首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stable isotopic ratios of oxygen, carbon and the non-exchangeable carbon-bound hydrogen of cellulose from marine plants (algae and higher vascular forms) and animals (tunicates) collected in their natural habitats and from freshwater vascular plants grown in the laboratory under controlled conditions were determined.The δ18Ovalues of cellulose from all the plants and animals were 27 ±3% more positive than the δ18O values of the waters in which the organisms grew. Temperature had little or no influence on this relationship for three species of freshwater vascular plants that were analyzed. The relationship between the δ18O values of cellulose and the water used in its synthesis is probably established by the isotopic fractionation that occurs during the hydration of carbonyl groups of the intermediates involved in cellulose synthesis.The δD values of the non-exchangeable hydrogen of cellulose (determined by analyzing cellulose nitrate) from different organisms that grew in the same environment differed by large amounts. This difference ranged up to 200‰ for different species of algae collected at a single site: the corresponding difference for different species of tunicates and vascular plants was 60 and 20‰ respectively. The δD values of cellulose nitrate from different species of freshwater vascular plants grown in water of constant temperature and isotopic composition differed by as much as 60‰ The relationship between the δD values of the carbon-bound hydrogen of cellulose and the water used in its synthesis displayed a significant temperature dependence for four species of freshwater vascular plants that were analyzed. The δD values of cellulose nitrate prepared from different parts of one of the plants grown under constant conditions differed by 40‰ Hydrogen isotopic fractionation during cellulose synthesis appears to be more variable among different species and displays a larger temperature dependence than was suggested by previous studies.  相似文献   

2.
The δ18O of mammalian bone-phosphate varies linearly with δ18O of environmental water, but is not in isotopic equilibrium with that water. This situation is explained by a model of δ18O in body water in which the important fluxes of exchangeable oxygen through the body are taken into account. Fractionation of oxygen isotopes between body and environmental drinking water is dependent on the rates of drinking and respiration. Isotopic fractionation can be estimated from physiological data and the estimates correlate very well with observed fractionation. Species whose water consumption is large relatively to its energy expenditure is sensitive to isotopic ratio changes in environmental water.  相似文献   

3.
A method has been developed for extraction of hydroxyl oxygen from hydroxyl-bearing silicate minerals for oxygen isotopic analysis.The δO18 of oxygen of the OH groups is significantly different from that in the rest of the mineral structure. The isotopic fractionation between the two types of sites has the potential to be a sensitive geothermometer.Several δO18 values were obtained for oxygen of the OH attached to different silicate structures as well as for two muscovite samples with quantitatively estimated different temperatures of formation.The 1000 ln α (mineral-OH) values ranged from 5.2%. for muscovite to about 12.6%. for kaolinite and chlorite.  相似文献   

4.
Oxygen isotopic compositions of minerals in 22 samples of submarine gabbros were determined. The gabbros were collected using the submersible Alvin from the 700 m vertical section of the rift-valley wall of the Mid-Cayman spreading center. Our study indicates that in the Mid-Cayman Rise seawater barely reached the bottom of the plutonic layer. Abundant seawater penetration (water/rock mass ratio > 1) was limited to the upper part of the plutonic layer. From the observed oxygen isotopic compositions of coexisting minerals, and from the experimental and empirical determinations of equilibrium fractionation of oxygen isotopes for mineral-water, and mineral-mineral pairs, we show the following: (1) pyroxene and olivine did not exchange oxygen with seawater, (2) plagioclase is in isotopic disequilibrium with pyroxene; (3) the rate of oxygen exchange in plagioclase was not slowed by the absence of cation exchange; (4) plagioclase and amphibole have exchanged oxygen with seawater or isotopically modified seawater (δ18O ≤ 3%.); and (5) amphibole has exchanged or acquired (during formation) hydrogen from seawater at 380°CT ≤ 600°C. The decrease in extent of isotopic exchange of plagioclase and the decrease in amphibole abundance with depth indicate that seawater flux decreased rapidly with depth (water/rock mass ratio falling from 1.7 to 0.2 over a 300 m interval).  相似文献   

