首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We report the results of a submillimetre continuum emission survey targeted towards 78 star formation regions, 72 of which are devoid of methanol maser and UC H  ii  regions, identified in the Swedish ESO Submillimetre Telescope (SEST)/SEST IMaging Bolometer Array (SIMBA) millimetre continuum survey of Hill et al. At least 45 per cent of the latter sources, dubbed 'mm-only', detected in this survey are also devoid of the mid-infrared MSX  emission. The 450- and 850-μm continuum emission was mapped using the Submillimetre Common User Bolometer Array (SCUBA) instrument on the James Clerk Maxwell Telescope (JCMT). Emission is detected towards 97 per cent of the 78 sources targeted as well as towards 28 other SIMBA sources lying in the SCUBA fields.
In total, we have identified 212 cores in this submillimetre survey, including 106 previously known from the SIMBA survey. Of the remaining 106 sources, 53 result from resolving a SIMBA source into multiple submillimetre components, whilst the other 53 sources are submillimetre cores, not seen in the SIMBA. Additionally, we have identified two further mm-only sources in the SIMBA images. Of the total 405 sources identified in the SIMBA survey, 255 are only seen at millimetre wavelengths.
We concatenate the results from four (sub)millimetre continuum surveys of massive star formation, together with the Galactic plane map of Pierce-Price et al. in order to determine the dust grain emissivity index β for each of the sources in the SIMBA source list. We examine the value of β with respect to temperature, as well as for the source classes identified in the SIMBA survey, for variation of this index. Our results indicate that β is typically 2, which is consistent with previous determinations in the literature, but for a considerably larger sample than previous work.  相似文献   

2.
I summarize recent millimetre and submillimetre observations of cloud cores where massive star formation is currently taking place. The first systematic continuum surveys in this wavelength range obtained with single dish telescopes and high-resolution data of NGC 2024 and W51A obtained with the Plateau de Bure interferometer are presented in more detail. Also given is a discussion of observing methods and some of the difficulties involved with the observations.  相似文献   

3.
We investigate the conditions of star formation in the Large Magellanic Cloud (LMC). We have conducted a survey for water maser emission arising from massive young stellar objects in the 30 Doradus region (N 157) and several other H  ii regions in the LMC (N 105A, N 113 and N 160A). We have identified a new maser source in 30 Dor at the systemic velocity of the LMC. We have obtained 3–4 μm spectra, with the European Southern Observatory (ESO)-Very Large Telescope (VLT), of two candidate young stellar objects. N 105A IRS1 shows H recombination line emission, and its Spectral Energy Distribution (SED) and mid-infrared colours are consistent with a massive young star ionizing the molecular cloud. N 157B IRS1 is identified as an embedded young object, based on its SED and a tentative detection of water ice. The data on these four H  ii regions are combined with mid-infrared archival images from the Spitzer Space Telescope to study the location and nature of the embedded massive young stellar objects and signatures of stellar feedback. Our analysis of 30 Dor, N 113 and N 160A confirms the picture that the feedback from the massive O- and B-type stars, which creates the H  ii regions, also triggers further star formation on the interfaces of the ionized gas and the surrounding molecular cloud. Although in the dense cloud N 105A star formation seems to occur without evidence of massive star feedback, the general conditions in the LMC seem favourable for sequential star formation as a result of feedback. In an Appendix , we present water maser observations of the galactic red giants R Doradus and W Hydrae.  相似文献   

4.
Popular models for the origin of gamma-ray bursts (GRBs) include short-lived massive stars as the progenitors of the fireballs. Hence the redshift distribution of GRBs should track the cosmic star formation rate of massive stars accurately. A significant proportion of high-mass star formation activity appears to occur in regions that are obscured from view in the optical waveband by interstellar dust. The amount of dust-enshrouded star formation activity taking place has been estimated by observing the thermal radiation from the dust that has been heated by young stars in the far-infrared and submillimetre wavebands. Here we discuss an alternative probe – the redshift distribution of GRBs. GRBs are detectable at the highest redshifts, and because gamma-rays are not absorbed by dust, the redshift distribution of GRBs should therefore be unaffected by dust extinction. At present the redshifts of GRBs can only be determined from the associated optical transient emission; however, useful information about the prevalence of dust-obscured star formation can also be obtained from the ratio of GRBs with and without an associated optical transient. Eight GRBs currently have spectroscopic redshifts. Once about a hundred redshifts are known, the population of GRBs will provide an important test of different models of the star formation history of the Universe.  相似文献   

