地相2为贵德群查让组、下东山组、贺尔加组和甘家砾岩组,盆地相3为共和组及下更新统.3个盆地相均在其中下部或底部发育湖泊沉积,向上转变为冲积扇-辫状河平原沉积体系,呈现出粒径向上不断加大的反序、进积沉积序列.盆地沉积、古流和沉积物碎屑成分分析表明,研究区在西宁群(盆地相1)沉积时期发育大型湖泊沉积盆地,盆地沉积物源主要来自于南侧的西秦岭逆冲带,而拉鸡山逆冲带处于沉积基准面之下,接受沉积;在贵德群(盆地相2)沉积时期,逆冲作用向北迁移,拉鸡山逆冲隆升,研究区盆地分割,主要沿拉鸡山逆冲带南北两侧发育点源扩散型冲积扇-辫状河平原沉积.研究区盆山系统演化对青藏高原远端增生过程具有重要的指示意义.研究结果表明,青藏高原新生代向北东的增生作用在渐新世(29~21.4Ma)已抵达西秦岭北缘地区,增生过程主要表现为向北的单向褶皱逆冲增厚隆升和前缘前陆盆地充填;中新世至上新世(20.8~2.6Ma)高原增生作用跨过研究区可能抵达祁连北缘和六盘山地区,增生过程主要表现为双向基底卷入式逆冲增厚隆升和分割式前陆盆地充填;上新世至早更新世(2.6~1.7Ma)高原远端主要表现为区域剥蚀夷平与山间盆地加积充填.  相似文献   

7.
天水-秦安地区保存有多种成因类型的新生代沉积物,其物质来源及其变化对于研究青藏高原东北部的隆升剥蚀历史、构造变形方式以及与之相关的地貌演化过程具有重要意义.本文通过碎屑锆石U-Pb年龄物源示踪方法,对该区的古近纪洪积砾岩、新近纪河流和湖相沉积进行了分析,并与中新世以来的风尘堆积进行了对比.结果显示:1)古近纪洪积砾岩中包含大量亲扬子地块的560~1100Ma的锆石颗粒,但这一年龄的锆石颗粒在早中新世河流相沉积中显著减少,同时出现了大量200~360Ma的锆石颗粒,指示着古近纪洪积砾岩主要来自西秦岭的中部和/或南部,而早中新世河流相沉积主要来自西秦岭北部;2)约11.5Ma以来,该区河流相沉积以380~450Ma的锆石颗粒占主导,与六盘山南部岩体的年龄一致,指示着六盘山南部的初始隆升;3)该区晚中新世湖相沉积的锆石年龄分布明显不同于同时期的河流沉积物,但与秦安中新世风成红土、晚中新世-上新世三趾马红土及第四纪黄土十分相似,指示着该区中新世的细颗粒水成沉积物很可能主要为风尘物质.本文的研究揭示出天水-秦安地区新生代沉积物的物源转变和地貌演化均与青藏高原东北部的阶段性隆升密切相关,特别是晚渐新世-早中新世青藏高原北部的隆升,可能既为中新世风成红土的出现创造了物源和风动力条件,也为其堆积创造了地貌条件.  相似文献   