5.
A non-mass dependent (NoMaD) oxygen isotope effect is demonstrated in the dissociation of CO2 similar to that observed in the electrosynthesis of ozone. The molecular oxygen produced carries the signature of two separate isotopic fractionation processes; a mass-dependent fractionation probably due to CO2 + O isotopic exchange, and a secondary NoMaD fractionation (δ17O = 0.97 ± 0.09δ18O, with the O2 depleted in 17O and 18O). It is suggested that the effect is due to either the formation or relaxation of ozone in an excited electronic state. This represents the latest advance in the understanding of chemical NoMaD effects which may be essential to the explanation of non-mass-dependent fractionations observed in meteorites.  相似文献   

6.
The volcano-sedimentary sequence at the Raul mine, central Peru, consists of andesitic volcanics, graywackes, and siltstones, and has been metamorphosed to the upper greenschist-lower amphibolite facies at temperatures of 400–500°C. Isotopic data (O and H) have been collected from: (a) quartz and magnetite from stratiform ores, (b) amphiboles from amphibolite units that host stratiform ores, (c) calcite from late veins, (d) detrital quartz from graywackes, and (e) whole rocks.Interunit differences in quartz and magnetite δ18O values suggest that these minerals have resisted isotopic exchange during metamorphism, and that quartz-magnetite isotopic temperatures (380–414°C) represent primary formational temperatures. Calculated δ18O values of water in equilibrium with quartz and magnetite range from 9.1 to 12.6%..Amphibole δ18O and δD values show no interunit differences and suggest that the amphiboles have exchanged isotopes with a large metamorphic fluid reservoir. Calculated δ18OH2O and δDH2O values range from 8 to 12%. and ?3 to +42%., respectively.δ18OH2O values calculated from δ18O calcite and fluid inclusion filling temperatures range from 7.5 to 10%.. Water extracted from fluid inclusions in calcite has a δD value of ?20%..δ18O values of metamorphosed graywackes and volcanic sediments are not atypical, but andesitic lavas are 18O-rich (8–10%.) compared to normal andesites.Waters involved in ore deposition, metamorphism, and late vein formation at Raul are all thought to have a common source, principally seawater. The δ18OH2O and δDH2O values could be produced by evaporation of seawater, shale ultrafiltration, and isotopic exchange with host rocks during deep circulation through the volcano-sedimentary pile.A model is proposed whereby coastal ocean water is restricted from the open sea by volcanic island arcs, and subsequently undergoes evaporation. Circulation of this water is initiated by heat associated with seafloor volcanism. 18O-enrichment in andesites may be produced by isotopic exchange with high 18O waters at elevated temperatures and sufficiently high water/rock ratios.  相似文献   

7.
The equilibrium distribution of oxygen isotopes between calcium carbonate and water was determined at 500°C at pressures from 1 to 20 kbar and at 700°C at pressures of 0.5 and 1 kbar. At both temperatures, the pressure-dependence of the fractionation factor was below the limit of detection. The experimental results are consistent with theoretical estimates of the volume change due to isotope substitution. Application of the theory to silicate systems leads to the conclusion that pressure effects on oxygen isotopic fractionation between silicates are < 0.2% at pressures of tens of kilobars. Thus the observed large variations of O18/O16 ratio in kimberlitic eclogites cannot be attributed to the effect of pressure  相似文献   

8.
The Kiglapait layered intrusion is the first major intrusion found to have all whole rock and calculated liquid δ18O values close to a normal uncontaminated gabbroic value of 6.0. The intrusion experienced no detectable oxygen isotope exchange with its surrounding rocks and cooling of the magma was conductive. The δ18O values of average whole rocks vary smoothly from 6.0 at the base of the Lower Zone to 6.3 at the top of the Upper Zone. The calculated liquid δ18O values lie practically superimposed on the whole rock trend. The whole-rock data and the modelled δ18O of the magma and cumulates rigorously demonstrate that the effect of incoming cumulus phases such as magnetite and augite on the δ18O of the liquid and rocks during fractional crystallization is negligible. The cancelling effects of complementary modal variations among the mafic mineral phases and feldspar, keep the δ18O of the whole rocks constant to within ±0.1 %.. The minor change in δ18O that does occur with fractionation is consistent with the enrichment of residual liquids in feldspar component and the increasing fractionation factor δ Liquid-Fsp with falling temperature.The δ18O values of the country rocks bracket the estimated δ18O of the Kiglapait magma. Modelling with oxygen isotopes indicates that contamination of the intrusion, indicated by published radiogenic Sr and Nd isotopic data, was minor. The most probable contaminant had δ18O?7.7 and the contamination most likely occurred at >99% solidified. Subsolidus oxygen isotope exchange with an external source appears to have been very minor.  相似文献   

