首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
王道德  戴诚达 《地球化学》1995,24(2):110-120
类地行星挥发性元素普遍亏损很可能是由于太阳星云早期剧烈的太阳活动引起的。当气体、尘粒、挥发性元素和水被驱赶出内太阳系时,只有米级到公里级的物质保存下来并堆积成星子,最终吸积星子形成类地行星。我们认为类地行星的初始物质主要是已分异的星子和一些未分异的球粒陨石质星子或不同类型的陨石母体,最靠近太阳形成的星子具有最低的FeO/(FeO+MgO)值,水星是在靠近太阳的高度还原条件下吸积成分类似EH球粒陨石的星子形成的。地球的初始物质为分异的铁陨石及H群球粒陨石。随着距太阳距离增大及温度降低,陨石形成的部位大致为:EH、EL-IAB-SNC(辉玻无球粒陨石、辉橄无球粒陨石、纯橄无球粒陨石)-Euc(钙长辉长无球粒陨石)-H、L、LL-CV、CM、CO-Cl-彗星。物体之间、星子之间及行星与星子之间的碰撞对太阳系的形成和演化起着重要的作用。  相似文献   

2.
形成类地行星初始物质的探讨   总被引:3,自引:0,他引:3  
王道德 《地球化学》1986,(4):319-328
不同类型陨石、内行星和外行星在主要元素或化学组成上的差异,表明从早期太阳星云内的凝聚作用开始,到吸积作用前后,曾发生过明显的化学分馏作用。随着与太阳的距离增大,难熔元素的丰度逐渐增高,温度和压力逐渐下降,据此可推测不同类型陨石形成的部位及类地行星的初始物质。  相似文献   

3.
陨石分类学的研究,对了解和探索太阳星云凝聚与分馏作用、吸积形成陨石母体前后的作用过程,不同类型陨石母体在太阳系形成的部位(距日心不同距离)、形成的物理化学条件及形成类地行星的初始物质都具有重要的理论意义和参考价值。近年来,在陨石传统分类的基础上又提出了一些新的分类参数和新的分类:(1)根据不同类型陨石之间化学组成、矿物成分、结构构造、形成的物理化学条件的差异和成因联系及其形成和演化的宇宙化学历史,将陨石划分为两大类,即原始的未分异的陨石,包括高铁和低铁的顽火辉石球粒陨石  相似文献   

4.
侯渭  欧阳自远 《岩石学报》1996,12(1):115-126
建立类地行星区太阳星云凝聚过程的岩石学模型,对于合理解释陨石、地球和类地行星的成因关系,探讨地球起源和估算地球的整体成分都有着重要意义。本文中根据天体化学和太阳系演化学说关于太阳星云物理化学条件的基本分析,以及实验凝聚岩石学的研究结果,推断在太阳星云盘的类地行星区中可能有星云的气-固和气-液-固两种凝聚作用发生。通过对球粒陨石中球粒和基质矿物成分及结构构造特征的对比,论证了绝大多数球粒的气-液-固凝聚成因和基质的气-固凝聚成因,并讨论了球粒陨石各化学群的凝聚成因模式。  相似文献   

5.
正2014年10月31日,Science发表题为《早期太阳系内部的吸积水来自碳质球粒陨石——可能的来源》(Early Accretion of Water in the Inner Solar System from A Carbonaceous Chondrite-Like Source)的文章指出,伍兹霍尔海洋研究所(WHOI)研究发现了地球和太阳系内水的第一个证据。研究人员提出了地球上水的另一个潜在来源——碳质球粒陨石。最原始的陨石即碳质球粒陨石,形成于大约46亿年前太阳引发的灰尘、砂  相似文献   

6.
富Ca、Al包体(简称CAI)形成于太阳星云演化的最初始阶段,其成因模式主要包括:气—固凝聚、熔融结晶和部分熔融以及高温蒸发作用等。最近,通过对不同球粒陨石化学群中的CAI进行岩石学特征对比研究,发现不同化学群中的CAI具有相似的大小和类型分布特征,表明不同球粒陨石化学群中的CAI极可能具有相似的起源。该结果,与前人的氧同位素、Al—Mg同位素体系以及稀土元素等研究得到的结论一致。不同球粒陨石化学群中的CAI具有相似的成因,并很可能形成于太阳星云的相同区域,随后迁移到不同球粒陨石群的吸积区域。  相似文献   