8.
在系统查阅1996~2008年中国地质调查局在青藏高原完成的177幅1:25万地质填图和前人已发表的新生代地层资料的基础上,划分出青藏高原及邻区古近纪-新近纪残留盆地共98个,归属为南疆-西昆仑、柴达木-祁连-西秦岭、羌塘-川西、扬子西缘、冈底斯-喜马拉雅-恒河共5个地层区,进一步细分为13个地层分区.通过对各个地层分区的残留盆地类型、形成构造背景、各分区内的岩石地层序列及其沉积特征、地层接触关系、时代确定依据与沉积演化过程的描述,将青藏高原新生代的隆升及其沉积响应划分为3大阶段、8个亚阶段:一是俯冲碰撞隆升阶段(65~34Ma),含3个亚阶段:(1)65~56Ma:印度与欧亚板块初始碰撞,恒河前陆盆地和成都、塔里木压陷盆地形成.(2)56~45Ma:印度与欧亚板块碰撞高峰期,高原北部柴达木-可可西里-羌塘压陷盆地和东北缘的兰州-西宁压陷盆地形成.(3)45~34Ma:约40Ma左右藏南新特提斯残留海消亡,印度与欧亚板块全面完成碰撞;高原东缘走滑拉分盆地初始发育.约40Ma以来喜马拉雅沉积缺失,标志喜马拉雅初始隆升;约36Ma以来冈底斯带区域不整合面发育,标志冈底斯初始隆升.二是陆内汇聚挤压隆升阶段(34~13Ma),含3个亚阶段:(1)34~25Ma:沿冈底斯分布日贡拉砾岩,是冈底斯持续隆升的产物.高原东北缘出现临夏-循化新的压陷盆地.(2)25~20Ma:沿冈底斯带南缘广布大竹卡组砾岩.可可西里-沱沱河地区角度不整合面发育和盆地内的古近纪地层抬升变形,指示可可西里-沱沱河发生较大幅度隆升.约23Ma时塔里木海相沉积结束,高原及周边不整合面广布,标志高原整体隆升.(3)20~13Ma:高原内及周边大型盆地全面发展,盆内发育持续湖侵充填序列,高原及周边出现最大湖泊扩张期;高原东缘走滑拉分盆地发育进入鼎盛期.三是陆内均衡调整隆升阶段(13Ma以来),含2个亚阶段:(1)13~5Ma:喜马拉雅-冈底斯隆升到相当高度,使该带因东西向伸展而导致南-北向断陷盆地形成;约8Ma左右出现强的构造抬升剥露,8Ma之后高原及邻区大型湖泊进入湖退期.(2)5Ma以来:高原整体隆升;高原内和周缘盆地沉积萎缩.约3.5Ma高原周缘堆积巨砾岩.  相似文献   

9.
青藏高原北缘酒西盆地13 Ma以来沉积演化与构造隆升   总被引:27,自引:4,他引:27  
宋春晖 《中国科学D辑》2001,31(Z1):155-162
13 MaBP以来从祁连山剥蚀的物质广泛沉积于酒西盆地南缘, 可划分出5个沉积相组合, 其沉积演化分为4个阶段. 酒西盆地的沉积与高原隆升响应关系揭示出高原自13 MaBP以来先后经历了: 稳定期(>8.26 Ma)、持续逐步较快速隆升期(8.26~<4.96 Ma)和急剧强烈阶段性隆升期(>3.66~0 Ma). 青藏高原的隆升是一个多阶段、不等速和非均变的复杂过程. 关键词  相似文献   

10.
广东省南海县走马营ZGC粗面岩的40Ar-39Ar年龄   总被引:1,自引:0,他引:1       下载免费PDF全文
广东三水盆地是陆相断陷沉积盆地,其基底为侏罗纪或上古生代地层。盆地内白垩纪—新生代的沉积地层十分发育,可达几千米厚。受新华夏断裂和北西向断层的控制,盆地中火山活动活跃,并大体上可分为三期,第一期发生在古新世晚期(58—63Ma),岩性以拉斑玄武岩和流纹岩为主;第二期发生在始新世早期(49—56Ma),岩性以粗面岩为主,第三期发生在始新世中期(43—46Ma),岩性以拉斑玄武岩为主(王慧芬等,1986  相似文献   

11.
The uplift process of the Qinghai-Tibetan Plateau holds the key to understand the dynamic mechanisms of continental crust shortening and mountain-building and to test the relationship between the Tibetan uplift and tectonic-climatic coupling and environmental im-pacts[1―4].However,there are still many debates in the process and mechanism of how the Tibetan Plateau uplifted to the present configuration.Among various approaches to solve these key questions,dating of the Cenozoic stratigraphy …  相似文献   

12.
The Cenozoic uplift of Qilian Mountains is critical to comprehend the uplift and extension of the Tibet Plateau as well as the formation of the first and second steps in China's topography. This study summarized dynamic stratigraphic realm comprehensively on the basis of stratigraphic correlation of different Cenozoic sedimentary basin regions of the Qilian Mountains and adjacent mountains. This facilitated the re-creation of the tectonic-sedimentary evolutionary process of the Qilian Mountains and their surrounding areas. The results indicate that during the Early Paleogene(Paleocene-Eocene), the Qilian Mountains were part of an uplift realm. During the Oligocene, Guide-Xining-Lanzhou-Linxia sag basin at the northern margin of the West Qinling Mountains came into being and was subjected to sedimentation. The Suli Basin located between the North and South Qilian paleo-uplifts began to form and undergo sedimentation. Intracontinental orogenic extrusion and basin detachment occurred at the Qilian Mountains during the Miocene, which caused successive uplifts of various mountains, including the Laji, South Qinghai,Jishi, Liupan, and South Shule Mountains. Until Pliocene, Qilian Mountains uplifted continuously and resulted in the shrink,extinction and being eroded of the basins, and aeolian red clay started to accumulate.  相似文献   

