首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the study is to better understand the relationship between organic matter optical properties and the presence of potentially large oil and gas accumulations in Arctic Canada. The type and thermal maturity of the dispersed organic matter of the Mesozoic formations in the southern Sverdrup Basin, Melville Island, have been studied using organic petrology and Rock-Eval pyrolysis.All types of organic matter are present in the strata of Mesozoic age. Hydrogen-rich liptinite is dominated by alginite (Botryococcus and Tasmanites), dinoflagellate cysts and amorphous fluorescing matrix. Sporinite, cutinite, resinite and liptodetrinite made up the lesser hydrogen-rich exinite. Vitrinite reflectance in Cretaceous sediments ranges from 0.36 to 0.65% Ro; in Jurassic sediments it ranges from 0.40 to 1.0% Ro and in the Triassic from 0.45 to 1.30% Ro, showing an overall increase with depth of burial.Cretaceous sediments of the Deer Bay Formation are thermally immature and contain organic matter of terrestrial origin. The Upper Jurassic shales of the Ringnes Formation contain predominantly organic matter of liptinitic and exinitic origin with a considerable vitrinitic input. At optimum maturation levels, potential source beds of this formation would have a good hydrocarbon-generating potential. The hydrocarbon potential, however, would be limited to the generation of gases due to the leanness of the source rocks. Parts of the Lower Jurassic Jameson Bay Formation are organic-rich and contain a mixed exinitic/vitrinitic organic matter, Botryococcus colonial algae but visible organic matter is dominated by high plant remains (mainly spores). The Schei Point Group shales and siltstones contain organic matter of almost purely marine origin, whereas the predominantly higher plant-derived organic matter found in the Deer Bay, Jameson Bay and partly in the Ringnes formations have higher TOC. Among the Schei Point Group samples, the Cape Richards and Eden Bay members of the Hoyle Bay Formation are richer in TOC (>2.0%) than the Murray Harbour Formation (Cape Caledonia Member). This may reflect differences in the level of maturity or in the depositional environment (more anoxic conditions for the former).Regional variations in the level of thermal maturity of Mesozoic sediments in Sverdrup Basin appear to be a function of burial depth. The Mesozoic formations thicken towards the basin centre (NNE direction), reflecting the general pattern of increasing thermal maturity north of Sabine Peninsula. However, the regional thermal-maturation pattern of the Mesozoic is not solely a reflection of the present-day geothermal gradient, which indicates that anomalous zones of high geothermal gradient may have existed in the past, at least since when the Mesozoic sediments attained maximum burial depth. The contour pattern of the regional variation of maturity at the base of numerous Triassic formations is similar to that of the structural contours of the Sverdrup Basin, indicating that present-day maturation levels are largely controlled by basin subsidence.  相似文献   

2.
《International Geology Review》2012,54(13):1508-1521
Twenty Cretaceous shale samples from two wells in the Orange Basin of South Africa were evaluated for their source rock potential. They were sampled from within a 1400 m-thick sequence in boreholes drilled through Lower to Upper Cretaceous sediments. The samples exhibit total organic carbon (TOC) content of 1.06–2.17%; Rock-Eval S2 values of 0.08–2.27 mg HC/g; and petroleum source potential (SP), which is the sum of S1 and S2, of 0.10–2.61 mg HC/g, all indicating the presence of poor to fair hydrocarbon generative potential. Hydrogen index (HI) values vary from 7 to 128 mg HC/g organic carbon and oxygen index (OI) ranges from 37 to 195 mg CO2/g organic carbon, indicating predominantly Type III kerogen with perhaps minor amounts of Type IV kerogen. The maturity of the samples, as indicated by T max values of 428–446°C, ranges from immature to thermally mature with respect to oil generation. Measured vitrinite reflectance values (%Ro) of representative samples indicate that these samples vary from immature to mature, consistent with the thermal alteration index (TAI) (spore colour) and fluorescence data for these samples. Organic petrographic analysis also shows that amorphous organic matter is dominant in these samples. Framboidal pyrite is abundant and may be indicative of a marine influence during deposition. Although our Rock-Eval pyrolysis data indicate that gas-prone source rocks are prevalent in this part of the Orange Basin, the geochemical characteristics of samples from an Aptian unit at 3318 m in one of the wells suggest that better quality source rocks may exist deeper, in more distal depositional parts of the basin.  相似文献   