9.
Oxygen isotope ratios were determined for quartz, magnetite, ankerite, siderite, riebeckite, hematite and talc in samples of banded iron-formation from the Dales Gorge Member of the Brockman Iron Formation and for quartz, dolomite and calcite in samples of the Wittenoom Dolomite and Duck Creek Dolomite Formations, all from the Hamersley Range area of Western Australia. Additionally, in order to interpret the measured isotope ratios, isotopic fractionations for oxygen between quartz, siderite and magnetite and between these minerals and water as a function of temperature were calculated, using a combination of spectroscopic and thermodynamic data and constraints set by experimental determinations of the fractionations.The Dales Gorge Member was found to have undergone isotopic exchange between minerals at a temperature estimated on the basis of the isotopic fractionations to be above 270°C and probably less than 310°C, during burial metamorphism. At these temperatures quartz and the carbonates were almost completely equilibrated with one another, while hematite apparently underwent negligible exchange. Magnetite may have undergone exchange in some samples but not others, as a result of permeability variations, or it may have been as resistant to exchange as hematite. Riebeckite, and probably talc as well, were also subject to exchange, but to a lesser degree or on a smaller scale than quartz and the carbonates. Hematite formed at temperatures of 140°C or below. Magnetite appears to have formed at temperatures above 140°C, and possibly over a range of temperatures between about 180 and 300°C.The Wittenoom Dolomite and Duck Creek Dolomite samples show apparent lack of equilibrium, due to incomplete exchange or to retrograde effects. A chert from the Wittenoom Dolomite, along with two samples from the Marra Mamba Iron Formation, with δ18O values of + 24%. can be considered to set a lower limit of about ?11%. on the δ18O value of the ocean 2.2 × 109 yr ago. Internal fractionations in the Wittenoom Dolomite chert sample may be interpreted as yielding an upper limit on this oceanic δ18O value of ? 3.5%.  相似文献   

10.
Hydrogen and oxygen isotopic compositions of cherts (δD for hydroxyl hydrogen in the chert, δ18O for the total oxygen) have been determined for a suite of samples from the central and western United States. When plotted on a δD-δ18O diagram, Phanerozoic cherts define domains parallel to the meteoric water line which are different for different periods of geologic time. The elongation parallel to the meteoric water line suggests that meteoric waters were involved in the formation of many cherts.The existence of different chert δ-values for different geologic times indicates that once the granular microcrystalline quartz of cherts crystallizes its isotopic composition is preserved with time. An explanation for the change with time of the isotopic composition of cherts involving large changes with time in the isotopic composition of ocean water is unlikely since δ18O of the ocean would have had to decrease by about 3‰between Carboniferous and Triassic time and then increase about 5%.` from Triassic to Cretaceous time. Such isotopic changes cannot be accounted for by extensive glaciation, sedimentation of hydrous minerals, or input of water from the mantle into the oceans.The variation with time of the chert δ-values can be satisfactorily explained in terms of past climatic temperature fluctuations if the chert-water isotope fractionation with temperature is approximated by 1000 lnα = 3.09 × 106T?2 – 3.29. Crystallization temperatures so inferred suggest that the average climatic temperatures for the central and western U.S. decreased from about 34 to 20°C through the Paleozoic, increased to 35–40°C in the Triassic, and then decreased through the Mesozoic to Tertiary values of about 17°C. A few data for the Precambrian suggest the possibility that Earth surface temperatures may have reached about 52°C at 1.3 b.y. and about 70°C at 3 b.y.  相似文献   