13.
The Eastern Kunlun Mountains play an important role in the growth and eastward extrusion of the Tibetan Plateau. Tectonic and sedimentary study of the Cenozoic Qaidam Basin, especially the southern part, provides key evidence for understanding their evolution. Here we present evidence including isopach maps, seismic sections and sedimentary analysis of single well to illustrate the sedimentary development of the basin and the structural features of its southern margin. The Qaidam Basin extended across Qiman Tagh-Eastern Kunlun Mountains in the early Cenozoic and withdrew northward at ca. 35.5 Ma, and then buckled as an EW striking elliptical depression since ca. 14.9 Ma, with the main depocenter migrating eastward. Our results support the view that the Kumukol and Hoh Xil basins joined the Qaidam Basin in the early Cenozoic time and we propose the Eastern Kunlun Mountains uplifted in the mid-Miocene.  相似文献   

14.

Sediments shed from the northern margin of the Tibetan Plateau, the Qilian Mountains, are widely deposited in the foreland basin, the Jiuxi Basin, archiving plenty of information about the mountain surface uplift and erosion history. The Laojunmiao section, 1960 m thick, representing the upper sequence of the Cenozoic basin sediments, is paleomagnetically dated to about 13-0 Ma BP. Detailed sedimentary study of this sequence has revealed five sedimentary facies associations which determine four stages of sedimentary environment evolution. They are: (I) the half-deep lake system before 12.18 Ma BP, (II) the shallow lake system between 12.18 and 8.26 Ma BP, (III) the fan delta dominated sedimentary system in dry climate between 8.26 and 6.57 Ma BP, and (IV) alluvial fan system since 6.57 Ma BP. The associated mountain erosion and uplift are suggested to have experienced three phases, that is, tectonic stable (13-8.26 Ma BP), gradual uplift (8.26-<4.96 Ma BP), and rapid intermittent uplift (>3.66-0 Ma BP). The uplift at ∼3.66 Ma BP is of great importance in tectonics and geomorphology. Since then, tectonic uplift and mountain building have been accelerated and become strong intermittent. At least three significant tectonic events took place with ages at <1.80-1.23, 0.93-0.84 and 0.14 Ma BP, respectively. Thus, the uplift of the northern Tibetan Plateau is a complex process of multiple phases, unequal speed and irregular movements.

  相似文献   

15.
New paleomagnetic results from Neogene sedimentary sequences from the Betic chain (Spain) are here presented. Sedimentary basins located in different areas were selected in order to obtain paleomagnetic data from structural domains that experienced different tectonic evolution during the Neogene. Whereas no rotations have been evidenced in the Late Tortonian sediments in the Guadalquivir foreland basin, clockwise vertical axis rotations have been measured in sedimentary basins located in the central part of the Betics: the Aquitanian to Messinian sediments in the Alcalà la Real basin and the Tortonian and Messinian sediments in the Granada basin. Moreover, counterclockwise vertical axis rotations, associated to left lateral strike-slip faults have been locally measured from sedimetary basins in the eastern Betics: the Middle Miocene to Lower Pliocene sites from the Lorca and Vera basins and, locally, the Tortonian units of the Huercal-Overa basin. Our results show that, conversely from what was believed up to now, paleomagnetic rotations continued in the Betics after Late Miocene, enhancing the role of vertical axis rotations in the recent tectonic evolution of the Gibraltar Arc.  相似文献   