3.
A total of 51 samples, collected from the Jurassic sediments (Ras Qattara, Yakout, Khatatba, Masajid, and Alam El Bueib (member 6) formations) of Salam-3X well, were subjected to organic geochemical analysis. Of the samples, nine have been subjected to palynofacies investigation. Based on the sedimentary organic matter, these sediments show only one palynofacies type, indicating the presence of gas- and oil-prone source rocks and reflecting deposition under marginal dysoxic–anoxic to shelf-to-basin transition conditions. The total organic content of the samples analyzed is characterized by a wide range of content, including fair, good, very good, and excellent. The organic matter quality of these samples is concentrated around types III (gas prone), III–II (gas and oil prone), and II (oil prone), reflecting gas- and oil-prone sediments, with a tendency to generate gas rather than oil; the result matches with the palynological analysis data. The temperature of maximum pyrolytic hydrocarbon generation of analyzed samples are ranging between 440 and 457 °C, reflecting thermally mature organic matter.  相似文献   

4.
The study area is the southern depocenter (depth > 4200 m) of the Mesohellenic Basin which extends between Kipourio and Grevena, central Greece. The Mesohellenic Basin is a Middle-Tertiary intramontane basin developed within the Hellenide orogen. Previous studies have focused on the depositional environments, configuration and hydrocarbon potential of the basin. In this paper we present additional geochemical and petrographic data from outcrop samples of the basin's southern depocenter, which is considered the most promising area, in terms of hydrocarbon prospectivity. A total number of thirty six samples were analysed: Rock-Eval pyrolysis, maceral analysis, vitrinite reflectance and thermal alteration index, bitumens extraction, liquid chromatography, and GC-MS. The samples were collected from deltaic deposits and submarine fan sediments of Late Eocene to Late Oligocene age. The TOC values of the analysed samples range between rich and very rich and the organic matter consists mainly of type III kerogen and the organic matter consider to be predominately gas prone. The thermal maturity assessed from Tmax and vitrinite reflectance shows an immature stage of the organic matter along with the presence of layers having reached the very early mature stage. Vitrinite reflectance measurements and maturity calculations (applying the Lopatin modeling), reveal that the lower part of the depocenter sediments falls within the ‘oil window’. The extractable organic matter (EOM) (mg bitumens/g TOC) indicate the existence of samples (from deltaic deposits) with high ratio of transformation (EOM) (> 100 mg bitumen/g TOC). The GC and GC-MS analyses of the biomarkers indicate mainly the occurrence of terrestrial organic matter reflecting oxidizing conditions and both immature and very early mature stages. The results of the Rock-Eval pyrolysis and the distribution of the isoprenoids support the assumption of the input of an organic matter mixture.  相似文献   

5.
The organic matter-rich Toolebuc Formation of eastern Australia was deposited in a Lower Cretaceous epicontinental sea. Parameters from biological marker studies indicate that the organic matter is immature to marginally mature for hydrocarbon generation. The occurrence of abundant coccoliths and the distribution of alkane biomarkers suggest that the organic matter (Type II) is largely of planktonic origin and only in the southeastern part of the depositional area can a terrestrial influence be discerned. Variations in kerogen composition can be attributed to the extent of the oxidation of the source materials and the degree of incorporation of sulphur. The atomic H/C ratios (c. 1.1) are remarkably constant for most of the Toolebuc Formation. Atomic O/C ratios vary from 0.1 and 0.4 and can be related both to depth and paleogeographic position. Kerogen sulphur contents range up to 7%, and the highest values occur in the most carbonate-rich sediments. Total sulphur (inorganic + organic) to carbon ratios in the sediments vary from 1 to <0.2 and are a function of paleogeographic position and lithology. Most of the sulphur in the sediments is in the form of pyrite, but the proportion of sulphur in organic form increases as the total sulphur content decreases. The evidence for oxidation of the organic matter and incorporation of sulphur into it during deposition suggests that bituminite, which is the dominant organic maceral in the Toolebuc Formation, was formed from an organic gel derived by decay of predominantly algal material. These data support a modified gyttja model (Kauffman, 1981) for the deposition of organic matter in the Toolebuc Formation.  相似文献   

