首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The E-W trending Atlas System of Maghreb consists of weakly shortened, intra-continental fold belts associated with plateau areas (“Mesetas”), extending between the south-westernmost branch of the Mediterranean Alpine Belt (Rif-Tell) and the Sahara Platform. Although the Atlas system has been erected contemporaneously from Morocco to Algeria and Tunisia during the Middle Eocene to Recent, it displays a conspicuous longitudinal asymmetry, with i) Paleozoic outcrops restricted to its western part; ii) highest elevation occurring in the west, both in the Atlas System and its foreland (Anti-Atlas); iii) low elevation corridors (e.g. Hodna) and depressed foreland (Tunisian Chotts and Sahel area) in the east. We analyse the origin of these striking contrasts in relation with i) the Variscan heritage; ii) crustal vertical movements during the Mesozoic; iii) crustal shortening during the Cenozoic and finally, iv) the occurrence of a Miocene-Quaternary hot mantle anomaly in the west. The Maghreb lithosphere was affected by the Variscan orogeny, and thus thickened only in its western part. During the Late Permian-Triassic, a paleo-high formed in the west between the Central Atlantic and Alpine Tethys rift systems, giving birth to the emergent/poorly subsident West Moroccan Arch. During the late Middle Jurassic-Early Cretaceous, Morocco and western Algeria were dominantly emergent whereas rifting lasted on in eastern Algeria and Tunisia. We ascribe the uplift of the western regions to thermal doming, consistent with the Late Jurassic and Barremian gabbroic magmatism observed there. After the widespread transgression of the high stand Cenomanian-Turonian seas, the inversion of the Atlas System began during the Senonian as a consequence of the Africa-Eurasia convergence. Erosion affected three ENE-trending uplifted areas of NW Africa, which we consider as lithospheric anticlines related to the incipient Africa-Europe convergence. In contrast, in eastern Algeria and Tunisia a NW-trending rift system developed contemporaneously (Sirt rifting), normal to the general trend of the Atlas System. The general inversion and orogenesis of the Atlas System occurred during two distinct episodes, Middle-Late Eocene-Oligocene and Late Miocene-Pliocene, respectively, whereas during the intervening period, the Africa-Europe convergence was mainly accommodated in the Rif-Tell system. Inversion tectonics and crustal thickening may account for the moderate uplift of the eastern Atlas System, not for the high elevation of the western mountain ranges (Middle Atlas, High Atlas, Anti-Atlas). In line with previous authors, we ascribe part of the recent uplift of the latter regions to the occurrence of a NE-trending, high-temperature mantle anomaly, here labelled the Moroccan Hot Line (MHL), which is also marked by a strip of late Miocene-Quaternary alkaline magmatism and significant seismicity.  相似文献   

2.
《Geodinamica Acta》1998,11(5):233-247
In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics.Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins' generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation.  相似文献   

3.
Abstract

In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics.

Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation. © Elsevier, Paris  相似文献   

4.
G. Musumeci 《Geodinamica Acta》2013,26(1-2):119-133
Abstract

The Monte Grighini Complex (Central-Western Sardinia) is a NW-SE trending metamorphic complex of Hereynian age made up of a medium grade Lower tectonic unit with mylonitie granitoids and a low grade Upper tectonic unit exposed in the westernmost and southernmost portions of this complex. The Lower Unit shows a prograde metamor phism from garnet to sillimanite zone and the transition from MP/MT to LP/HT metamorphism. The metamorphic climax was reached at the end of the main deformative phase 1)2 (600° C. 6 kbar). After the main tectonic and metamorphic phase. the Lower Unit was affected by a wide NW-SE trending ductile dextral wrench shear zone. Intrusive rocks emplaced within the shear zone yielded radiometric ages of 305-300 Ma. Shear deformation leads to low temperature C-S mylonites and retrograde phyllonitic rocks with subhorizontal NW-SE trending stretching lineations. Kinematic analysis of the shear zone points to a dextral sense of shear with an amount of ductile displacement of about 7 km. Later low angle N-S and E-W trending normal faults are associated with cataclastic zones separating the Lower Unit from the Upper one. These faults originated during a later evolutionary stage of the shear zone. This shows a progressive change of deformation regime from duetile wrenching to brittle normal faulting. The Monte Grighini Complex is a good example of ductile wrench tectonics. followed by uplift and extension in the Paleozoic basement of Sardinia.  相似文献   

