首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
刘刚  牟全海  姚海涛 《地质学报》2016,90(8):1679-1691
甘肃和政古动物化石地质遗迹是一个以丰富的渐新世至更新世的古动物化石为特色的地质奇观。和政古动物化石地质遗迹主要发育4个古动物化石群:底部红色砂砾岩中埋藏着距今30 Ma的巨犀动物群;下部河湖地层中,埋藏着13 Ma前的铲齿象动物群;中部以红土为主,埋藏着距今10 Ma左右的三趾马动物群;上部黄土堆积中埋藏着2 Ma前的真马动物群。这些古动物化石地质遗迹记录了渐新世以来地球历史的丰富信息和演化过程,是研究青藏高原隆升历史的重要证据。甘肃和政古动物化石地质遗迹孕育了分布密集、保存完好、种类繁多的古动物化石,且甘肃和政临近我国"一带一路"战略中"丝绸之路经济带"的中联点。这些世界罕见的古动物化石,具有不可替代的珍藏价值、游览价值、科普价值和科学研究价值。  相似文献   

2.
The Miocene Siwalik Group (upsection, the Chinji, Nagri, and Dhok Pathan Formations) in northern Pakistan records fluvial and lacustrine environments within the Himalayan foreland basin. Thick (5 m to tens of metres) sandstones are composed of channel bar and fill deposits of low-sinuousity (1·08–1·19), single-channel meandering and braided rivers which formed large, low-gradient sediment fans (or ‘megafans’). River flow was dominantly toward the south-east and likely perennial. Palaeohydraulic reconstructions indicate that Chinji and Dhok Pathan rivers were small relative to Nagri rivers. Bankfull channel depths of Chinji and Dhok Pathan rivers were generally ≤ 15 m, and up to 33 m for Nagri rivers. Widths of channel segments (including single channels of meandering rivers and individual channels around braid bars) were 320–710 m for Chinji rivers, 320–1050 m for Nagri rivers, and 270–340 m for Dhok Pathan rivers. Mean channel bed slopes were on the order of 0·000056–0·00011. Bankfull discharges of channel segments for Chinji and Dhok Pathan rivers were generally 700–800 m3s?1, with full river discharges possibly up to 2400 m3s?1. Bankfull discharges of channel segments for Nagri rivers were generally 1800–3500 m3s?1, with discharges of some larger channel segments possibly on the order of 9000–32 000 m3s?1. Full river discharges of some of the largest Nagri braided rivers may have been twice these values. Thin (decimetres to a few metres) sandstones represent deposits of levees, crevasse channels and splays, floodplain channels, and large sheet floods. Laminated mudstones represent floodplain and lacustrine deposits. Lakes were both perennial and short-lived, and likely less than 10 m deep with maximum fetches on the order of a few tens of kilometres. Trace fossils and body fossils within all facies indicate the former existence of terrestrial vertebrates, molluscs (bivalves and gastropods), arthropods (including insects), worms, aquatic fauna (e.g. fish, turtles, crocodiles), trees, bushes, grasses, and aquatic flora. Palaeoenvironmental reconstructions are consistent with previous palaeoclimatic interpretations of monsoonal conditions.  相似文献   

3.
Li  Ji-Jun  Fang  Xiao-Min  Van der Voo  Rob  Zhu  Jun-Jie  Mac Niocaill  Conall  Cao  Ji-Xiu  Zhong  Wei  Chen  Huai-Lu  Wang  Jianli  Wang  Jian-Ming  Zhang  Yie-Chun 《Geologie en Mijnbouw》1997,76(1-2):121-134
A paleomagnetic study of the 510-m-thick Wangjiashan section of Late Miocene and Pliocene terrestrial sediments reveals a fairly complete reversal record with ages from 11 to 1.8 Ma. The magnetostratigraphy of the Dongshanding section, located nearby, reveals a partially overlapping reversal record with ages from 2.2 to 0 Ma, and facilitates correlation of the Wangjiashan section with the global polarity time scale. A new stratigraphic division of the Wangjiashan section replaces the name Linxia formation by five new formation names, based on lithologic variation and mammalian fossil finds. The new formations and their magnetostratigraphically determined ages are: Dongshan Formation (c. 1.75–2.6 Ma), Jishi Fm. (c. 2.6–3.6 Ma), Hewangjia Fm. (4.5–6.0 Ma), Liushu Fm. (6.0–7.6 Ma), and Dongxiang Fm. (7.6–c. 12 Ma). The Neogene stratigraphy and fossil mammals suggest that the nearby part of the Tibetan Plateau experienced a persistent denudation during the Late Miocene and Early Pliocene, but that it was uplifted more rapidly at about 3.6 Ma.  相似文献   