5.
The protoplanetary discs of T Tauri and Herbig Ae/Be stars have previously been studied using geometric disc models to fit their spectral energy distribution (SED). The simulations provide a means to reproduce the signatures of various circumstellar structures, which are related to different levels of infrared excess. With the aim of improving our previous model, which assumed a simple flat-disc configuration, we adopt here a reprocessing flared-disc model that assumes hydrostatic, radiative equilibrium. We have developed a method to optimize the parameter estimation based on genetic algorithms (GAs). This paper describes the implementation of the new code, which has been applied to Herbig stars from the Pico dos Dias Survey catalogue, in order to illustrate the quality of the fitting for a variety of SED shapes. The star AB Aur was used as a test of the GA parameter estimation, and demonstrates that the new code reproduces successfully a canonical example of the flared-disc model. The GA method gives a good quality of fit, but the range of input parameters must be chosen with caution, as unrealistic disc parameters can be derived. It is confirmed that the flared-disc model fits the flattened SEDs typical of Herbig stars; however, embedded objects (increasing SED slope) and debris discs (steeply decreasing SED slope) are not well fitted with this configuration. Even considering the limitation of the derived parameters, the automatic process of SED fitting provides an interesting tool for the statistical analysis of the circumstellar luminosity of large samples of young stars.  相似文献   

6.
Class II methanol masers are believed to be associated with high-mass star formation. Recent observations by Walsh et al. and Phillips et al. reported a very low detection rate of radio continuum emission toward a large sample of 6.7-GHz methanol masers. These results raise questions about the evolutionary phase and/or the mass range of the exciting stars of the masers. Here we report the results of a VLA search for 8.4-GHz continuum emission from the area around five Class II methanol masers, four of which were not detected by Walsh et al. at 8.6 GHz. Radio continuum emission was detected in all five fields although only two of the nine maser spot groups in the five fields were found to be superimposed on radio continuum sources that appear to be ultra-compact H  ii (UCH  ii ) regions. This suggests that continuum counterparts for some masers might be found in further surveys for which the sensitivity level is lower than  1 mJy beam−1  . Considering our results as well as observations from other studies of methanol masers we conclude that masers without radio continuum counterparts are most likely associated with high-mass stars in a very early evolutionary stage, either prior to the formation of a UCH  ii region or when the H  ii region is still optically thick at centimetre wavelengths. With one exception all maser spot groups in the five fields were found to be associated with mid-infrared objects detected in the Midcourse Space Experiment survey.  相似文献   

7.
We present Australia Telescope Compact Array observations towards six massive star formation regions, which, from their strong 24 GHz continuum emission but no compact 8 GHz continuum emission, appeared good candidates for hypercompact H  ii regions. However, the properties of the ionized gas derived from the 19 to 93 GHz continuum emission and  H70α+ H57α  radio recombination line data show the majority of these sources are, in fact, regions of spatially extended, optically thin free–free emission. These extended sources were missed in the previous 8 GHz observations due to a combination of spatial filtering, poor surface brightness sensitivity and primary beam attenuation.
We consider the implications that a significant number of these extended H  ii regions may have been missed by previous surveys of massive star formation regions. If the original sample of 21 sources is representative of the population as a whole, the fact that six contain previously undetected extended free–free emission suggests a large number of regions have been mis-classified. Rather than being very young objects prior to UCH  ii region formation, they are, in fact, associated with extended H  ii regions and thus significantly older. In addition, inadvertently ignoring a potentially substantial flux contribution (up to ∼0.5 Jy) from free–free emission has implications for dust masses derived from sub-mm flux densities. The large spatial scales probed by single-dish telescopes, which do not suffer from spatial filtering, are particularly susceptible and dust masses may be overestimated by up to a factor of ∼2.  相似文献   