5.
文通过研究区深层主要变形带构造变形解析,确认塔东南下古生界构造基本轮廓形成于中奥陶世末,定型于奥陶纪末—志留纪,北部和西部分别有喜山期和海西晚期构造的叠加。以塔中Ⅰ构造带—塔中5-38井构造带、塘北—玉北构造带、塔中南缘构造带为界,研究区可分为4个构造样式不同的构造单元。单元边界的构造变形相对剧烈,以逆冲—走滑断裂带为主,单元内部构造变形相对较弱。自东南向盆地内部,构造变形由强变弱。东南边缘塘沽巴斯凹陷以弧形向西北展布的基底滑脱型逆冲构造为特征,变形最为剧烈。晚奥陶世以凹陷为主,奥陶纪末期志留纪褶皱隆起。北侧为塔中隆起,是一个断裂—褶皱复背斜,主体发育于中奥陶世晚期,缺失中奥陶统,且控制了上奥陶统良里塔格组沉积时期孤立台地沉积,于奥陶纪末—志留纪定型。构造带以基底卷入扭动挤压断裂—褶皱变形为主,总体受控于北缘断层,自西向东逆冲幅度增大,西部为南北对称复背斜,东部形成向北逆冲的构造带。塔中隆起西段自北向南由逆冲挤压向压扭性走滑构造转变。西部巴楚东段及塔西南东部以区域性的隆升为主,与塔中隆起相似,大面积缺失中奥陶统地层。北部顺托地区则以走滑断裂发育为主,断裂主要活动期为奥陶纪末—志留纪和海西晚期。构造变形组合显示,塔东南下古生界构造变形动力主要来自盆地东南部,是东昆仑与阿尔金洋渐进闭合、俯冲碰撞过程导致塔里木板块变形的产物。变形时序及研究区NE向断裂运动规律表明板块作用自中加里东至晚加里东持续压扭的过程。塔东南地区各单元构造样式与强度差异表明盆地盖层变形明显受到基底断块与内部寒武系膏泥岩分布的制约。其次,断裂的多期活动体现了后期构造的叠合改造的作用,顺托地区NE向断裂可能与海西晚期构造运动的延展有关。  相似文献   

6.
Mapping based on the interpreted seismic data covering the Abu Gharadig Basin in the northern Western Desert has revealed that the deposition of the Upper Cretaceous succession was controlled by dextral wrench tectonics. This dextral shear accompanied NW movement of the African Plate relative to Laurasian Plate. Structural depth maps of the Cenomanian Bahariya Formation and the Turonian-Coniacian D and A members of Abu Roash Formation display a clear NE-SW anticline dissected by NW-SE normal faults. This anticline represents one of the en echelon folds characterizing the wrench compressional component. The interpreted normal faults reflect the extensional T-fractures associated with the wrenching tectonics. The interaction between the aforementioned NE-SW anticline with the NW-SE extensional faults further confirms the effect of the Upper Cretaceous dextral wrench tectonic. However, the influence of this wrench tectonics was gradually diminishing from the Cenomanian up to the Coniacian times. The NW-SE compressional stress of the dextral wrench compressional component during the Cenomanian up to Coniacian age was greater in NW direction than the SE direction. Three mapped structural closures which are predicted to be potential hydrocarbon traps belonging to the Bahariya Formation and Abu Roash D Member, and are recommended to be drilled in the study area, with potential reservoirs. The regularity of the en echelon array of both anticlines and normal faults within the wrench zones suggests additional closures may be located elsewhere beside the study area.  相似文献   