7.
陨石原始型惰性气体的研究进展——Q气及其携带物特征   总被引:1,自引:1,他引:0  
陨石中的原始型惰性气体是在陨石形成前或陨石形成期间,组成陨石的物质通过吸附、溶解等方式将原始太阳星云中的惰性气体保留在陨石中形成的。实验研究发现,球粒陨石中的原始型惰性气体浓集中一种称为Q相的物质中,因此在原始型惰性气体中占绝对优势的组分被称为Q气或P1气。介绍了陨石原型惰性气体概念的由来、Q相的发现经过、Q相的成分和在球粒陨石中的存在部位以及Q气的元素丰度和同位素组成。并根据不同类型损石中Q气的分配情况,对其成因意义进行了讨论。  相似文献   

8.
《地球化学》1976,(2):133-143
研究地球物质中化学元素的分布、迁移和转变的规律,进一步探讨地球的形成与演化过程是地球化学的主要课题之一。球粒陨石的平均化学组成可能代表着形成太阳系的太阳星云的平均化学组成,也是组成地球的初始物质,而地壳上的各种岩浆岩都是从地球的初始物质经过熔融、调整、演化而逐渐形成的。我们通过对普通球粒陨石、超基性岩、各  相似文献   

9.
顽火辉石球粒陨石中的大量金属硫化物形成于早期极还原的太阳星云条件。GRV13100是一块发现于南极格罗夫山的顽火辉石球粒陨石,不透明矿物包括陨硫铁、陨硫铬铁矿、陨硫镁矿、陨硫钙矿、含硅铁纹石、陨磷铁矿、硅磷镍矿等金属硫化物和磷化物,总丰度达21%,经历了一定程度的热变质。通过对其岩石学和矿物化学特征研究,并和其它顽火辉球粒陨石进行对比分析,结果表明:(1)陨硫镁矿中FeS含量可以反映母体变质温度,GRV 13100中大部分陨硫镁矿变质温度为200℃~300℃,个别经历了400℃~800℃的高温,可能为外来吸入成因,或者代表了原始星云的凝聚或结晶温度;(2)陨硫镁矿形成于太阳星云的直接凝聚,并在橄榄石和顽火辉石冷凝结晶之后形成;(3)陨硫铁的成因分为原生和次生两种,原生的陨硫铁由太阳星云直接凝聚而成,次生的陨硫铁是在后期热变质过程中由铁镍金属经过硫化作用或者由陨硫镁矿分解而形成;(4)硅磷镍矿可能来自含硅铁纹石的出溶。本论文的研究工作为太阳系早期高度还原星云演化及其后期热变质提供了约束。  相似文献   

10.
最新的陨石学资料证明,陨石中表征早期太阳星云同位素异常的证据普遍存在,尤其是碳质球粒陨石难熔包体中。近年在铁陨石和球粒陨石单矿物中也发现了同位素异常,看来在形成行星初始物质的早期太阳星云中,同位素不均匀性是一种非常普遍的现象。 1.氧同位素异常陨石中氧同位素的变化过去一直认为是由于质量分馏造成的。例如,Onuma等(1972)将其变化归结于原始尘埃和冷却的太阳星云气体之间的同位素交换。在3个含钙铝黄长石-尖晶石的阿伦德包体中,相对于SMOW,δ~(18)O为—9.7‰~—11.5‰,这样的组成是在与太阳星云的平衡温度低至800K产生的,或者在包体形成的太阳星云区有非常低的δ~(18)O,此温度较包体的矿物学和结构显示的温度低得多,这一明显差异难以得到合理解释。Clayton等(1973)首先证明了碳质球粒陨石中无水高温矿物强烈贫重氧同位素~(17)O和~(18)O,这种效应是核过程的结果,来自于几乎纯~(16)O组分的的混合,也许产生于太阳系,也许代表了与核合成历史分离的星际尘埃。Clayton等(1977)指出,C_2、C_3和C_4球粒陨石中,相对于地球丰度都存在~(18)O过剩,所有C_3、C_4陨石全岩和矿物分离相都落在与1%  相似文献   