8.
On the formation and evolution of black hole binaries   总被引:1,自引:0,他引:1  
We present the results of a systematic study of the formation and evolution of binaries containing black holes and normal-star companions with a wide range of masses. We first reexamine the standard formation scenario for close black hole binaries, where the progenitor system, a binary with at least one massive component, experienced a common-envelope phase and where the spiral-in of the companion in the envelope of the massive star caused the ejection of the envelope. We estimate the formation rates for different companion masses and different assumptions about the common-envelope structure and other model parameters. We find that black hole binaries with intermediate- and high-mass secondaries can form for a wide range of assumptions, while black hole binaries with low-mass secondaries can only form with apparently unrealistic assumptions (in agreement with previous studies).
We then present detailed binary evolution sequences for black hole binaries with secondaries of 2 to 17 M and demonstrate that in these systems the black hole can accrete appreciably even if accretion is Eddington-limited (up to 7 M for an initial black hole mass of 10 M) and that the black holes can be spun up significantly in the process. We discuss the implications of these calculations for well-studied black hole binaries (in particular GRS 1915+105) and ultraluminous X-ray sources of which GRS 1915+105 appears to represent a typical Galactic counterpart. We also present a detailed evolutionary model for Cygnus X-1, a massive black hole binary, which suggests that at present the system is most likely in a wind mass-transfer phase following an earlier Roche-lobe overflow phase. Finally, we discuss how some of the assumptions in the standard model could be relaxed to allow the formation of low-mass, short-period black hole binaries, which appear to be very abundant in nature.  相似文献   

9.
We present results from observations of H110 α recombination-line emission at 4.874 GHz and the related 4.8-GHz continuum emission towards the Carina nebula using the Australia Telescope Compact Array. These data provide information on the velocity, morphology and excitation parameters of the ionized gas associated with the two bright H  ii regions within the nebula, Car I and Car II. They are consistent with both Car I and Car II being expanding ionization fronts arising from the massive star clusters Trumpler 14 and Trumpler 16, respectively. The overall continuum emission distribution at 4.8 GHz is similar to that at lower frequencies. For Car I, two compact sources are revealed that are likely to be young H  ii regions associated with triggered star formation. These results provide the first evidence of ongoing star formation in the northern region of the nebula. A close association between Car I and the molecular gas is consistent with a scenario in which Car I is currently carving out a cavity within the northern molecular cloud. The complicated kinematics associated with Car II point to expansion from at least two different centres. All that is left of the molecular cloud in this region are clumps of dense gas and dust which are likely to be responsible for shaping the striking morphology of the Car II components.  相似文献   

10.
We report the discovery of H2 line emission associated with 6.67-GHz methanol maser emission in massive star-forming regions. In our UNSWIRF/AAT observations, H2 1–0 S(1) line emission was found associated with an ultracompact H  ii region IRAS 14567–5846 and isolated methanol maser sites in G318.95–0.20 , IRAS 15278–5620 and IRAS 16076–5134 . Owing to the lack of radio continuum in the latter three sources, we argue that their H2 emission is shock excited, while it is UV-fluorescently excited in IRAS 14567–5846 . Within the positional uncertainties of 3 arcsec, the maser sites correspond to the location of infrared sources. We suggest that 6.67-GHz methanol maser emission is associated with hot molecular cores, and propose an evolutionary sequence of events for the process of massive star formation.  相似文献   

11.
The advent of ALMA is bound to improve our knowledge of OB star formation dramatically. Here, we present an overview of this topic outlining how high angular resolution and sensitivity may contribute to shed light on the structure of high-mass star forming regions and hence on the process itself of massive star formation. The impact of this new generation instrument will range from establishing the mass function of pre-stellar cores inside IR-dark clouds, to investigating the kinematics of the gas from which OB stars are built up, to assessing or ruling out the existence of circumstellar accretion disks in these objects.  相似文献   