6.
The Geochemical Context of Gas Hydrate in the Eastern Nankai Trough   总被引:1,自引:0,他引:1  
Abstract. Geochemical studies for gas hydrate, gas and organic matter collected from gas hydrate research wells drilled at the landward side of the eastern Nankai Trough, offshore Tokai, Japan, are reported. Organic matter in the 2355 m marine sediments drilled to Eocene is mainly composed of Type III kerogen with both marine and terrigenous organic input. The gas hydrate-bearing shallow sediments are immature for hydrocarbon generation, whereas the sediments below 2100 mbsf are thermally mature. The origins of gases change from microbial to thermogenic at around 1500 mbsf.
Carbon isotope compositions of CH4 and CO2, and hydrocarbon compositions consistently suggest that the CH4 in the gas hydrate-bearing sediments is generated by microbial reduction of CO2. The δ13C depth-profiles of CH4 and CO2 suggest that the microbial methanogenesis is less active in the Nankai Trough sediments compared with other gas hydrate-bearing sediments where solid gas hydrate samples of microbial origin were recovered. Since in situ generative-potential of microbial methane in the Nankai Trough sediments is interpreted to be low due to the low total organic carbon content (0.5 % on the average) in the gas hydrate-bearing shallow sediments, upward migration of microbial methane and selective accumulation into permeable sands should be necessary for the high concentration of gas hydrate in discrete sand layers.  相似文献   

7.
Surma Group is the most important geological unit of Bengal basin, Bangladesh, because petroleum resources occur within this group. It is mainly composed of alternation of shale and sandstone and the shale fraction has long been considered as source rocks and the sandstone fraction as reservoir. These source and reservoir rocks have been studied by different authors by different approach but none of them adopted organic geochemistry and organic petrology as a means of study of source rock and their possible depositional environment. A total of thirty shale core samples have been collected from eight different gas fields to fulfill the short coming. The collected samples have been subjected to Source Rock Analysis (SRA) and/or Rock-Eval (RE) followed by pyrolysis gas chromatography (PyGC), gas chromatography mass spectrometry (GCMS), elemental analysis (EA) and organic petrological study such as vitrinite reflectance measurement and maceral analysis. The analyzed organic matter extracted from the shales of Surma Group consists mainly of Type III along with some Type II kerogen. The studied shales are mostly organically lean (TOC ±1%) and the extracted organic matter is fair to moderate. Based on these results, the analyzed shales have been ranked as poor (mostly) to fair quality source rock. The organic matter of the analyzed shale samples is thermally immature to early mature for hydrocarbon generation considering their Tmax and measured mean vitrinite reflectance values. The hopane 22S/(22S + 22R), moretane/hopane ratio and sterane parameters are also in good agreement with these thermal maturity assessments. The predominance of odd carbons over even carbons (most common) and/or even carbons over odd carbon numbered n-alkanes, moderate Pr/Ph ratio, low to high Tm/Ts ratio, comparative abundance of sterane C29 (i.e., C29 >C27>C28), Pr/nC17 — Ph/nC18 values, C/S ratio and dominance of vitrinite macerals group with the presence of liptinite macerals demonstrate that the organic matter has derived mainly from terrestrial inputs with an insignificant contribution from the marine sources. The condition of deposition alternates from oxic to anoxic.  相似文献   