7.
Abstract

Positive structural inversion involves the uplift of rocks on the hanging-walls of faults, by dip slip or oblique slip movements. Controlling factors include the strike and dip of the earlier normal faults, the type of normal faults — whether they were listric or rotated blocks, the time lapsed since extension and the amount of contraction relative to extension. Steeply dipping faults are difficult to invert by dip slip movements; they form buttresses to displacement on both cover detachments and on deeper level but gently inclined basement faults. The decrease in displacement on the hanging-walls of such steep buttresses leads to the generation of layer parallel shortening, gentle to tight folds — depending on the amount of contractional displacement, back-folds and back-thrust systems, and short-cut thrust geometries — where the contractional fault slices across the footwall of the earlier normal fault to enclose a “floating horse”. However, early steeply dipping normal faults readily form oblique to strike slip inversion structures and often tramline the subsequent shortening into particular directions.

Examples are given from the strongly inverted structures of the western Alps and the weakly inverted structures of the Alpine foreland. Extensional faulting developed during the Triassic to Jurassic, during the initial opening of the central Atlantic, while the main phases of inversion date from the end Cretaceous when spreading began in the north Atlantic and there was a change of relative motion between Europe and Africa. During the mid-Tertiary well over 100 km of Alpine shortening took place; Alpine thrusts, often detached along, or close to, the basement-cover interface, stacking the late Jurassic to Cretaceous sediments of the post-extensional subsidence phase. These high level detachments were joined and breached by lower level faults in the basement which, in the external zones of the western Alps, generally reactivated and rotated the earlier east dipping half-graben bounding faults. The external massifs are essentially uplifted half-graben blocks. There was more reactivation and stacking of basement sheets in the eastern part of this external zone, where the faults had been rotated into more gentle dips above a shallower extensional detachment than on the steeper faults to the west.

There is no direct relationship between the weaker inversion of the Alpine foreland and the major orogenic contraction of the western Alps; the inversion structures of southern Britain and the Channel were separated from the Alps by a zone of rifting from late Eocene to Miocene which affected the Rhone, Bresse and Rhine regions. Though they relate to the same plate movements which formed the Alps, the weaker inversion structures must have been generated by within plate stresses, or from those emanating from the Atlantic rather than the Tethyan margin.  相似文献   

8.
Sixty five per cent of the Paleozoic basement of western and central Europe is hidden by a sedimentary cover and/or sea. This work aims to remove that blanket to detect new structures which could used to build a more comprehensive model of the Variscan orogeny. It is based on the interpretation of various forms of data: (a) published gravity maps corrected for the effects of the crust-mantle boundary topography and light sedimentary basins; (b) aeromagnetic maps; (c) measurements of densities; and (d) induced and remanent magnetizations on rocks from Paleozoic outcrops of the upper Rhenish area. From the northern Bohemian Massif to the eastern Paris Basin, the Saxothuringian is characterized by a 500 km long belt of gravity highs, the most important being the Kraichgau high. Most of the corresponding heavy bodies are buried under a post-early Viséan cover. They are interpreted as relics of Late Proterozoic terranes overlain by an Early to Middle Paleozoic sequence, equivalent to the Bohemian terrane in the Bohemian Massif. The most probable continuation of these dense Bohemian terranes toward the west is the Southern Channel-Northern Brittany Cadomian terrane. The gravity lows are correlated with Variscan granites and pre- and early Variscan metagranites.Gravity and magnetic maps demonstrate large-scale displacement in Devonian-Early Carboniferous times along the parallel and equidistant, NW-SE striking, Vistula, Elbe, Bavarian, Bray and South Armorican dextral wrench faults. In the Vosges-Schwarzwald and Central Massif the faults continue with the east-west striking Lalaye-Lubine-Baden-Baden and Marche faults and with south vergent thrusts. The Bavarian faults shift the Kraichgau terrane by 150 km relative to the Bohemian terrane, whereas the offset of the Northern Brittany Cadomian relative to the Northern Vosges-Kraichgau terranes is estimated at 400 km along the Bray fault. Sinistral wrench faults are the NE-SW striking Sillon Houiller, Rheingraben, Rodl, Vitis and Diendorf faults. The southern Vosges-Schwarzwald Devonian-Dinantian basin is interpreted as a pull-apart basin at the south-easterly extremity of the Bray fault. The Bohemian and Kraichgau body form allochthonous terranes which were thrust over the Saxothuringian crust. Thrusting to the north-west was accompanied by back-thrusting and led to the formation of pop-up structures. Contemporaneous dextral and sinistral wrench faulting resulted in transpressive strain during collision. The zonal structure of the Variscides in the sense of Kossmat (1927) is relevant only to the Rhenohercynian Foreland Belt. Kossmat (1927) already spoke of a Moldanubian Region because it displays no real zonal structure. The Saxothuringian Zone was formed by terrane accretion. Their apparent zonal structure is not a pre-collisional feature, but only the result of accretion and collision.  相似文献   