12.
We present the largest sample of high-mass star-forming regions observed using submillimetre imaging polarimetry. The data were taken using the Submillimetre Common User Bolometer Array (SCUBA) in conjunction with the polarimeter on the James Clerk Maxwell Telescope (JCMT) in Hawaii. In total, 16 star-forming regions were observed, although some of these contain multiple cores. The polarimetry implies a variety of magnetic field morphologies, with some very ordered fields. We see a decrease in polarization percentage for seven of the cores. The magnetic field strengths estimated for 14 of the cores, using the corrected Chandrasekhar and Fermi (CF) method, range from <0.1 mG to almost 6 mG. These magnetic fields are weaker on these large scales when compared to previous Zeeman measurements from maser emission, implying the role of the magnetic field in star formation increases in importance on smaller scales. Analysis of the alignment of the mean field direction and the outflow directions reveals no relation for the whole sample, although direct comparison of the polarimetry maps suggests good alignment (to at least one outflow direction per source) in seven out of the 15 sources with outflows.  相似文献   

13.
We have obtained wide-field thermal infrared (IR) images of the Carina nebula, using the SPIREX/Abu telescope at the South Pole. Emission from polycyclic aromatic hydrocarbons (PAHs) at 3.29 μm, a tracer of photodissociation regions (PDRs), reveals many interesting well-defined clumps and diffuse regions throughout the complex. Near-IR images  (1–2 μm)  , along with images from the Midcourse Space Experiment ( MSX ) satellite  (8–21 μm)  have been incorporated to study the interactions between the young stars and the surrounding molecular cloud in more detail. Two new PAH emission clumps have been identified in the Keyhole nebula, and have been mapped in  12CO(2–1)  and  (1–0)  using the Swedish–ESO Submillimetre Telescope (SEST). Analysis of their physical properties reveals that they are dense molecular clumps, externally heated with PDRs on their surfaces and supported by external pressure in a similar manner to the other clumps in the region. A previously identified externally heated globule containing IRAS 10430−5931 in the southern molecular cloud shows strong 3.29-, 8- and 21-μm emission, the spectral energy distribution (SED) revealing the location of an ultracompact (UC) H  ii region. The northern part of the nebula is complicated, with PAH emission intermixed with mid-IR dust continuum emission. Several point sources are located here, and through a two-component blackbody fit to their SEDs we have identified three possible UC H  ii regions as well as a young star surrounded by a circumstellar disc. This implies that star formation in this region is ongoing and not halted by the intense radiation from the surrounding young massive stars.  相似文献   

14.
The discovery of isolated bodies of planetary mass has challenged the paradigm that planets form only as companions to stars. To determine whether 'isolated planets', brown dwarfs and stars can have a common origin, we have made deep submillimetre observations of part of the ρ Oph B star formation region. Spectroscopy of the 9-Jupiter-mass core Oph B-11 has revealed carbon monoxide line wings such as those of a protostar. Moreover, the estimated mass of outflowing gas lies on the force versus core-mass relation for protostars and protobrown dwarfs. This is evidence for a common process that can form any object between planetary and stellar masses in a molecular cloud. In a submillimetre continuum map, six compact cores in ρ Oph B were found to have masses presently below the deuterium-burning limit, extending the core mass function down to  0.01 M  with the approximate form  d N /d M ∝ M −3/2  . If these lowest-mass cores are not transient and can collapse under gravity, then isolated planets should be very common in ρ Oph in the future, as is the case in the Orion star formation region. In fact, the isolated planetary objects that may form from these cores would outnumber the massive planets that have been found as companions to stars.  相似文献   

15.
Infrared dark clouds (IRDCs) are cold, dense molecular clouds identified as extinction features against the bright mid-infrared Galactic background. Our recent 1.2 mm continuum emission survey of IRDCs reveals many compact (<0.5 pc) and massive (10–2100 M) cores within them. These prestellar cores hold the key to understanding IRDCs and their role in star formation. Here, we present high angular resolution spectral-line and mm/sub-mm continuum images obtained with the IRAM Plateau de Bure Interferometer and the Sub-Millimeter Array towards three high-mass IRDC cores. The high angular resolution images reveal that two of the cores are resolved into multiple, compact protostellar condensations, while the remaining core contains a single, compact protostellar condensation with a very rich molecular spectrum, indicating that it is a hot molecular core. The derived gas masses for these condensations suggest that each core is forming at least one high-mass protostar, while two of the cores are also forming lower-mass protostars. The close proximity of multiple protostars of disparate mass indicates that these IRDCs are in the earliest evolutionary states in the formation of stellar clusters.  相似文献   