8.
The objective of the present paper is to provide geochemical and palynological data to characterize lignites and carbonaceous shales from Panandhro, northwestern Kutch Basin, Gujarat, Western India, in terms of their hydrocarbon potential, thermal maturity, sequence stratigraphic settings and depositional palaeoenvironment. The samples, collected in Panandhro lignite mine, belong to Naredi Formation of Late Paleocene-Early Eocene age. The geochemical results are based on proximate analysis, ultimate analysis, X-ray diffraction and Rock-Eval py-rolysis analyses, whereas palynological data include palynofossil composition and thermal alteration index (TAI). The TOC, hydrogen index (HI), cracked hydrocarbon (S2), bitumen index (BI), quality index (QI), and the total genetic potential (S1+S2) values indicate that the studied lignites and carbonaceous shales have good source rock potential. The organic matter is predominantly of type II and type II/III kerogen, which has potential to generate oil as well as gas. Thermal maturity determined from thermal alteration index (TAI), T max and production index (PI) indicates that the organic matter is immature, and in the diagenesis stage of organic matter transformation. The deposition of the studied carbonaceous shales and lignites took place in palaeoenvironments varying from brackish mangrove to freshwater swamp. This study indicates that the proportion of ferns, palms, volatile matter content, S/C, H/C ratios, as well as the presence of siderite and quartz can be used as an indicator of accommodation trends in the coal depositional system. The Panandhro carbonaceous shales and lignites were deposited during the lowstand systems tract with many cycles of small magnitude trangressive-regressive phases. Thus, the geochemistry and ecological palynology are useful not only for the investigation of coal quality and origin, but also to infer accommodation space settings of the mire. This can be gainfully utilized in the coal industry for coal mine planning, development and exploitation, because of the predictive ability to infer changes in stratigraphy and coal quality.  相似文献   

9.
This paper deals with the hydrocarbon source rock evaluation of the Subathu Formation exposed at Marhighat on Sarahan–Narag road in Sirmaur district of Himachal Pradesh. Hydrocarbon potential of these sediments is estimated on the basis of palynofacies analysis and thermal alteration index (TAI) values based on the fossil spores/pollen colouration. The analyses are based on the classification and hydrocarbon generation potential of plant derived dispersed organic matter present in the sediments. The palynofacies analysis of Subathu Formation in the area reveal moderate to rich organic matter, with amorphous organic matter constituting the bulk of the total organic matter, followed by charcoal, biodegraded organic matter, fungal remains, spores/pollen and structured terrestrial organic matter. The TAI value for the organic matter in these sediments has been ascertained as 3.00. A dominance of the sapropelic facies (amorphous organic matter) and the measured TAI values for the Subathu sediments in the Marhighat area suggests a good source-rock potential for the hydrocarbon generation.  相似文献   

10.
Seventy-two core and cutting samples of the Ratawi Formation from selected wells of central and southern Iraq in Mesopotamian Foredeep Basin are analysed for their sedimentary organic matters. Dinoflagellates, spores and pollen are extracted by palynological techniques from these rocks. Accordingly, Hauterivian and late Valanginian ages are suggested for their span of depositional time. These palynomorphs with other organic matter constituents, such as foraminifer’s linings, bacteria and fungi, are used to delineate three palynofacies types that explain organic matter accumulation sites and their ability to generate hydrocarbons. Palaeoenvironments of these sites were mainly suboxic to anoxic with deposition of inshore and neritic marine environments especially for palynofacies type 2. Total organic matters of up to 1.75 total organic carbon (TOC) wt.% and early mature stage of up to 3.7 TAI based on the brown colour of the spore species Cyathidites australis and Gleichenidites senonicus with mottled interconnected amorphous organic matter are used for hydrocarbon generation assessment from this formation. On the other hand, these rock samples are processed with Rock-Eval pyrolysis. Outcomes and data calculations of these analyses are plotted on diagrams of kerogen types and hydrocarbon potential. Theses organic matter have reached the mature stage of up to T max?=?438 °C, hydrogen index of up to 600 mg hydrocarbons for each gram of TOC wt.% and mainly low TOC (0.50–1.55). Accordingly, this formation could generate fair quantities of hydrocarbons in Baghdad oil field and Basrah oil fields. Organic matters of this formation in the fields of Euphrates subzone extends from Hilla to Nasiriyah cities have not reached mature stage and hence not generated hydrocarbons from the Ratawi Formation. Software 1D PetroMod basin modelling of the Ratawi Formation has confirmed this approach of hydrocarbon generation with 100 % transformations of the intended organic matters to generate hydrocarbons to oil are performed in especially oil fields of East Baghdad, West Qurna and Majnoon while oil fields Ratawi and Subba had performed 80–95 % transformation to oil and hence end oil generation had charged partly the Tertiary traps that formed during the Alpine Orogeny. Oil fields of Nasiriyah and Kifle had performed least transformation ratio of about 10–20 % transformation to oil, and hence, most of the present oil in this field is migrated from eastern side of the Mesopotamian Foredeep Basin that hold higher maturation level.  相似文献   