4.
5.
新疆乌伦古河地区第三纪哺乳动物群初析及地层年代确定   总被引:14,自引:4,他引:14  
叶捷  吴文裕  孟津 《地层学杂志》2001,25(4):283-287
新疆准噶尔盆地北缘乌伦古河地区第三纪含有 7个哺乳动物群 :可可买登动物群 ,哈拉玛盖动物群 ,索索泉组顶部动物群 ,索索泉动物群 ,索索泉组底部 990 0 5动物群 ,铁尔斯哈巴合动物群和乌伦古河动物群。依据动物群分析初步确定 5个岩石地层单元的地质时代分别为 :可可买登组——中中新世晚期 ;哈拉玛盖组——中中新世早期 ,索索泉组——最早中新世至早中新世最晚期或中中新世最早期 ;铁尔斯哈巴合组——晚渐新世 ;乌伦古河组——早始新世至早渐新世。  相似文献   

6.
The late Miocene-early Pliocene fossil deposits of Hasnot in northern Pakistan have yielded a very rich vertebrate fauna. In this paper we describe the remains of Cervidae from six of these localities. By dental remains, at least four species of cervids are documented. These remains significantly widen the time distribution of the cervids and draw back the first appearance of cervids in the Dhok Pathan Formation of the Siwaliks. The data indicate a diverse set of coexisting ungulates in the area, subsisting within a mosaic of habitats.  相似文献   

7.
临夏盆地晚新生代哺乳动物群演替与青藏高原隆升背景   总被引:16,自引:0,他引:16  
邓涛 《第四纪研究》2004,24(4):413-420
临夏盆地的晚新生代沉积中富含哺乳动物化石,以晚渐新世巨犀动物群、中中新世铲齿象动物群、晚中新世三趾马动物群和早更新世真马动物群的化石最为丰富。晚新生代是青藏高原快速隆升的时期,临夏盆地的4个主要哺乳动物群在构造剧烈变化的背景下发生了显著的更替。通过对不同动物群所代表的生态特征的分析,恢复了临夏盆地晚新生代以来的气候环境演变过程:晚渐新世以温暖湿润的森林环境为主,间杂有一些开阔地带;中中新世的森林更加茂密,水体更加丰富;晚中新世演变为炎热半干旱的稀树草原环境,季节性变化加强;早更新世气候寒冷而干燥,并伴有显著的海拔升高。青藏高原在晚渐新世的隆升幅度还不足以阻挡大型哺乳动物在高原南北的交流,但到中中新世已成为明显的障碍,至晚中新世对动物迁徙的阻碍作用更加突出,而临夏盆地在早更新世已经达到相当大的高度,产生了一个高原或高山的动物群  相似文献   

8.
本文记述了采自甘肃广河石那奴中中新世地层的哺乳动物化石6目10科12属16种类(以小化石为主),其中新种两个:Alloptox guangheensis sp. nov., Pseudaelurus guangheensis sp. nov.。通过对动物群性质的研究及与其它地区的详细对比,认为下化石层的时代应为中中新世早期,上化石层应为中中新世晚期。二者分别与山旺期、通古尔期大体相当。 广河地区中中新世早期车头沟组和中中新世晚期咸水河组的建立,表示该地区存在着中中新世两个时期的不同环境沉积。  相似文献   

9.
本文是近年对中国中、东部晚第三纪生物地层及哺乳动物化石研究成果的综述。在河北泥河湾地区,根据小哺乳动物化石新建立了稻地组。其下是含哺乳动物化石的蔚县组(早上新世)及壶流河组(最晚中新世)。宁夏同心地区晚第三纪生物地层可划分为两部分:上部可能属上新统;下部属中中新统上部。二者皆含哺乳动物化石。在甘肃广河地区发现的小哺乳动物化石证明,车头沟组及咸水河组分别属于早中中新世及晚中中新世。在湖北钟祥地区,根据采集的哺乳动物化石,将罗汉寺组划归中新世。 根据上面4个地区哺乳动物群的研究和对比,广河车头沟组最老,其它依次是广河咸水河组、泥河湾壶流河组、蔚县组及稻地组。钟祥罗汉寺组可能相当于车头沟组或者时代稍早。同心下部地层的时代可能与咸水河组相同。  相似文献   