16.
We present C18O observations of the pre-stellar core L1689B, in the J =3→2 and 2→1 rotational transitions, taken at the James Clerk Maxwell Telescope in Hawaii. We use a λ -iteration radiative transfer code to model the data. We adopt a similar form of radial density profile to that which we have found in all pre-stellar cores, with a 'flat' inner profile, steepening towards the edge, but we make the gradient of the 'flat' region a free parameter. We find that the core is close to virial equilibrium, but there is tentative evidence for core contraction. We allow the temperature to vary with a power-law form and find that we can consistently fit all of the CO data with an inverse temperature gradient that is warmer at the edge than at the centre. However, when we combine the CO data with the previously published millimetre data we fail to find a simultaneous fit to both data sets without additionally allowing the CO abundance to decrease towards the centre. This effect has been observed qualitatively many times before, as the CO freezes out on to the dust grains at high densities, but we quantify the effect. Hence we show that the combination of millimetre/submillimetre continuum and spectral line data is a very powerful method of constraining the physical parameters of cores on the verge of forming stars.  相似文献   

17.
The mass of unresolved young star clusters derived from spectrophotometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for. We quantify this effect for a large set of cluster parameters, including variations in the stellar initial mass function (IMF), the intrinsic cluster mass, and mean mass density. Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive a scheme to recover the real cluster mass given measured half-light radius, one-dimensional velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent mass through the parameter η. When we compute η for rich star clusters, we find non-monotonic evolution in time when the IMF stretches beyond a critical cut-off mass of  25.5 M  . We also monitor the rise of colour gradients between the inner and outer volume of clusters: we find trends in time of the stellar IMF power indices overlapping well with those derived for the Large Magellanic Cloud cluster NGC 1818 at an age of 30 Myr. We argue that the core region of massive Antennae clusters should have suffered from much segregation despite their low ages. We apply these results to a cluster mass function, and find that the peak of the mass distribution would appear to observers shifted to lower masses by as much as 0.2 dex. The star formation rate derived for the cluster population is then underestimated by from 20 to 50 per cent.  相似文献   

18.
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of  ∼1100 km s−1  , which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of  106– 107 stars pc−3  . Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.  相似文献   

19.
We consider the evolution of neutron stars during the X-ray phase of high-mass binaries. Calculations are performed assuming a crustal origin of the magnetic field. A strong wind from the companion can significantly influence the magnetic and spin behaviour of a neutron star even during the main-sequence life of the companion. In the course of evolution, the neutron star passes through four evolutionary phases ('isolated pulsar', propeller, wind accretion, and Roche lobe overflow). The model considered can naturally account for the observed magnetic fields and spin periods of neutron stars, as well as the existence of pulsating and non-pulsating X-ray sources in high-mass binaries. Calculations also predict the existence of a particular sort of high-mass binary with a secondary that fills its Roche lobe and a neutron star that does not accrete the overflowing matter because of fast spin.  相似文献   

20.
恒星形成于分子云之中, 分子外向流是恒星形成正在进行的重要动力学特征, 也是研究和认识恒星形成的重要契入点. 利用紫金山天文台青海观测站德令哈13.7m毫米波望远镜, 采用5种分子谱线探针(包括12CO、13CO、C18O、HCO$^+$ $J=1-0$和CS $J=2-1$, J为角动量量子数), 对一个包含IRAS 19230+1506、IRAS 19232+1504和G050.3179--00.4186这3个源的大质量恒星形成复合体进行了成图观测研究. 通过对以上分子谱线数据并结合红外波段巡天数据的分析, 在这3个源中首次探测到了分子外向流活动, 并确定了分子外向流的中心驱动源. 最后对这3个源进行了分子外向流相关物理量参数的计算, 分析了这些物理量参数之间的关系, 结果表明分子外向流的性质与中心驱动源的性质息息相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号