11.
The black shale samples collected from two Neogene formations in the Klias Peninsula area, West Sabah, have been assessed and characterized in details by gas chromatography, gas chromatography-mass spectrometry and a variety of organic geochemical parameters. The aims of this study are to describe the characteristics of organic matter of these sediments in terms of source/type of the organic matter, assess its thermal maturity and paleoenvironment of deposition, based primarily on biomarker distributions. The results of both formations do not reveal significant differences within the rock extracts. The gas chromatograms of the saturated hydrocarbon fractions of the Setap Shale and the Belait formations displayed monomodal n-alkane distributions and nearly identical regular sterane compositions with a predominance of C27 regular steranes. These are consistent with open marine depositional environments dominated by marine biological matter. Another related feature of these rock extracts is the presence of a high relative abundance of gammacerane, indicating anoxic marine hypersaline source depositional environment. The relatively high abundance of common land plant-derived biomarkers, such as bicadinanes and oleananes, is a clear indication of a major terrigenous input to the source of the extractable organic matter. The predominance of oleanane biomarkers in both formations is indicative of angiospermis input and Tertiary source rocks. The high C29/C30 hopane ratios, moderate development of C33–C35 hopanes, high abundance of tricyclic terpanes and a slight predominance of C27 regular sterane over C28 and C29 steranes are characteristic features tending to suggest a significant marine influence on these source rocks, thereby suggesting a mixed source input. The 22S/(22S+22R)C32 hopane ratio has reached equilibrium, and this is supported by the high maturity level as indicated by the 22S/22SC31–33 extended hopane ratios and 20S/(20S+20R)C29 regular steranes ratios.  相似文献   

12.
中国中新生代咸化湖盆烃源岩沉积的问题及相关进展   总被引:8,自引:0,他引:8  
我国东部断陷湖盆和西部坳陷湖盆第三系均有蒸发岩与烃源岩共生现象。前者水体深、咸化范围小,在氯化盐和碳酸盐沉积环境中形成了优质烃源岩,后者水体浅、咸化范围大,在氯化盐和硫酸盐沉积环境中发育了优质烃源岩,作者认为两种湖盆出现的水体分层是有机质堆积和保存的重要条件。济阳坳陷和柴达木盆地为两类咸化湖盆的典型代表,对它们的研究可以深化蒸发岩-烃源岩共生区油气地质的认识、促进勘探发展。  相似文献   

13.
Capillary gas chromatography-mass spectrometry (C-GC-MS) and Iatroscan thin layer chromatography-flame ionisation detection (TLC-FID) were used to study hydrocarbon distributions in a sediment core from Ace Lake, a saline, meromictic lake in the Vestfold Hills of Antarctica. Hydrocarbons were abundant in most core sections (up to 125/μg/g dry wt), particularly in near-surface samples, and the distributions were very complex. Major constituents were identified as phytane, 2,6,10,15,19-pentamethyleicosane, tetrahydrosqualene, a mixture of phytenes, cholesta-3,5-diene and fern-7-ene. Smaller amounts of sterenes and hopenes were also present. The predominance of the first 3 acyclic isoprenoids in sediments buried less than 30 cm is consistent with high populations of methanogenic bacteria known to be present.Phytenes were abundant in all core sections, and there was no relationship between their abundance and that of phytane which suggests that they were not derived from methanogenic bacteria. Phytadienes were minor constituents at all depths studied. An unusual feature of some distributions was the high concentrations of fern-7-ene which was the major hydrocarbon in the 20–25 cm core section. This alkene was only abundant in sediments which contained high concentrations of methanogen markers suggesting that it may also be indicative of anoxic depositional environments. A possible source might be from purple non-sulphur bacteria. High concentrations of straight-chain C29 and C34 alkenes were also found in these sediments but their origin has not been determined. Major changes in the hydrocarbon distributions with depth indicate that the depositional environment in the lake has altered dramatically since the lake was formed less than 8000 years ago. The present condition of permanent anoxic bottom waters probably developed only in the last 1000 years.  相似文献   