11.
Noble gases were measured both in bulk samples (stepped pyrolysis and total extraction) and in a HF/HCl residue (stepped pyrolysis and combustion) from the Klein Glacier (KLE) 98300 EH3 chondrite. Like the bulk meteorite and as seen in previous studies of bulk type 3 E chondrites (“sub-Q”), the acid residue contains elementally fractionated primordial noble gases. As we show here, isotopically these are like those in phase-Q of primitive meteorites, but elementally they are heavily fractionated relative to these. The observed noble gases are different from “normal” Q noble gases also with respect to release patterns, which are similar to those of Ar-rich noble gases in anhydrous carbonaceous chondrites and unequilibrated ordinary chondrites (with also similar isotopic compositions). While we cannot completely rule out a role for parent body processes such as thermal and shock metamorphism (including a later thermal event) in creating the fractionated elemental compositions, parent body processes in general seem not be able to account for the distinct release patterns from those of normal Q noble gases. The fractionated gases may have originated from ion implantation from a nebular plasma as has been suggested for other types of primordial noble gases, including Q, Ar-rich, and ureilite noble gases. With solar starting composition, the corresponding effective electron temperature is about 5000 K. This is lower than inferred for other primordial noble gases (10,000-6000 K). Thus, if ion implantation from a solar composition reservoir was a common process for the acquisition of primordial gas, electron temperatures in the early solar system must have varied spatially or temporally between 10,000 and 5000 K.Neon and xenon isotopic ratios of the residue suggest the presence of presolar silicon carbide and diamond in abundances lower than in the Qingzhen EH3 and Indarch EH4 chondrites. Parent body processes including thermal and shock metamorphism and a late thermal event also cannot be responsible for the low abundances of presolar grains. KLE 98300 may have started out with smaller amounts of presolar grains than Qingzhen and Indarch.  相似文献   

12.
We have investigated the presolar grain inventories of two CR chondrites, QUE 99177 and MET 00426, which are less altered than most members of this meteorite group. Both meteorites contain high abundances of O-anomalous presolar grains, with concentrations of 220 ± 40 and 160 ± 30 ppm for QUE 99177 and MET 00426, respectively. The presolar grain inventories are dominated by ferromagnesian silicates with group 1 oxygen isotopic compositions, indicative of origins in low mass red giant or asymptotic giant branch stars. Grains with pyroxene-like compositions are somewhat more common than those with olivine-like compositions, but most grains are non-stoichiometric with compositions intermediate between these two phases, consistent with recent work suggesting that amorphous interstellar silicates have stoichiometries between olivine and pyroxene type silicates. Although structural data are not available, one grain contains only Si and O, and has a stoichiometry consistent with SiO2.Our presolar grains are much more Fe-rich than predicted by astronomical observations. Although secondary alteration may play a role in enhancing the Fe contents of presolar grains, it seems unlikely that the large and ubiquitous Fe enrichments observed in the grains from this study can be due only to secondary processing, particularly given the highly primitive nature of these two meteorites. Grain condensation in the stellar outflows where these grains formed likely proceeded under rapidly changing kinetic conditions that may have enhanced the incorporation of Fe into the grains over that expected based on equilibrium condensation theory.Both QUE 99177 and MET 00426 appear to contain unusually low abundances of oxide grains and have higher silicate/oxide ratios than other primitive meteorites analyzed to date. We explore various possibilities for this discrepancy, but note that most scenarios are not likely to result in the preferential destruction of oxides relative to silicates. Thus, the highest silicate/oxide ratios, such as those observed in the CR chondrites, should reflect the true initial proportions of presolar silicate and oxide grains in the parent molecular cloud from which the solar nebula evolved.  相似文献   