11.
The δ18O of ground water (−13.54 ± 0.05 ‰) and inorganically precipitated Holocene vein calcite (+14.56 ± 0.03 ‰) from Devils Hole cave #2 in southcentral Nevada yield an oxygen isotopic fractionation factor between calcite and water at 33.7 °C of 1.02849 ± 0.00013 (1000 ln αcalcite-water = 28.09 ± 0.13). Using the commonly accepted value of ∂(αcalcite-water)/∂T of −0.00020 K−1, this corresponds to a 1000 ln αcalcite-water value at 25 °C of 29.80, which differs substantially from the current accepted value of 28.3. Use of previously published oxygen isotopic fractionation factors would yield a calcite precipitation temperature in Devils Hole that is 8 °C lower than the measured ground water temperature. Alternatively, previously published fractionation factors would yield a δ18O of water, from which the calcite precipitated, that is too negative by 1.5 ‰ using a temperature of 33.7 °C. Several lines of evidence indicate that the geochemical environment of Devils Hole has been remarkably constant for at least 10 ka. Accordingly, a re-evaluation of calcite-water oxygen isotopic fractionation factor may be in order.Assuming the Devils Hole oxygen isotopic value of αcalcite-water represents thermodynamic equilibrium, many marine carbonates are precipitated with a δ18O value that is too low, apparently due to a kinetic isotopic fractionation that preferentially enriches 16O in the solid carbonate over 18O, feigning oxygen isotopic equilibrium.  相似文献   

12.
High resolution δ13C and δ18O profiles recorded in precisely dated speleothems are widely used proxies for the climate of the past. Both δ13C and δ18O depend on several climate related effects including meteorological processes, processes occurring in the soil zone above the cave and isotope fractionation processes occurring in the solution layer on the stalagmite surface. Here we model the latter using a stalagmite isotope and growth model and determine the relationship between the stable isotope values in speleothem calcite and cave parameters, such as temperature, drip interval, water pCO2 and a mixing coefficient describing mixing processes between the solution layer and the impinging drop.The evolution of δ13C values is modelled as a Rayleigh distillation process and shows a pronounced dependence on the residence time of the solution on the stalagmite surface and the drip interval, respectively. The evolution of δ18O values, in contrast, is also influenced by buffering reactions between the bicarbonate in the solution and the drip water driving the δ18O value of the bicarbonate towards the value expected for equilibrium isotope fractionation between drip water and calcite. This attenuates the dependence of the δ18O values on drip interval. The temperature dependence of δ18O, however, is more pronounced than for δ13C and in a similar range as expected for fractionation under equilibrium conditions.We also investigate the isotopic enrichment of the δ13C and δ18O values along individual growth layers and, thus, the slopes expected for Hendy tests. The results show that a positive Hendy test is only possible if isotope fractionation occurred under disequilibrium conditions. However, a negative Hendy test does not exclude that isotope fractionation occurred under disequilibrium conditions. A more reliable indicator for disequilibrium fractionation is the enrichment of the δ13C values along an individual growth layer.  相似文献   

13.
Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (δ18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ± 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate–water oxygen isotope fractionation, ε18OSO4–H2O, of ~ 3.8‰ for the anaerobic experiments. Aerobic oxidation produced apparent εSO4–H2O values (6.4‰) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. δ34SSO4 values are ~ 4‰ lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in δ34SSO4 of ~? 1.5 ± 0.2‰ was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions.  相似文献   

14.
Fractionations of carbon and oxygen isotopes and magnesium between coexisting dolomite and calcite have been determined for marbles and calcareous schists of a wide variety of metamorphic environments from Vermont and the Grenville Province of Ontario. Concordant equilibrium fractionations are given by 83% of the samples. Calibration of the isotopic thermometers using the Mg-calcite solvus thermometer gave in the temperature range: 650°>T°>100°C $$ \begin{gathered} 1,000\ln \alpha _{D - Ct}^{O^{18} } = 0.45 (10^6 T^{ - 2} ) - 0.40 \hfill \\ 1,000\ln \alpha _{D - Ct}^{O^{18} } = 0.18 (10^6 T^{ - 2} ) + 0.17. \hfill \\ \end{gathered} $$ These isotopic fractionation expressions differ significantly from the experimentally derived relations, including the dolomite-Mg-calcite C13 partial exchange experiments of this study. Temperature ranges obtained for the metamorphic zones of Vermont are: chlorite zone, 210° to 295° C; biotite zone, 255° to 400° C; staurolite-kyanite zone, 110° to 550° C. In amphibolite-facies rocks the quenched partition relations can be complex. The temperature of quench or recrystallization may be as large as 400° C below the inferred metamorphic maximum. Oxygen isotope disequilibrium in high grade rocks, particularly from the Chester dome area, Vermont, is characterized by large negative δO D 18 –δO Ct 18 values. The size of the equilibrium exchange system for carbon and oxygen isotopes and magnesium is small, less than a few inches across the inferred relict bedding. This is attributed to the lack of a mobile pore fluid except in systems undergoing decarbonation. C13/C12 ratios in Grenville and Vermont marbles and O18/O16 ratios in Grenville and greenschist-facies Vermont carbonates span the range of ancient limestones. Staurolite-kyanite zone calcareous schists and marbles from the Chester dome area, Vermont are depleted in O18(δO18=12 to 20‰) due to equilibrium or disequilibrium decarbonation and some partial exchange. Extrapolation of the dolomite-calcite fractionation expressions to 20° C indicates that dolomite is enriched in O18 by about 4.9‰ and in C13 by about 2.4‰.  相似文献   

