首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 467 毫秒
1.
基于Argo数据的吕宋海峡东部海域的会聚区特征分析   总被引:2,自引:0,他引:2  
利用2010-2013年的Argo浮标观测资料,对吕宋海峡东部海域(19°~23°N,123~127°E)的会聚区特征进行综合分析。研究结果如下:(1)吕宋海峡东部海域4个季节表面的声速从大至小依次为夏季、秋季、春季和冬季,夏季最大为1 543.5m/s,冬季最小为1 533.4m/s;混合层深度从大到小依次为冬季、秋季、春季和夏季;(2)采用WOA13气候态数据对声速剖面进行深海延拓,获得全海深的声速剖面,分析4个季节的声道特征。声道轴深度和声速较为稳定,声道轴深度在1 000~1 040m之间,声道轴处的声速为1 482m/s,4个季节的平均声道厚度都超过4 500m,利于会聚区形成;(3)研究区较易发生会聚现象,发生会聚现象概率高于50%的占70.6%;会聚现象的发生概率季节变化明显,春季、冬季极易发生声场的会聚现象,夏季最小;(4)运用RAMGeo声场模型对研究区4个季节的声传播损失进行仿真,分析会聚区的季节变化特征。当声源深度100m,接收深度10m时,第一会聚区,离声源的距离在61~64km左右,夏季离声源最近,春、冬季较远;会聚区宽度上,夏季最宽为10km,春季最窄为4.6km;会聚区增益分布特点与会聚区宽度刚好相反,春季最大为14.6dB,夏季最小为8.5dB。  相似文献   

2.
庄益夫  张旭  刘艳 《海洋通报》2013,32(1):45-52
应用分层声速剖面模型(LSSPM)和BELLHOP高斯束声场计算模型,对深海声速剖面结构变化引起的会聚区偏移特性进行了分析.结果表明,声速值的整体变化对会聚区影响很小,而混合层、主跃层、深海等温层及声道轴的变化都会使会聚区位置出现不同程度的偏移.主跃层是上层海洋变化的主要体现,混合层变化对会聚区的影响也是通过改变主跃层的形态结构实现的,跃层强度的增大使会聚区向远离声源方向偏移.深海等温层的声速变化体现了深海水团的结构差异,与主跃层引起的会聚区偏移呈反相变化.声道轴附近的声速变化体现了不同类型中层水团侵入和混合的影响,所引起的会聚区偏移反映了声道轴上层与下层梯度变化的综合效应,声速最小值的增加使会聚区向远离声源方向偏移.  相似文献   

3.
针对北极部分海域中的双声道波导现象,研究了冰层覆盖下水平变化双声道波导中的声传播。使用微扰法推导并确定了粗糙下表面的冰层反射系数,结合Bellhop射线模型,计算并分析了实测海域中双声道波导水平变化时的声传播特性,并研究了声源深度、声源入射角以及声源频率对水平变化的双声道波导中声传播的影响规律。结果表明,在北极,深海声道中的声传播大多被限制在深海声道的上、下边缘之间;声源与水平变化的深海声道轴处于同一深度时声传播损失较小,当声源位于深海声道边界以外时,水平变化的声速剖面相比于水平不变时具有更低的声传播损失;入射角对双声道波导中声传播影响较小;随着声源频率的增加,表面声道中声传播损失也随之增大,但是对深海声道影响不明显,在相同频率下水平变化的声速剖面更利于声传播。  相似文献   

4.
以分析季节对大西洋声传播的影响为研究目的,应用WOA13季节平均数据和Mackenzie声速经验公式,分析了大西洋声道轴和表层声速值的四季分布情况,再利用BELLHOP水声学数值模型,在设定的声源频率1 000 Hz和掠射角15°~-15°情况下,仿真计算选用位置点5 m深度声源的四季声传播情况,研究结果表明:按照实际的季节,大西洋会聚区波导的反转深度,冬季最小,春季增大,夏季最大,秋季再减小.在中低纬度的典型声速剖面下,夏季会聚区跨度最大,秋季和冬季递减,春季最小,第一会聚区的四季跨度差在1 km内.在高纬度的正梯度声速剖面下,夏季声传播距离最远,秋季减小,冬季最近,春季增大,且传播距离的差别较大.各变化规律均以四季循环更替的形式出现.  相似文献   