14.
The organic matter content of the Paleocene Aaliji Formation has been studied from the Qm-1 well in the Qumar Oil Field, NE Iraq. A palynofacies analysis revealed the obvious domination of amorphous organic matter (AOM) in the samples studied in addition to the different ratios of palynomorphs, phytoclasts and opaque organic material. The deposition of the various percentages of organic matter components and types of palynomorphs appear to have occurred in a proximal suboxic–anoxic basinal environment. The samples analysed showed relatively low percentages of total organic carbon, indicating a generally poor source rock. The thermal alteration index for the palynomorphs (dinoflagellates) observed and identified ranged between 2, 2+ and 3?, indicating an immature to early stage of maturity for the section studied. No clear differentiation between the stages of maturity within the section was identified. The reflectance measured for a few vitrinite particles at a depth of 2,900 m showed uncertainly of 0.46 % Ro, indicating a still thermally immature stage. The values obtained from pyrolysis analysis also supported the formation being in the early stages of maturity, i.e. an immature condition, with T max values between 416 and 435 °C. The quality of the organic matter examined and analysed appeared to be mostly type III gas-prone kerogen, as discerned from the hydrogen index, oxygen index and other pyrolysis parameters. The parameters obtained and calculated from gas chromatography analysis performed on a sample at a depth of 2,900 m found marginally mature marine source organic matter.  相似文献   

15.
Organic molecules originating only from the in situ diagenesis of biogenic molecules are ideal geochemical fossils which may provide information essential for the characterization and reconstruction of depositional environments and subsequent chemical reactions during diagenesis. It is proposed herein that this is the case for the 5β-isomers of stanols and stanones produced during stenol hydrogenation in young aquatic sediments, if shown to be essentially free of any major anthropogenic pollution (particularly, sewage). In order to clarify the environmental factors controlling the production of the 5β-steroidal isomers from stenols in recent aquatic sediments, attempts were made to relate the occurrence of 5β-stanols to various environmental parameters. Positive correlations between elevated concentrations of 5β-stanols and the degree of autochthonous contribution to sedimentary organic matter were consistently found in various surface aquatic sediments from a wide variety of depositional environments and also in older sediments extending even to the late Pleistocene. According to this finding, it was concluded that the primary factor controlling the conversion of stenols to 5β-stanols through 5β-stanones in anaerobic aquatic sediments is probably the relative contribution of autochthonous organic matter suitable for microbial metabolism (i.e. metabolizable organic matter) to the sediments. Consequently, it is proposed that the 5β-isomers of stanols and stanones, at least in immature aquatic (marine and non-marine) sediments, can serve as primary markers for defining the quality of sedimentary organic matter (viz. the relative contribution of metabolizable organic materials to sedimentary organic matter) and as indicators for the types and rates of microbiological activities responsible for early diagenesis of organic matter in anaerobic sediments. It is also suggested that the combination of the 5β-steroidal isomers with organic source parameters will allow these compounds to assist in indicating oxic or anoxic depositional environments.  相似文献   

16.
The presence of elevated As in ground waters exploited for drinking water and irrigation in South-East Asia is causing serious impacts on human health. A key mechanism that causes the mobilization of As in these waters is microbially mediated reductive transformation of As-bearing Fe(III) hydrated oxides and the role of degradable organic matter (OM) in this process is widely recognized. A number of different types of OM that drive As release in these aquifers have been suggested, including petroleum derived hydrocarbons naturally seeping into shallow sediments from deeper thermally mature source rocks. However, the amount of information on the characteristics of the OM in South-East Asian aquifers is limited. Here the organic geochemical analyses of the saturated hydrocarbon fractions and radiocarbon analysis, of two additional sites in SE Asia are reported. The results show that the OM in a given sedimentary horizon likely derives from multiple sources including naturally occurring petroleum. The importance of naturally occurring petroleum as one of the sources was clearly indicated by the n-alkane CPI of approximately 1, the presence of an unresolved complex mixture, and hopane (dominated by 17α(H),21β(H) hopanes) and sterane distribution patterns. The results also indicate that the OM in these aquifers varies tremendously in content, character and potential bioavailability. Furthermore, the presence of petroleum derived OM in sediments at both sites doubles the number of locations where their presence has been observed in association with As-rich, shallow aquifers, suggesting that the role of petroleum derived OM in microbially mediated As release might occur over a wider range of geographical locations than previously thought.  相似文献   