15.
Oxygen isotope analyses of water in blood of humans and domestic pigs indicate that the oxygen isotope fractionation effects between ingested water and body water are the same in all specimens of the same species. The δ18O of body water has been shown to vary linearly with the mean δ18O of local meteoric water. This conclusion also holds for the bone phosphate. Thus, δ18O(PO3?4) values of unaltered fossil bones from humans and domestic pigs can be used to reconstruct the δ18O values of local meteoric waters during the life-times of the mammals. Such data can be used for paleohydrological and paleoclimatological studies both on land and at sea.  相似文献   

16.
A calcic skarn deposit occurs along the contact zone between Oligo-Miocene Çatalda? Granitoid and Mesozoic limestones in Susurluk, northwestern Turkey. The skarn zone with little or no retrograde stage is represented by fluid inclusions with high homogenization temperatures (up to >600 °C) and a wide range of salinity (12 to >70 wt.% NaCl). Pluton-derived fluids facilitated occurrence of continuous prograde reactions in the country rocks (particularly in the proximal zone) and oxygen isotopic depletion in calc-silicate and calcite minerals. δ18O of anhydrous minerals within proximal and distal zones indicate that skarn-forming fluids had a magmatic origin. The δ18O values are 5.93–9.08‰ (mean 6.8‰) for garnet, 4.08–9.94‰ (mean 6.4‰) for pyroxene, 4.89–7.92‰ (mean 6.4‰) for wollastonite and 6.65–8.28‰ (mean 7.5‰) for vesuvianite. Temperatures estimated by isotopic compositions of mineral pairs are significantly lower than those measured from the fluid inclusions, indicating that isotopic equilibrium is not preserved between the skarn minerals. δ18O and δ13C values are systematically depleted from marbles to skarn carbonates. Calc-silicate forming reactions and permeability increase triggered by volatilization and consequent strong infiltration of H2O-rich siliceous fluids into the system promoted fluid–rock interaction causing isotopic resetting and isotopic depletion of silicates (e.g. pyroxene and wollastonite) and skarn calcites.  相似文献   

17.
Oxygen isotope compositions of biogenic phosphates from mammals are widely used as proxies of the isotopic compositions of meteoric waters that are roughly linearly related to the air temperature at high- and mid-latitudes. An oxygen isotope fractionation equation was determined by using present-day European arvicoline (rodents) tooth phosphate: δ18Op = 20.98(±0.59) + 0.572(±0.065) δ18Ow. This fractionation equation was applied to the Late Pleistocene karstic sequence of Gigny, French Jura. Comparison between the oxygen isotope compositions of arvicoline tooth phosphate and Greenland ice core records suggests to reconsider the previously established hypothetical chronology of the sequence. According to the δ18O value of meteoric water-mean air temperature relationships, the δ18O value of arvicoline teeth records variations in mean air temperatures that range from 0° to 15°C.  相似文献   