10.
The project area lies in the southern part of the Hazara Kashmir syntaxis. The Hazara Kashmir syntaxis is an antiformal structure. The project area includes Rumbli, Namb, Chatrora, Chachan, Panjar, Barathian and Utrinna areas of Rawalpindi and Sudhnoti districts. The southeastern limb of the Hazara Kashmir syntaxis is imbricated along Punjal thrust, Main Boundary thrust and Riasi fault. The Jhelum fault truncates the western limb of Hazara Kashmir syntaxis. The core of syntaxis comprises of Himalayan molasse deposits. These molasse deposits represent the part of cover sequence of Indian plate. These Himalayan molasse deposits include the Early to Middle Miocene Kamlial Formation, Middle to Late Miocene Chinji Formation, Late Miocene Nagri Formation and Late Miocene Dhok Pathan Formation. The area is highly deformed resulting folds and faults. The major folds in the project area are the Panjar anticline, Barathian syncline, Barathian anticline, Rumbli anticline, Chatrora antiformal syncline and Namb syncline. The folds are either northwest-southeast trending or southwestnortheast trending. The folds are asymmetric, open, and gentle and close in nature. The folds are southwest, northeast or southeast vergent. The Jhelum fault truncates the northeast and northwest trending structures. The folds and faults are the result of northeastsouthwest or northwest-southeast Himalayan compression.  相似文献   

11.
In the Linxia Basin on the northeast margin of the Tibetan Plateau, the Cenozoic strata are very thick and well exposed. Abundant mammalian fossils are discovered in the deposits from the Late Oligocene to the Early Pleistocene. The Dzungariotherium fauna comes from the sandstones of the Jiaozigou Formation, including many representative Late Oligocene taxa. The Platybelodon fauna comes from the sandstones of the Dongxiang Formation and the conglomerates of the Laogou Formation, and its fossils are typical Middle Miocene forms, such as Hemicyon, Amphicyon, Platybelodon, Choerolophodon, Anchitherium, and Hispanotherium. The Hipparion fauna comes from the red clay of the Liushu and Hewangjia Formations, and its fossils can be distinctly divided into four levels, including three Late Miocene levels and one Early Pliocene level. In the Linxia Basin, the Hipparion fauna has the richest mammalian fossils. The Equus fauna comes from the Wucheng Loess, and it is slightly older than that of the classical Early Pl  相似文献   

12.
云南元谋小河盆地含古猿化石地层的沉积特点与对比   总被引:6,自引:0,他引:6  
云南元谋小河盆地含古猿化石的主要层位有 2个,时代相差约 1Ma。以黄色砂砾石层作为标志层,参考各含古猿化石剖面基底和现代海拔高度,盆内含化石层的晚第三纪地层可以很好的对比,小河盆地蝴蝶梁子剖面、房背梁子剖面相当于豹子洞箐剖面的的中下部。从哺乳动物化石和古地磁资料分析,小河组的地质时代为 7.3~ 8.2Ma。  相似文献   

13.
聂逢君  陈戴生 《铀矿地质》1997,13(2):69-75,82
巴基斯坦苏来曼地区上新统的多克帕坦组是著名的西瓦利克岩系的中部岩性段,它由一套灰白、灰黄色的含中粗粒岩屑砂岩、长石岩屑砂岩和灰黄、棕红色的粉砂岩,泥岩组成,呈稳定的南北向展布。物源分析结果表明:多克帕坦组的物源主要是由造山带蚀源区所提供,即来源于一直处于降隆升阶段的喜马拉雅山褶皱带。  相似文献   

14.
The Chauki, Mandi, Manil colony, Changpur, Khawas and Naghal areas are situated in between the limbs of Hazara Kashmir Syntaxis (HKS). HKS is the part of Himalayan fold and thrust belt that lies in sub-Himalayan domain. Seismically, this is an active zone. Early Miocene to Recent sedimentary rocks are exposed in the area. The stratigraphic units in Kashmir basin are the cover sequence of the Indian plate. These non-marine lithostratigraphic units are molasse deposits formed by the deposition of sediments coming from north carried by the rivers originated from higher Himalayas. Murree Formation of early Miocene age is the oldest rock unit in the studied area. Siwalik Group; Chinji, Nagri, Dhok Pathan and Soan formations of early Miocene to Pliocene and Mirpur Formation of Pleistocene age is exposed. The area is structurally deformed into folds and faults. The Sarda Sarhota syncline, Mandi syncline and Fagosh anticline are major folds in the area. These folds are isoclinal to open in nature, southwest or northeast verging and thrust direction is southwest or northeast. Major reverse faults are Riasi fault and Fagosh fault. The Changpur fault is a normal fault. Primary sedimentary structures present in the area are load cast, ripups and cross bedding. The facing of beds have been marked on the basis of these sedimentary structures.  相似文献   