9.
This paper presents the results of high-resolution reflection seismic surveys carried out between 1989 and 1996 along rivers and canals in northern Belgium. The seismic data penetrate down to 900 m in the sedimentary cover or to the Paleozoic basement. The reflection response of the acoustic basement provides clear indications with regard to the top of the Paleozoic: crystalline basement and Lower Paleozoic metasediments and volcanics of the London-Brabant Massif and NE-dipping Devonian and Carboniferous strata. The subhorizontal Mesozoic and Cenozoic sedimentary cover comprises 20 unconformity-bound seismic units: 5 in the Cretaceous and 15 in the Cenozoic. Based on borehole information, these units are correlated with lithostratigraphically defined formations or groups. Some of the unit-bounding unconformities are of regional importance. They are attributed i) to eustatic sea-level changes causing regional flooding during the Late Cretaceous or incision of deep valleys during the Late Oligocene and Late Miocene, ii) to regional tectonic tilting between Late Eocene and Early Oligocene, or iii) to a combination of eustasy and tectonics causing valley incisions during the Lutetian. Faults of the Roer Valley Graben have offset different stratigraphic levels by sometimes considerable amounts (up to 230 m in the Oligocene to Quaternary succession). Although the main tectonic phase took place during the Miocene, the activity has varied considerably through time, and also from fault to fault. Most faults seem to have a 10 to 30-m displacement since the Late Pliocene.  相似文献   

10.
Geologic, geomorphic and seismologic data indicate that west of Lake Cachuma the Santa Ynez fault branches into several major W- and NW-trending splay faults. Two of the faults bracket the wedge-shaped Santa Maria basin. The most compelling evidence for the existence of these two faults is the fact that the Santa Maria basin is floored by Franciscan basement overlain only by Miocene and younger sedimentary rocks, whereas across the inferred traces of each of these faults, the adjacent terrains consist of Franciscan basement overlain by thick sequences of Early Tertiary strata, as well as by Miocene and younger rocks. The third splay fault strikes northwestward through the central Santa Maria basin. Narrow zones of tightly appressed, left-stepping en-echelon folds are locally adjacent to the faults along the south edge, and through the center of the basin. The geometrical arrangement of these folds is indicative of formation over buried sinistral wrench faults. Evidence for Holocene surface rupturing is lacking or nebulous at best, but epicenters of damaging historical earthquakes are spatially, and by inference, genetically related to the central Santa Maria basin faults, indicating that they comprise the presently active strands among the several splay faults.  相似文献   