5.
西北太平洋副热带模态水形成区声传播特性分析   总被引:4,自引:1,他引:3  
张旭  程琛  刘艳 《海洋学报》2014,36(9):94-102
利用Argo剖面数据和水声学数值模型,分析了西北太平洋副热带模态水(STMW)形成区因季节性环境差异所引起的水声传播变化特征。声场计算结果表明,STMW形成区域的声传播为近表层波导与会聚区的复合形式,其中会聚区终年存在,表面波导在秋、冬两季混合层加深的环境条件下出现,次表层波导在夏季STMW潜沉的环境条件下出现。上层海洋中两类不同形式的波导使表层和次表层的声能分布呈反相变化,波导内与波导外的声能差异可达10~15dB(声波频率为1 000Hz)。STMW的季节性变化还会引起会聚区的位置差异,具体情况与声源深度有关。声源在20m时,夏季会聚区距离最远,秋季、春季次之,冬季最近,夏季和冬季相差6.6km;声源在150m时,夏季会聚区距离缩短了3.1km,其他季节变化不大。  相似文献   

6.
海洋混合层结构对表面声道中声传播特性的影响分析   总被引:1,自引:0,他引:1  
利用WOA05气候态数据集和北黄海调查数据,应用BELLHOP高斯束射线模型分析了我国近海及西太平洋典型海区的混合层结构对表面声道中声传播特性的影响,结果表明:我国近海的混合层结构有显著的区域性和季节性变化;深海中主要表现为混合层深度变化,这种变化直接影响表面声道的空间分布,声波在混合层中的表面声道中传播与在混合层外的影区中传播产生的能量场差异较大;浅海中混合层深度与声速梯度的空间变化都很明显,声速梯度的增大和混合层的加深都能使更多声线以反转的形式传播,使表面声道声场增强。两组海上实验数据表明,在真实海洋中混合层可在短时间内出现生消变化或在局部海域出现非均匀分布。在浅海温跃层环境下,海-气边界特定的物理过程能够使混合层发生间歇性的变化,当表面声道出现时近表层声场明显增强。  相似文献   

7.
利用Argo剖面数据和水声学数值模型,分析了西太平洋夏季在热带海区(I型)、亚热带南部海区(II型)和亚热带北部海区(III型)三类典型声速环境下的会聚区特性。声场计算结果表明,声速环境的区域性差异及声源深度的变化对会聚区声场特性有明显影响。当声源深度为20m时,热带海区会聚区距离较远,第一会聚区约为65km,超出亚热带海区约5km;当声源深度为200m时,亚热带北部海区会聚区距离较远,第一会聚区约为60km,亚热带南部海区、热带海区依次递减约5km。I型和III型剖面在特定的声源深度条件下出现波导型声场,当声源位于表层时热带海区产生表面波导,当声源位于次表层时亚热带北部海区产生次表层波导,对于1kHz的声波,波导深度范围内的传播损失比波导深度以外高出10~20dB。  相似文献   

8.
应用WOA13季节平均数据和BELLHOP模型,在季节、声源频率等因素确定的情况下,在分析南大西洋1—3月声速场,划分声速剖面类型和海区的基础上,研究5 m深度声源的声波导情况。声速剖面类型Ⅰ和类型Ⅱ均可形成汇聚区声波导,首先应考虑表层声速值的影响,其次应考虑声道轴深度的影响,且总体上,汇聚区声波导跨度由低纬度向高纬度递减,并根据表层声速值和反转深度的不同,给出了汇聚区的跨度范围。声速剖面类型Ⅲ的声传播形式则为表面声波导。同时,分析了不同声速剖面类型在传播损失上的异同。  相似文献   

9.
通过构建中尺度涡的数学模型,利用射线-简正波-抛物方程(RMPE)声学模型进行传播损失计算,进而分析在深海声道、深海会聚区、海底反射3种传播模式下,中尺度涡对深海声效应的影响。数值仿真结果显示,暖涡对深海声道、会聚区产生下压效果,使会聚区水平距离变大,深海声道深度方向上变宽;冷涡使会聚区上抬,距离变短,对声场散射现象明显。研究结果表明,涡旋环境条件下,声场特征会产生显著变化。试验结果揭示了中尺度涡对深海声场效应的影响,对指导海上运用中尺度涡现象开展的科学研究、工程实践、军事运用具有积极的指导意义。  相似文献   