17.
Since the Xiagou Formation was confirmed to be the primary source rock of the crude oil discovered in the Yumen oilfield, geologists have performed many studies on the sedimentology of the formation, source rock evaluation and migration, as well as petroleum accumulation. In this study, the carbonate-bearing mudstones were investigated using synthetic organic and inorganic geochemical analyses to reconstruct the paleo-environment and study the origin of organic matter during deposition in correlation with organic matter enrichment. The analysed samples have total organic carbon (TOC) and S1 + S2 values in the range of 0.20–3.39 wt% and 0.07–19.50%, respectively, which indicate fair to good hydrocarbon potential. Biomarker studies on the pyrolysis data of the samples suggest that the predominant origin of the organic matter is terrigenous high plants with partial aquatic algae and micro-organisms, primarily oil- and gas-prone. The trace elements P and Ba are considered to be the main proxies for paleoproductivity, and values for the two elements hosted in samples range from 48 to 1724 ppm (a mean of 658 ppm) and from 322 to 1701 ppm (a mean of 550.34 ppm), respectively, which indicates that the sediments in the Xiagou Formation have high paleoproductivity. Additionally, organic geochemical studies reveal that the sediments were deposited in a lacustrine environment with brackish water (low C31-22R-homohopane/C30-hopane ratios; moderate gammacerane and β-carotane), which is consistent with the medium degree of the Sr/Ba ratio, which ranges from 0.22 to 1.42 (a mean of 0.64). Furthermore, the wide range of Cu/Zn and Rb contents are important indicators of a suboxic to relatively anoxic paleoredox condition. This outcome is consistent with the biomarker parameter Pr/Ph, which ranges from 0.05 to 1.37. Moreover, the major oxides and trace elements [high Fe/Mn, low Mg/Ca, low CIA and the plot of SiO2 vs (Al2O3 + K2O + Na2O)] also indicate that the sedimentary paleoclimate was semiarid to arid. Lack of correlation between TOC content and paleo-environment (suboxic, brackish and semiarid) or productivity indicators indicates that the accumulation of organic matter was controlled by combined action, rather than a single factor, such as redox condition or productivity.  相似文献   

18.
Fixed-ammonium in clays associated with crude oils   总被引:3,自引:0,他引:3  
The association of ammonium (NH4+) silicates with organic-rich sedimentary environments has stimulated interest in the chemical cycle of N, and its possible application as an indicator of in situ organic maturation reactions or crude oil migration. Fixed-NH4 in clay minerals was determined from three hydrocarbon occurrences of similar depositional environment but different ages, depth and thermal maturity, to determine whether anomalously high NH4-substitution occurs near mature hydrocarbons. Results show higher fixed-NH4 concentrations in marginally mature mudstones than in immature sediments. The highest fixed-NH4 concentrations were found in clays from sandstone reservoirs containing migrated crude oil.Fixed-NH4 in clays from Holocene oil seep sediments in the Gulf of Mexico continental slope, offshore Louisiana, averages 0.08 wt % and increases with depth in shallow cores (420 cm), reflecting an early diagenetic trend that is apparently not influenced by migrating crude oil. Programmed pyrolysis shows that the sediments are thermally immature (av.Tmax = 419°C). High Hydrogen Index values (av.= 359mg/g) are the result of biodegraded crude oil, and a high Oxygen Index (av.= 182mg/g) reflects the presence of authigenic carbonate.Fixed-NH4 averages 0.16 wt % in Wilcox Group (Eocene) mudstones enclosing two sandstone reservoirs at Fordoche Field, onshore Louisiana. In comparison to these mudstones, anomalously high NH4-fixation appears to occur in reservoir clay minerals. Pyrolysis shows that the sediments are marginally mature for crude oil generation (av.Tmax = 432°C). Average Hydrogen Index (187 mg/g) and Oxygen Index values (75 mg/g) are consistent with oil-prone Type II and Type III kerogen. Increased pyrolysis Production Index values and solvent extraction shows the presence of migrated crude oil. This suggests that a reaction which releases NH3 during crude oil generation or migration is recorded byNH4+ substitution in clays.Fixed-NH4 and total organic carbon (TOC) at Fordoche Field show no statistically significant correlation, suggesting that NH4+ substitution in clay minerals is not simply related to the amount of organic matter in the section, but is also influenced by the presence of crude oil. Once NH4+ has been fixed in clays, it is a more stable hydrocarbon proximity indicator than pore fluid tracers, because it is less influenced by later chemical or geological changes.  相似文献   