11.
The late-Palaeozoic to Cenozoic stratigraphic and structural record of the southwestern margin of the Bohemian massif and its extension beneath the southward adjacent Molasse basin shows that it is controlled by a system of basement-involving faults which came into evidence during Stephanian– Autunian times and which were subsequently repeatedly reactivated. Thick Permo-Carboniferous clastics accumulated in fault-bounded transtensional basins aligned with the southwestern Bohemian border zone (SWBBZ). Following late-Autunian deformation of these basins, the SWBBZ was overstepped by late-Permian to Late Jurassic platform sediments, reflecting tectonic stability. During the Early Cretaceous the SWBBZ was strongly reactivated, causing disruption and erosion of its Mesozoic sedimentary cover. Sedimentation resumed in the area of the SWBBZ during late Early and Late Cretaceous with clastic influx from the Bohemian massif reflecting gradually increasing tectonic activity along the SWBBZ. During the Late Senonian and Paleocene transpressional deformations resulted in upthrusting of major basement blocks. In the Molasse basin such structures are sealed by transgressive Late Eocene marine strata. Mio-Pliocene uplift of the Bohemian massif, involving mild reactivation of the SWBBZ, is related to the development of the volcano-tectonic Eger zone. The structural configuration of the SWBBZ is largely the result of Late Senonian–Paleocene compressional intraplate tectonics which play a major role in the structural framework of the northern Alpine and Carpathian foreland.  相似文献   

12.
Late Cenozoic transtensional fault belt was discovered on Shajingzi fault belt, NW boundary of the Awati Sag in the northwestern Tarim Basin. And numerous Quaternary normal faults were discovered on Aqia and Tumuxiuke fault belts, SW boundary of Awati. This discovery reveals Quaternary normal fault activity in the Tarim Basin for the first time. It is also a new discovery in the southern flank of Tianshan Mountains. Shajingzi transtensional fault belt is made up of numerous, small normal faults. Horizontally, the normal faults are arranged in right-step, en echelon patterns along the preexisting Shajingzi basement fault, forming a sinistral transtensional normal fault belt. In profile, they cut through the Paleozoic to the mid-Quaternary and combine to form negative flower structures. The Late Cenozoic normal faults on the SW boundary of Awati Sag were distributed mainly in the uplift side of the preexisting Aqia and Tumuxiuke basement-involved faults, and combined to form small horst and graben structures in profile. Based on the intensive seismic interpretation, careful fault mapping, and growth index analysis, we conclude that the normal fault activity of Shajingzi transtensional fault belt began from Late Pliocene and ceased in Late Pleistocene (mid-Quaternary). And the normal faulting on the SW boundary of Awati Sag began from the very beginning of Quaternary and ceased in Pleistocene. The normal faulting on Awati’s SW boundary began a little later than those on the NW boundary. The origin of Shajingzi transtensional normal fault belt was due to the left-lateral strike-slip occurred in the southern flank of Tianshan, and then, due to the eastward escape of the Awati block, a tensional stress developed the normal faults on its SW boundary.  相似文献   

13.
Seismic sections across the NW part of the Polish Basin show that thrust faults developed in the sedimentary units above the Zechstein evaporite layer during basin inversion. These cover thrust faults have formed above the basement footwall. Based on the evolution of the basin, a series of scaled analogue models was carried out to study interaction between a basement fault and cover sediments during basin extension and inversion. During model extension, a set of normal faults originated in the sand cover above the basement fault area. The distribution and geometry of these faults were dependent on the thickness of a ductile layer and pre-extension sand layer, synkinematic deposition, the amount of model extension, as well as on the presence of a ductile layer between the cover and basement. Footwall cover was faulted away from the basement only in cases where a large amount of model extension and hanging-wall subsidence were not balanced by synkinematic deposition. Model inversion reactivated major cover faults located above the basement fault tip as reverse faults, whereas other extensional faults were either rotated or activated only in their upper segments, evolving into sub-horizontal thrusts. New normal or reverse faults originated in the footwall cover in models which contained a very thin pre-extension sand layer above the ductile layer. This was also the case in the highly extended and shortened model in which synkinematic hanging-wall subsidence was not balanced by sand deposition during model extension. Model results show that inversion along the basement fault results in shortening of the cover units and formation of thrust faults. This scenario happens only when the cover units are decoupled from the basement by a ductile layer. Given this, we argue that the thrusts in the sedimentary infill of the Polish Basin, which are decoupled from the basement tectonics by Zechstein evaporites, developed due to the inversion of the basement faults during the Late Cretaceous-Early Tertiary.  相似文献   