10.
应用WOA13季节平均数据和BELLHOP模型,在季节、声源频率等因素确定的情况下,分10 m表面声源和250 m水下声源,分析北大西洋冬季东、西部海区的声波导情况。在给出不同海区位置的声速场和声波导具体信息的基础上,研究其规律:最小声速值和声道轴深度由直布罗陀海峡向外递减扩散,表层声速值和声速梯度由南向北递减,声跃层存在于低纬度海区,混合层在低纬度通常在100 m以内,在高纬度增加至100 m以上。10 m深度表面声源的汇聚区反转深度随纬度增加逐渐减少,西部海区深于东部海区;西部海区的汇聚区跨度大于东部海区,东西部跨度最大值出现在25°N和15°N,传播损失基本一致。250 m水下声源的汇聚区反转深度浅于10 m深度表面声源时,同样是西部海区大于东部海区,汇聚区跨度呈低-高-低规律,东西部跨度最大值出现在35°N和25°N;东部海区25°N以南、西部海区15°N以南,不同接收深度上的传播损失差异较大,以北差异较小。同时简要叙述了声影区对目标探测的影响。  相似文献   

11.
应用WOA13季节平均数据和BELLHOP模型,在季节、声源频率、声源深度和掠射角等因素确定的情况下,分析北大西洋冬季(1-3月)声道轴深度、最小声速值、表层声速值的分布,通过仿真计算研究选用位置点5 m深度声源的声传播规律:反转深度随纬度升高而降低,低纬度海岭东西两侧差别不大,15°N以北为西侧大于东侧。55°N以南海区可形成汇聚区波导,海岭西侧的汇聚区跨度大于海岭东侧,有混合层时还存在一定强度的表面波导,汇聚区处5 m、100 m和250 m接收深度上的传播损失差异较小,增益为7~19 dB,55°N以北海区则为有焦散结构的表面波导。以北大西洋35°N为界,以南以汇聚区波导探测有利,以北以表面波导探测有利。  相似文献   

12.
Category 5 typhoon Megi was the most intense typhoon in 2010 of the world. It lingered in the South China Sea (SCS) for 5 d and caused a significant phytoplankton bloom detected by the satellite image. In this study, the authors investigated the ocean biological and physical responses to typhoon Megi by using chlorophylla (chla) concentration, sea surface temperature (SST), sea surface height anomaly (SSHA), sea surface wind measurements derived from different satellites and in situ data. The chla concentration (>3 mg/m3) increased thirty times in the SCS after the typhoon passage in comparison with the mean level of October averaged from 2002 to 2009. With the relationship of wind stress curl and upwelling, the authors found that the speed of upwelling was over ten times during typhoon than pretyphoon period. Moreover, the mixed layer deepened about 20 m. These reveal that the enhancement of chla concentration was triggered by strong vertical mixing and upwelling. Along the track of typhoon, the maximum sea surface cooling (6-8℃) took place in the SCS where the moving speed of typhoon was only 1.4-2.8 m/s and the mixed layer depth was about 20 m in pretyphoon period. However, the SST drop at the east of the Philippines is only 1-2℃ where the translation speed of typhoon was 5.5-6.9 m/s and the mixed layer depth was about 40 m in pretyphoon period. So the extent of the SST drop was probably due to the moving speed of typhoon and the depth of the mixed layer. In addition, the region with the largest decline of the sea surface height anomaly can indicate the location where the maximum cooling occurs.  相似文献   

13.
The correlation of ambient noise with wind speed, and the depth dependence of ambient noise are both investigated, where the ocean noise data were recorded by a vertical line array in the northern South China Sea. It is shown that the correlation coefficients increase with increasing hydrophone depth during typhoon periods when the frequency ≥ 250 Hz, which opposes the generally accepted knowledge that the correlation coefficients of noise level and wind speed decrease with increasing depth during non-typhoon periods. Particularly at frequencies of 250 Hz, 315 Hz and 400 Hz, the correlation coefficients increase by more than 0.05 at depths ranging from 155 m to 875 m. At the three frequencies, the average noise levels also increase with increasing depth during typhoon periods. It is suggested that these differences are attributed to the wind-generated noise in shallow waters and the effect of "downslope enhancement" to sound propagation. During typhoon periods, the surf breaking and surf beat upon the shores and reefs are strengthened, and the source levels are increased. The wind-generated noise in shallow waters interacts with the downslope sea floor, with the noise-depth distribution changed by a "downslope enhancement" effect promoting noise propagation.  相似文献   

14.
应用BELLHOP模式,对声速剖面的声跃层结构变化引起会聚区偏移特征进行了分析。结果表明,声速垂直结构的变化可导致会聚区位置出现不同程度的偏移:跃层强度增加0.01 s-1将使会聚区向远离声源方向偏移1.5~2.0km;跃层厚度增大50m将使会聚区向靠近声源方向偏移0.3~0.5km;跃层位置加深100m将使会聚区向远离声源方向偏移0.5~1.0km。在跃层的三个特征量中,跃层强度起主导作用。跃层强度变化引起的声线在海洋次表层的偏折差异,进而导致进入深海等温层的入射角差异,是使会聚区发生偏移的决定性因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号