15.
The Miocene-Pliocene Siwalik Group records changing fluvial environments in the Himalayan foreland basin. The Nagri and Dhok Pathan Formations of this Group in the eastern Potwar Plateau, northern Pakistan, comprise relatively thick (tens of metres) sandstone bodies and mudstones that contain thinner sandstone bodies (metres thick) and palaeosols. Thick sandstone bodies extend for kilometres normal to palaeoflow, and are composed of large-scale stratasets (storeys) stacked laterally and vertically adjacent to each other. Sandstone bodies represent single or superimposed braided-channel belts, and large-scale stratasets represent channel bars and fills. Channel belts had widths of km, bankfull discharges on the order of 103 cumecs and braiding parameter up to about 3. Individual channel segments had bankfull widths, maximum depths, and slopes on the order of 102 m, 101 m and 10?4 respectively, and sinuosities around 1-1. These rivers are comparable to many of those flowing over the megafans of the modern Indo-Gangetic basin, and a similar depositional setting is likely. Thin sandstone bodies within mudstone sequences extend laterally for on the order of 102 m and have lobe, wedge, sheet and channel-form geometries: they represent crevasse splays, levees and floodplain channels. Mudstones are relatively bioturbated/disrupted and represent mainly floodbasin and lacustrine deposition. Mudstones and sandstones are extremely disrupted in places, showing evidence of prolonged pedogenesis. These ‘mature’ palaeosols are m thick and extend laterally for km. Lateral and vertical variations in the nature of their horizons apparently depend mainly on deposition rate. The 500 m-thick Nagri Formation has a greater proportion and thicker sandstone bodies than the overlying 700 m-thick Dhok Pathan Formation. The thick sandstone bodies and their large-scale stratasets thicken and coarsen through the Nagri Formation, then thin and fine at the base of the Dhok Pathan Formation. Compacted deposition rates increase with sandstone proportion (0-53 mm/year for Nagri, 0-24 mm/year for Dhok Pathan), and palaeosols are not as well developed where deposition rates are high. Within both formations there are 100 m-scale variations (representing on the order of 105 years) in the proportion and thickness of thick sandstone bodies, and tens-of-m-scale alternations of thick sandstone bodies and mudstone-sandstone strata that represent on the order of 104 years. Formation-scale stratal variations extend across the Potwar Plateau for at least 100 km, although they may be diachronous: however, 100-m and smaller scale variations can only be traced laterally for up to tens of km. Alluvial architecture models indicate that increases in the proportion and thickness of thick sandstone bodies can be explained by increasing channel-belt sizes (mainly), average deposition rate and avulsion frequency on a megafan comparable in size to modern examples. 100-m-scale variations in thick sandstone-body proportion and thickness could result from ‘regional’ shifts in the position of major channels, possibly associated with ‘fan lobes’on a single megafan or with separate megafans. However, such variations could also be related to local changes in subsidence rate or changes in sediment supply to the megafan system. Formation-scale and 100-m-scale stratal variations are probably associated with interelated changes in tectonic uplift, sediment supply and basin subsidence. Increased rates of hinterland uplift, sediment supply and basin subsidence, recorded by the Nagri Formation, may have resulted in diversion of a relatively large river to the area. Alternatively, changing river sizes and sediment supply rates may be related to climate changes affecting the hinterland (possibly linked to tectonic uplift). Climate during deposition of the Siwalik Group was monsoonal. Although the deposits contain no direct evidence for climate change, independent evidence indicates global cooling throughout the Miocene, and the possibility of glacial periods (e.g. around 10-8 Ma, corresponding to base of Nagri Formation). If the higher Himalayas were periodically glaciated, a mechanism would exist for varying sediment supply to megafans on time scales of 104-105 years. Although eustatic sea-level changes are related to global climatic change, they are not directly related to Siwalik stratigraphic changes, because the shoreline was many 100 km away during the Miocene.  相似文献   

16.
The Pirabas Formation of Early Miocene age represents the final stage of the central western Atlantic carbonate platform in northeastern South America, predating the emplacement of the Amazon delta system. The otolith-based fossil fish fauna is represented by 38 species typical of a shallow marine environment. A total of 18 species are described new to science from the families Congridae, Batrachoididae, Bythitidae, Sciaenidae and Paralichthyidae. The fish fauna was associated with high benthic and planktic primary productivity including seagrass meadows, calcareous algae and suspension-feeders. The break of todays shallow marine bioprovince at the Amazonas delta mouth is not evident from the fish fauna of the Pirabas Fm., which shows good correlation with the Gatunian/proto-Caribbean bioprovince known from an only slightly younger time window in Trinidad and Venezuela. Differences observed to those Early Miocene faunal associations are interpreted to be mainly due to stratigraphic and geographic and not environmental differences. We postulate that the emergence of the Amazonas river mouth close to its present day location has terminated the carbonate cycle of the Pirabas Fm. and pushed back northwards a certain proportion of the fish fauna here described.  相似文献   