14.
运用斜长石-角闪石温压计对华北地块北缘内蒙古隆起及燕山褶断带内不同时期花岗质侵入岩的结晶压力及侵位深度进行了估算。结果表明,晚古生代—早中生代期间,在内蒙古隆起及燕山褶断带之间,存在有强烈的差异性隆升及剥露过程,但这种差异性隆升及剥露在早侏罗世以来的表现则不明显。晚古生代—早中生代差异性隆升及剥露可能是导致内蒙古隆起上大量基底岩石出露、中—新元古代及古生代沉积盖层缺失及燕山褶断带中—新元古代及古生代沉积盖层大量保留的主要原因。内蒙古隆起强烈的隆升及剥露过程发生在晚石炭世—早侏罗世期间,其东部的剥露幅度比中东部明显偏小。晚古生代-早中生代期间内蒙古隆起的强烈剥露及其与燕山褶断带之间的差异性隆升可能与古亚洲洋板块向华北地块的俯冲、消减、碰撞及华北北缘区域性断裂(如平泉-古北口-赤城-尚义断裂、赤峰-围场-多伦断裂)的活动有关。燕山褶断带的强烈隆升与剥露发生则在晚侏罗世—早白垩世之后。晚体罗世—早白垩世以来,华北地块北缘南北两侧均有一次明显的剥露过程,这一剥露可能与本区及中国东部地壳强烈伸展有关。  相似文献   

15.
塔里木盆地断裂构造分期差异活动及其变形机理   总被引:9,自引:3,他引:6  
本文的目的是探讨塔里木盆地断裂构造分期差异活动过程及其变形机理.在地震剖面解释、钻井资料和地质资料综合分析的基础上,通过编制塔里木盆地不同时期断裂系统图,提出控制塔里木盆地断裂构造形成和演化主要构造活动期次为:加里东早期、加里东中期、加里东晚期-海西早期、海西晚期、印支期、燕山期和喜马拉雅期.加里东早期断裂活动受伸展环境制约,沿先存基底断裂带形成张性正断层.加里东中期、加里东晚期-海西早期断裂活动以逆冲作用为主,在塔东、塔中、塘古巴斯、巴楚和麦盖提地区最为发育.海西晚期断裂活动也是以逆冲作用为特征,并从早期断裂强烈活动的塔中、塘古巴斯、玛东等地区,迁移到塔北隆起和东部地区.印支、燕山和喜马拉雅期,前陆地区断裂构造发育,形成叠瓦冲断带、褶皱-冲断带、双重构造、盐相关构造等;但在盆内稳定区,断裂构造不发育,活动性弱.古生代断裂构造发育分布的控制机理,主要与区域大地构造环境的变化和构造转换、先存基底断裂带、大型区域性不整合、滑脱带等要素密切相关.区域大地构造环境的变化和构造转换主要受控于塔里木周缘洋盆的伸展裂解、俯冲消减和洋盆闭合的时限和强度.先存基底断裂带或基底构造软弱带往往控制着后期断裂的发育位置和展布方向.大型区域性不整合和滑脱带控制着断裂构造的发育和分布层位.中、新生代断裂构造发育分布的控制机理,与区域大地构造环境及其构造转换、区域构造位置有关.中、新生代塔里木断裂构造主要分为三种环境,即前陆构造环境、盆内稳定区构造环境和隆升剥蚀区构造环境.盆内稳定区断裂构造不发育,活动性较弱.中、新生代断裂构造主体发育在前陆构造环境中,主要受控于周缘造山带强烈隆升、挤压冲断、走滑-逆冲或逆冲-走滑作用,同时与喜马拉雅晚期盆-山耦合作用及滑脱层的发育有关.  相似文献   