18.
Stable isotope data of precipitation (δ18Op and deuterium excess), drip water (δ18Od), and modern calcite precipitates (δ18Oc and δ13Cc) from Yongxing Cave, central China, are presented, with monthly sampling intervals from June 2013 to September 2016. Moderate correlations between the monthly variation of δ18Op values (from ??11.5 to ??0.7‰) and precipitation amount (r = ??0.59, n?=?34, p?<?0.01) and deuterium excess (r?=?0.39, n?=?31, p?<?0.01) imply a combined effect of changes in precipitation amount and atmospheric circulation. At five drip sites, the δ18Od values have a much smaller variability (from ??9.1 to ??7.5‰), without seasonal signals, probably a consequence of the mixing in the karst reservoir with a deep aquifer. The mean δ18Od value (??8.4‰) for all drip waters is significantly more negative than the mean δ18Op value (??6.9‰) weighted by precipitation amount, but close to the wet season (May to September) mean value (??8.3‰), suggesting that a threshold of precipitation amount must be exceeded to provide recharge. Calculation based on the equilibrium fractionation factor indicates that the δ18Oc values are not in isotopic equilibrium with their corresponding drip waters, with a range of disequilibrium effects from 0.4 to 1.4‰. The δ18Oc and δ13Cc values generally increase progressively away from the locus of precipitation on glass plates. The disequilibrium effects in the cave are likely caused by progressive calcite precipitation and CO2 degassing related to a high gradient of CO2 concentration between drip waters and cave air. Our study provides an important reference to interpret δ18Oc records from the monsoon region of China.  相似文献   

19.
《Organic Geochemistry》2012,42(12):1277-1284
Compound-specific isotope measurements of organic compounds are increasingly important in palaeoclimate reconstruction. Searching for more accurate peat-based palaeoenvironmental proxies, compound-specific fractionation of stable C, H and O isotopes of organic compounds synthesized by Sphagnum were determined in a greenhouse study. Three Sphagnum species were grown under controlled climate conditions. Stable isotope ratios of cellulose, bulk organic matter (OM) and C21–C25 n-alkanes were measured to explore whether fractionation in Sphagnum is species-specific, as a result of either environmental conditions or genetic variation. The oxygen isotopic composition (δ18O) of cellulose was equal for all species and all treatments. The hydrogen isotopic composition (δD) of the n-alkanes displayed an unexpected variation among the species, with values between −154‰ for Sphagnum rubellum and −184‰ for Sphagnum fallax for the C23 n-alkane, irrespective of groundwater level. The stable carbon isotopic composition (δ13C) of the latter also showed a species-specific pattern. The pattern was similar for the carbon isotope fractionation of bulk OM, although the C23 n-alkane was >10‰ more depleted than the bulk OM. The variation in H fractionation may originate in the lipid biosynthesis, whereas C fractionation is also related to humidity conditions. Our findings clearly emphasize the importance of species identification in palaeoclimate studies based on stable isotopes from peat cores.  相似文献   

20.
The oxygen isotope compositions of diagenetic carbonate minerals from the Lower Jurassic Inmar Formation, southern Israel, have been used to identify porewater types during diagenesis. Changes in porewater composition can be related to major geological events within southern Israel. In particular, saline brines played an important role in late (Pliocene-Pleistocene) dolomitization of these rocks. Diagenetic carbonates included early siderite (δ18OSMOW=+24.4 to +26.5‰δ13CPDB=?1.1 to +0.8‰), late dolomite, ferroan dolomite and ankerite (δ18OSMOW=+18.4 to +25.8‰; δ13CPDB=?2.1 to +0.2‰), and calcite (δ18OSMOW=+21.3 to +32.6‰; δ13CPDB=?4.2 to + 3.2‰). The petrographic and isotopic results suggest that siderite formed early in the diagenetic history at shallow depths. The dolomitic phases formed at greater depths late in diagenesis. Crystallization of secondary calcite spans early to late diagenesis, consistent with its large range in isotopic values. A strong negative correlation exists between burial depth (temperature) and the oxygen isotopic compositions of the dolomitic cements. In addition, the δ18O values of the dolomitic phases in the northern Negev and Judea Mountains are in isotopic equilibrium with present formation waters. This behaviour suggests that formation of secondary dolomite post-dates the tectonic activity responsible for the present relief of southern Israel (Upper Miocene to Pliocene) and that the dolomite crystallized from present formation waters. Such is not the case in the Central Negev. In that locality, present formation waters have much lower salinities and δ18O values, indicating invasion of freshwater, and are out of isotopic equilibrium with secondary dolomite. Recharge of the Inmar Formation by meteoric water in the Central Negev occurred in the Pleistocene, and halted formation of dolomite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号