13.
We have determined abundances of presolar diamond, silicon carbide, graphite, and Xe-P1 (Q-Xe) in eight carbonaceous chondrites by measuring the abundances of noble gas tracers in acid residues. The meteorites studied were Murchison (CM2), Murray (CM2), Renazzo (CR2), ALHA77307 (CO3.0), Colony (CO3.0), Mokoia (CV3ox), Axtell (CV3ox), and Acfer 214 (CH). These data and data obtained previously by Huss and Lewis (1995) provide the first reasonably comprehensive database of presolar-grain abundances in carbonaceous chondrites. Evidence is presented for a currently unrecognized Ne-E(H) carrier in CI and CM2 chondrites.After accounting for parent-body metamorphism, abundances and characteristics of presolar components still show large variations across the classes of carbonaceous chondrites. These variations correlate with the bulk compositions of the host meteorites and imply that the same thermal processing that was responsible for generating the compositional differences between the various chondrite groups also modified the initial presolar-grain assemblages. The CI chondrites and CM2 matrix have the least fractionated bulk compositions relative to the sun and the highest abundances of most types of presolar material, particularly the most fragile types, and thus are probably most representative of the material inherited from the sun's parent molecular cloud. The other classes can be understood as the products of various degrees of heating of bulk molecular cloud material in the solar nebula, removing the volatile elements and destroying the most fragile presolar components, followed by chondrule formation, metal-silicate fractionation in some cases, further nebula processing in some cases, accretion, and parent body processing. If the bulk compositions and the characteristics of the presolar-grain assemblages in various chondrite classes reflect the same processes, as seems likely, then differential condensation from a nebula of solar composition is ruled out as the mechanism for producing the chondrite classes. Presolar grains would have been destroyed if the nebula had been completely vaporized. Our analysis shows that carbonaceous chondrites reflect all stages of nebular processing and thus are no more closely related to one another than they are to ordinary and enstatite chondrites.  相似文献   

14.
陨石氧同位素组成及其地学意义   总被引:1,自引:0,他引:1  
介绍了各类陨石氧同位素组成的特点,对陨石氧同位素组成的主要成因观点进行了评述,结合地球的原始物质组成,讨论了陨石氧同位素组成的地球科学意义。  相似文献   

15.
Isotopic records in meteorites provide evidence for the presence of several short-lived nuclides in the early solar system with half-lives varying from 105 to ∼8x107 years. Most of the nuclides with longer half-life (> 107 years) are considered to be products of stellar nucleosynthesis taking place over long time scales in our galaxy. However, for the relatively shorter-lived nuclides, two possibilities exist; they could be products of energetic particle interactions taking place in a presolar or early solar environment, or, they could have been produced in a stellar source and injected into the protosolar molecular cloud just prior to its collapse. The presently available data appear to support the latter case and put a stringent constraint of less than a million years for the time scale for the collapse of the protosolar molecular cloud to form the Sun and some of the first solar system solids. This short time scale also suggests the possibility of a triggered origin for the solar system with the very process of injection of the short-lived nuclides acting as the trigger for the collapse of the protosolar molecular cloud. Fossil records of the short-lived nuclides in meteorites also provide very useful chronological information on the early solar system processes like the time scale for nebular processing, the time scales for differentiation and for metal/silicate fractionation within planetesimals. The currently available data suggest a time scale of a few million years for nebular processing and a relatively short time scale of about ten million years within which differentiation, melting and recrystallization in some of the planetesimals took place.  相似文献   

16.
Siderophile element distributions within individual metal grains in two CH chondrites, Allan Hills 85085 and Pecora Escarpment 91467, were measured by laser ablation inductively coupled plasma mass spectrometry. Those metal grains that are zoned in Ni were also found to be zoned in other refractory siderophile elements, such as Ru, but not in Pd, which is not refractory but is highly siderophile. This pattern is consistent with an origin by condensation from a gas of approximately solar composition, but not with an origin by redox processes or fractional crystallization. The unzoned metal grains in CH chondrites were found to be frequently depleted in Ru but not in Pd, consistent with later stage condensation from a solar gas after removal of the zoned metal. Gold is inversely correlated with Ni in the unzoned metal grains, and mean Au abundances in zoned metal are always low. Both zoned and unzoned metal in CH chondrites could plausibly be produced from a thermostatically regulated nebula, followed by rapid removal of the zoned metal, and slower removal of the unzoned metal, both at temperatures near or above the condensation temperature of Au (∼1250 K). This is also consistent with the isolation temperatures inferred from silicate grains in CH chondrites by previous workers based on their volatile element inventories. The volatile siderophile Cu is enriched in the rims relative to the interiors of both zoned and unzoned grains, and is interpreted as the product of diffusion during low-grade thermal processing. The similarity of Cu distributions, and degree of kamacite/taenite exsolution, between zoned and unzoned metal in CH chondrites suggests that the two populations of metal experienced modest thermal metamorphism after they were brought together in the same environment, probably on the CH parent body. Fragmentation and size-sorting of the metal must have post-dated the Cu zoning, and may have occurred in a regolith on the CH parent body. The compositions of CH metal, like that of metal from QUE 94411 and HH 237, are consistent with a nebular origin, and may be the most primitive nebular materials (as distinct from presolar grains) sampled by chondrites.  相似文献   