16.
The segmented structure of the Karpinsky Ridge is determined by NE-trending transverse strikeslip faults with offsets of approximately 30–40 km. The newly recognized Pribrezhny Fault and the well-known Agrakhan Fault are the largest. A new correlation scheme for structural elements of the ridge’s eastern segment and its underwater continuation is proposed with account of offset along the Pribrezhny Fault. According to this scheme, the Semenovsky Trough rather than the Dzhanai Trough is an onshore continuation of the underwater Zyudevsky Trough. The uplift located south of the Zyudevsky Trough is correlated with the Promyslovy-Tsubuk Swell offset along the Pribrezhny Fault. In turn, this uplift is displaced along the right-lateral strike-slip fault that coincides with the Agrakhan Fault. The transverse faults were formed during the Early Permian collision related to the closure of the basin, which was presumably underlain by the oceanic crust. The faults were active during the Early Triassic rifting and Late Triassic inversion. Judging from the map of the surface of the Maikop sediments, the Agrakhan Fault does not cross the Terek-Caspian Trough. Bending arcwise, the fault joins a system of right-lateral strike-slip faults that border the Daghestan Wedge in the east. A system of rightlateral strike-slip faults may also be traced along the western coast of the Caspian Sea. The Agrakhan Fault as a northern element of this system functioned mostly in the Late Paleozoic-Early Mesozoic in connection with the formation of the fold-thrust structure of the Karpinsky Ridge. In the east the faults of the southern segment bound the Caucasus syntaxis of the Alpine Belt; they have retained their activity to the present day.  相似文献   

17.
A series of regional deformation phases is described for the metamorphic basement and the Permian cover in an area in the central Orobic Alps, northern Italy. In the basement deformation under low-grade amphibolite metamorphic conditions is followed by a second phase during retrograde greenschist conditions. These two phases predate the deposition of the Permian cover and are of probable Variscan age. An extensional basin formed on the eroded basement during the Late Carboniferous, filled with fan conglomerates and sandstones, and rhyolitic volcanic rocks. Well-preserved brittle extensional faults bound these basins. Further extension deformed basement and cover before the onset of Alpine compressional tectonics. Cover and basement were deformed together during two phases of compressional deformation of post-Triassic age, the first giving rise to tectonic inversion of the older extensional faults, the second to new thrust faults, both associated with south-directed nappe emplacement and regional folding. Foliations develop in the cover only during the first phase of deformation as part of the activity on “shortening faults”. Main activity on the Orobic thrust actually postdates the first phase of thrusting and foliation development in the cover.  相似文献   

18.
Several selected seismic lines are used to show and compare the modes of Late-Cretaceous–Early Tertiary inversion within the North German and Polish basins. These seismic data illustrate an important difference in the allocation of major zones of basement (thick-skinned) deformation and maximum uplift within both basins. The most important inversion-related uplift of the Polish Basin was localised in its axial part, the Mid-Polish Trough, whereas the basement in the axial part of the North German Basin remained virtually flat. The latter was uplifted along the SW and to a smaller degree the NE margins of the North German Basin, presently defined by the Elbe Fault System and the Grimmen High, respectively. The different location of the basement inversion and uplift within the North German and Polish basins is interpreted to reflect the position of major zones of crustal weakness represented by the WNW-ESE trending Elbe Fault System and by the NW-SE striking Teisseyre-Tornquist Zone, the latter underlying the Mid-Polish Trough. Therefore, the inversion of the Polish and North German basins demonstrates the significance of an inherited basement structure regardless of its relationship to the position of the basin axis. The inversion of the Mid-Polish Trough was connected with the reactivation of normal basement fault zones responsible for its Permo-Mesozoic subsidence. These faults zones, inverted as reverse faults, facilitated the uplift of the Mid-Polish Trough in the order of 1–3 km. In contrast, inversion of the North German Basin rarely re-used structures active during its subsidence. Basement inversion and uplift, in the range of 3–4 km, was focused at the Elbe Fault System which has remained quiescent in the Triassic and Jurassic but reproduced the direction of an earlier Variscan structural grain. In contrast, N-S oriented Mesozoic grabens and troughs in the central part of the North German Basin avoided significant inversion as they were oriented parallel to the direction of the inferred Late Cretaceous–Early Tertiary compression. The comparison of the North German and Polish basins shows that inversion structures can follow an earlier subsidence pattern only under a favourable orientation of the stress field. A thick Zechstein salt layer in the central parts of the North German Basin and the Mid-Polish Trough caused mechanical decoupling between the sub-salt basement and the supra-salt sedimentary cover. Resultant thin-skinned inversion was manifested by the formation of various structures developed entirely in the supra-salt Mesozoic–Cenozoic succession. The Zechstein salt provided a mechanical buffer accommodating compressional stress and responding to the inversion through salt mobilisation and redistribution. Only in parts of the NGB and MPT characterised by either thin or missing Zechstein evaporites, thick-skinned inversion directly controlled inversion-related deformations of the sedimentary cover. Inversion of the Permo-Mesozoic fill within the Mid-Polish Trough was achieved by a regional elevation above uplifted basement blocks. Conversely, in the North German Basin, horizontal stress must have been transferred into the salt cover across the basin from its SW margin towards the basins centre. This must be the case since compressional deformations are concentrated mostly above the salt and no significant inversion-related basement faults are seismically detected apart from the basin margins. This strain decoupling in the interior of the North German Basin was enhanced by the presence of the Elbe Fault System which allowed strain localization in the basin floor due to its orientation perpendicular to the inferred Late Cretaceous–Early Tertiary far-field compression.  相似文献   