17.
A New Mid Early Pleistocene Mammalian FaunaDiscovered in Choukoutien,ChinaandItsApplication in Biostratigraphy¥ChengJie(Depar...  相似文献   

18.
From 1985 to 1987, four new localities with abundant fossil mammals were dis-covered by Cao, Tian and others in the Zhoukoudian (Choukoutien) area, Beijing. They are theEast, West, Shangdian and Donglingzi caves. The East Cave fauna consists of 28 speices ofmammals and its age is middle Early Pleistocene. The East Cave assemblage shows that a tem-perature-falling event took place at around 1.20 Ma B.P. at Zhoukoudian. Sixteen species ofmammals were collected from the West Cave, which are mainly forms of late Early Pleistoceneage. The West Cave fauna represents a transitional fauna from the East Cave fauna (dry-cold)to the fauna (warm) at locality 9. The Shangdian Cave fauna is composed of four forms, beingMiddle Pleistocene in age. The Donglingzi Cave fauna contains 21 Late Pleistocene forms. Inthe cave two fossil horizons may be distinguished. The age of the lower horizon is early LatePleistocene, which is equivalent to that of the New Cave fauna; while the fauna of the upper ho-rizon may be correlated with the Upper Cave fauna.  相似文献   

19.
We provide a synopsis of ~ 60 million years of life history in Neotropical lowlands, based on a comprehensive survey of the Cenozoic deposits along the Quebrada Cachiyacu near Contamana in Peruvian Amazonia. The 34 fossil-bearing localities identified have yielded a diversity of fossil remains, including vertebrates, mollusks, arthropods, plant fossils, and microorganisms, ranging from the early Paleocene to the late Miocene–?Pliocene (> 20 successive levels). This Cenozoic series includes the base of the Huchpayacu Formation (Fm.; early Paleocene; lacustrine/fluvial environments; charophyte-dominated assemblage), the Pozo Fm. (middle + ?late Eocene; marine then freshwater environments; most diversified biomes), and complete sections for the Chambira Fm. (late Oligocene–late early Miocene; freshwater environments; vertebrate-dominated faunas), the Pebas Fm. (late early to early late Miocene; freshwater environments with an increasing marine influence; excellent fossil record), and Ipururo Fm. (late Miocene–?Pliocene; fully fluvial environments; virtually no fossils preserved). At least 485 fossil species are recognized in the Contamana area (~ 250 ‘plants’, ~ 212 animals, and 23 foraminifera). Based on taxonomic lists from each stratigraphic interval, high-level taxonomic diversity remained fairly constant throughout the middle Eocene–Miocene interval (8-12 classes), ordinal diversity fluctuated to a greater degree, and family/species diversity generally declined, with a drastic drop in the early Miocene. The Paleocene–?Pliocene fossil assemblages from Contamana attest at least to four biogeographic histories inherited from (i) Mesozoic Gondwanan times, (ii) the Panamerican realm prior to (iii) the time of South America’s Cenozoic “splendid isolation”, and (iv) Neotropical ecosystems in the Americas. No direct evidence of any North American terrestrial immigrant has yet been recognized in the Miocene record at Contamana.  相似文献   

20.
广东省雷州半岛新生代钻孔ZKA01揭露的地层序列自下向上为渐新统涠洲组、中新统下洋组、角尾组、灯楼角组、上新统望楼港组、下更新统湛江组和中更新统北海组,涠洲组—望楼港组为滨浅海沉积,湛江组和北海组为陆相河湖相沉积。本文在ZKA01钻孔地层中自下向上88个层位中获取的29311粒孢粉化石的81个属中,选取了常见的种子植物花粉种属42个,通过共存因子分析法,定量重建了研究区晚渐新世—早更新世的古气候参数,划分出晚渐新世—早中新世(25~17 Ma)、中中新世(17~13.5 Ma)、晚中新世—上新世初期(13.5~4 Ma)和上新世—早更新世(4~1.5 Ma)4个气候演化阶段。孢粉共存因子定量法重建的研究区晚渐新世—早更新世4个阶段的古气候变化过程能较好地与全球气候变化的趋势相匹配,晚渐新世—早中新世温度降低的时间拐点大致可与Mi1a气候变冷事件相吻合。中中新世可以与中中新世气候适宜期(MMCO)相对应,表现为炎热潮湿的气候特征。中中新世晚期的气温是下降的,在一定程度上响应了Mi3中中新世气候变冷事件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号