17.
The carbonaceous chondrites are intriguing and unique in the sense that they are the only rocks that provide pristine records of the early solar nebular processes. We report here results of a detailed mineralogical, chemical, amino acid and isotopic studies of a recently observed fall at Mukundpura, near Jaipur in Rajasthan, India. Abundance of olivines in this meteorite is low and of serpentine minerals is high. FeO/SiO_2 = 1.05 in its Poorly Characterized Phases(PCP) is similar to that observed in other CM2.0 chondrites. The water content of ~9.8 wt.% is similar to that found in many other CM chondrites.Microscopic examination of matrix shows that its terrestrial weathering grade is WO but aqueous parent body alteration is high, as reflected in low abundance of identifiable chondrules and abundant remnants of chondrules(~7%). Thus, most of the chondrules formed initially have been significantly altered or dissolved by aqueous alterations on their parent bodies. The measured bulk carbon(2.3%) and nitrogen content and their isotopic(δ13C =-5.5‰, δ15N = 23.6%0) composition is consistent with CM2.0 classification probably bordering CM1. Several amino acids such as Alanine, Serine, Proline, Valine, Threonine,Leucine, Isoleucine, Asparagine and Histamine are present. Tyrosine and Tryptophan may occur in trace amounts which could not be precisely determined. All these data show that Mukundpura chondrite lies at the boundary of CM2.0 and CM1 type carbonaceous chondrites making it one of the most primitive chondrites.  相似文献   

18.
Experimental and analytical procedures devised for measurement of rare earth element (REE) abundances using a secondary ion mass spectrometer (ion microprobe) are described. This approach is more versatile than the conventional techniques such as neutron activation analysis and isotope dilution mass spectrometry by virtue of its high spatial resolution that allows determination of REE abundances in small domains (10-20 micron) within individual mineral phases. The ion microprobe measurements are performed at a low mass-resolving power adopting the energy-filtering technique (Zinner and Crozaz 1986) for removal and suppression of unresolved complex molecular interferences in the REE masses of interest. Synthetic standards are used for determining various instrument specific parameters needed in the data deconvolution procedure adopted for obtaining REE abundances. Results obtained from analysis of standards show that our ion microprobe may be used for determining REE abundances down to ppm range with uncertainties of ∼ 10 to 15%. Abundances of rare earth and several other refractory trace elements in a set of early solar system objects isolated from two primitive carbonaceous chondrites were determined using the procedures devised by us. The results suggest that some of these objects could be high temperature nebular condensates, while others are products of melting and recrystallization of precursor nebular solids in a high temperature environment.  相似文献   

19.
综述了非球陨石(铁陨石,石铁陨石和无球粒陨石)在成分结构方面的非分异成因证据,推断其成因是:星云盘中心层中的星云发生气-液凝聚作用形成的熔滴,在较高温度下彼此合并形成了较大熔体,熔体固化后形成该类陨石母体。根据C1陨石不含球粒和其它成分特征,推断它们是星云只发生气-固凝聚作用的产物。对近年来新发现的一些特殊成分的碳质球粒陨石进行了综合分析,暂定名为类C1陨石。通过类C1陨石与其它球粒陨石及C1陨石成分结构特征的对比,推断它们是星云盘边缘层星云发生气-液-固和气-固联合凝聚作用,同时发生水化作用的产物。最后,在对所有陨石凝聚成因进行解释的基础上,建立了小行星区星云凝聚模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号