19.
The saturated and unsaturated hydrocarbons of two samples (HD-19 and HD-21) from the same section of the Middle Eocene lacustrine Huadian oil shale in NE China were identified and shown to be mainly from algal and bacterial sources. Comparison of the two samples provided an opportunity to explore the contribution from telalginite to the hydrocarbon profiles. Cells identified from microscopy as Botryococcus in the telalginite of HD-21 were confirmed as belonging to the L race of B. braunii from the presence of monoaromatic lycopane derivatives and small amounts of several lycopadienes. Lycopane was abundant and was probably derived from biohydrogenation of lycopadienes and related lipids on the basis of δ13C values. Hopane distributions showed a dominance of those with the biological 17β,21β-stereochemistry, as expected for an immature shale, with low amounts of 17β,21α-hopanes (moretanes) and 17α,21β-hopanes. Two hopenes were also abundant and assigned as C29 and C30 neohop-13(18)-enes, which occurred together with the C29 and C30 hop-17(21)-enes. These had depleted carbon isotope values (−43.7‰ to −50.8‰), indicative of production by methane oxidizing bacteria (methanotrophs). The high proportion of hopanoids with carbon numbers < C32 indicates extensive post-depositional diagenetic alteration of bacteriohopanepolyols as well as a direct input of C30 hopanoids. The data clearly indicate that there was active utilization of methane in this lacustrine depositional setting, but isoprenoid hydrocarbon biomarkers for methanogens, such as pentamethylicosane (PMI) and squalane, were in surprisingly low abundance. It is possible that these bacterial contributions were present as polar lipids. The origins of an unusual C38 isoprenoid alkane assigned as bipristane are uncertain, but may be from methanogens. Steranes and sterenes were relatively minor components, but abundant diasterenes and 4-methyldiasterenes were present, reflecting significant conversion of the original lipid composition by way of clay-catalysed diagenesis. The biomarker data suggest that the bottom waters in the original depositional environment had low O2 content, but the sediments were probably neither sulfidic nor strongly reducing. The high content of organic matter in the shale likely reflects both high (but fluctuating) productivity due to eutrophic conditions in the overlying water and good preservation in the sediments.  相似文献   

20.
The Cenomanian-Turonian oceanic anoxic event(C/T OAE) is developed in southern Tibet.Organic geochemical study of the Cenomanian-Turonian sediments from the Gamba and Tingri aress shows that the mid-Cretaceous black shales in southern Tibet are enriched in organic carbon.Te molecular analyses of organic matter indicate marine organic matter was derived from algae and bacteria.In the Gamba area,the organic matter is characterized by abundant tricyclic terpanes and pregane,which are predominant in 191 and 217 mass chromatograms,respectively,Pristane/phytane(Pr/Ph)ratios in the C/T OAE sediments are less than 1, demonstrating the domination of phytane.The presence of carotane can be regarded as a special biomarker indicating oxygen depletion in the C/T OAE sediments in the Tethyan Himalayas.In anoxic sediments,β-carotane and γ-carotane are very abundant.The β-and γ-carotane ratios relative to nC17 in the Cenomanian-Turonian anoxic sediments vary from 32.28-42.87and 5.10-11.01.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号