16.
17.
The Ryoke Metamorphic complex has undergone low‐P/T metamorphism and was intruded by granitic magmas around 100 Ma. Subsequently, the belt was uplifted and exposed by the time deposition of the Izumi Group began. The tectonic history of uplift, such as the timing and processes, are poorly known despite being important for understanding the spatiotemporal evolution of the Ryoke Metamorphic Belt. U–Pb zircon ages from sedimentary rocks in the forearc and backarc basins are useful for constraining uplift and magmatism in the provenance. U–Pb dating of detrital zircons from 12 samples (four sandstones and eight granitic clasts) in the Yuasa–Aridagawa basin, a Cretaceous forearc basin in the Chichibu Belt of Southwest Japan, gave mostly ages of 60–110 Ma. Granitic clasts contained in conglomerate suggest that granitic intrusions predate the formation of Coniacian and Maastrichtian conglomerate. Emplacement ages of granitic bodies originated from granitic clasts in Coniacian conglomerate are (110.2 ±1.3) Ma, (106.1 ±1.8) Ma, (101.8+5.8–3.8) Ma, and (95.3 ±1.4) Ma; for granitic clasts in Maastrichtian conglomerate, (89.6 ±1.8) Ma, (87.3+2.4–1.8) Ma, (85.7 ±1.2) Ma, and (82.7 ±1.2) Ma. The results suggest that detrital zircons in the sandstones were mainly derived from volcanic eruptions contemporaneous with depositional age, and plutonic rocks of the Ryoke Metamorphic Belt. Zircon ages of the granitic clast samples also indicate that uplift in the provenance began after Albian and occurred at least during the Coniacian to Maastrichtian. Our results, together with the difference of provenance between backarc and forearc basins suggest that the southern marginal zone of the Ryoke Metamorphic Belt was uplifted and supplied a large amount of clastic materials to the forearc basins during the Late Cretaceous.  相似文献   

18.
Sedimentary deposits in the foreland basin of the northeastern Qilian Mountains are crucial documents recording tectonic activity and climate changes on the Tibetan Plateau. In this study, luminescence dating was used to date alluvial conglomerates and fluvial terrace sediments collected from the Beida River in the Jiuquan Basin, a foreland basin in the Hexi Corridor, northeastern Qilian Mountains. Detailed sedimentology and luminescence ages reveal that alluvial conglomerates accumulated from before 620 ka to 12 ka and that sediment accumulation rates increased at ∼330 ka and ∼35 ka, coinciding with the dates of two tectonic events (∼350 and ∼50 ka) and followed by climate cooling (from marine isotope stage (MIS) 9 to MIS 8 and from MIS 3 to MIS 2). This reveals that variations in the sediment accumulation rates are controlled by the coupling of tectonic uplift and climate cooling. The highest terrace (T7) that developed on the alluvial conglomerate base formed at ∼ 12 ka. The incision rate in the early Holocene was ∼2.1 mm/yr and increased to ∼14.6 mm/yr during the middle and late Holocene. The variations in the river incision rate provide geomorphic evidence for Holocene climate patterns in arid and semiarid areas. Luminescence dating offers a credible temporal framework for the deposits and reveals climate and tectonic effects on the evolution of the foreland basin, northeastern Qilian Mountains.  相似文献   

19.
Cenozoic basin-forming processes in northwestern Kyushu were studied on the basis of geological and geophysical data. Gravity anomaly analysis delineated four sedimentary basins in the study area: Goto-nada, Nishisonogi, Amakusa-nada, and Shimabara. Borehole stratigraphy and reflection seismic interpretation suggest that the Goto-nada Basin was subdivided into the Paleogene and Plio-Pleistocene depocenters (Goto-nada 1 and 2). In the Paleogene, Amakusa-nada Basin was rapidly subsiding together with the Shimabara Basin as part of a large graben. Goto-nada 1 and Nishisonogi basins belonged to another depositional area. After stagnant subsidence stage in the early Miocene, the study area became a site of basaltic activity (since 10 Ma) and vigorous subsidence in the Plio-Pleistocene. Goto-nada 2 Basin is accompanied with numerous east–west active faults, and separated from the Amakusa-nada Basin by a northeast– southwest basement high, Nomo Ridge. Plio-Pleistocene subsidence of the Amakusa-nada Basin is related with low-angle normal faulting on the eastern flank of the Nomo Ridge. Shimabara Basin is a composite volcano-tectonic depression which is studded by east–west faults. Focal mechanism on active faults suggests transtensional stress regime in the study area.  相似文献   

20.

Late Cenozoic sediments in the Hexi Corridor, foreland depression of the Qilian Mountain preserved reliable records on the evolution of the Northern Tibetan Plateau. Detailed magnetic polarity dating on a 1150 m section at Wenshushan anticline in the Jiudong Basin, west of Hexi Corridor finds that the ages of the Getanggou Formation, Niugetao Formation and Yumen Conglomerate are >11-8.6 Ma, 8.6-4.5 Ma and 4.5-0.9 Ma respectively. Accompanying sedimentary analysis on the same section suggests that the northern Tibetan Plateau might begin gradual uplift since 8.6-7.6 Ma, earlier than the northeastern Tibetan Plateau but does not suppose that the plateau has reached its maximum elevation at that time. The commencement of the Yumen Conglomerate indicates the intensive tectonic uplift since about 4.5 Ma.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号