19.
鲁西地块的断裂构造有两类不同分布型式:一类呈放射状分布, 由陡倾、基底右行韧性剪切带和盖层内复杂力学性质的断裂组成; 另一类呈环绕地块基底核部同心环状分布, 由3个主要盖层伸展拆离带组成, 主滑脱面分别位于古生界盖层与基底间的不整合面、石炭系与奥陶系之间的平行不整合面和中新生代断陷-沉积岩系与新生代火山-沉积物之间的断层。中生代构造变形样式可以分为3个层次:印支期褶皱-逆冲推覆构造、燕山中期NNE轴向的隔槽式箱状褶皱和燕山晚期NW、NNE向共轭正断-走滑断裂。相应地鲁西地块经历了3个成盆期, 即早-中侏罗世、早白垩世和晚白垩世, 这些中生代盆地在空间上的叠置导致了地块内部复杂的盆-山耦合关系。鲁西地块中生代有两个岩浆活动集中时期, 即早侏罗世(约190Ma)和早白垩世(132~110Ma)。综合沉积记录、岩浆活动和构造变形过程, 将鲁西地块中生代构造演化历史划分为6个阶段:晚三叠世挤压变形, 早、中侏罗世弱伸展作用, 中、晚侏罗世挤压变形与地壳增厚作用, 早白垩世大陆裂谷与地壳伸展作用, 早白垩世末期挤压变形与盆地反转事件和晚白垩世区域隆升。这些构造演化阶段和构造事件对研究和理解中生代构造体制和深部岩石圈动力学转换过程具有重要意义。   相似文献   

20.
塔里木盆地顺北地区发育大量走滑断裂带,并对油气的运聚成藏有重要控制作用。以顺北西部地区地震资料为基础,对顺北11号走滑断裂带的几何变形特征、活动性、活动期次及其形成机制等进行了分析。顺北11号走滑断裂带整体呈NNW走向延伸,具有垂向分层性和平面分段性。断裂带北段主体为压扭和张扭交互段,中段为两条次级断层控制的拉分地堑,南段由数条分支断层构成马尾状构造。顺北11号断裂带整体活动性由北向南减弱,运动学标志显示是一条右旋走滑断层。顺北11号断裂带主要经历了晚奥陶世和晚志留世-中泥盆世两期活动,部分地区的活动持续到石炭纪。顺北11号走滑断裂带的活动性和运动学特征与塔北地区NNW走向的走滑断裂体系比较相似,而不同于塔中地区的NE向左行走滑断裂体系。顺北11号走滑断裂带的形成主要受控于塔里木盆地北部天山洋多期俯冲挤压而产生的自北向南的挤压应力,断裂自北向南扩展延伸,类似于顺北5号走滑断裂带的北段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号