首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Our specimen of the cultured Emiliania huxleyi strain (CCMP1742, also known as NEPCC55a) that provides the benchmark for -based paleothermometry has started producing, for reasons yet unclear, major amounts of three new alkenones identified as ω15,22-C35 methyl ketone, ω15,22-C36 ethyl ketone and ω16,23-C36 methyl ketone. Comparison of these structures with those established now by the same OsO4 derivatization method applied to the di-unsaturated C37, C38 and C39 alkenones typically found in this organism provides insight into the possible pathway for their biosynthesis. Isothermal batch culture experiments also show the content and composition of these new compounds change systematically and quite significantly in cells when subjected to environmental conditions such as nutrient depletion, variation in light availability and prolonged darkness. Alkenones of similarly unusual short-chain length are evident in suspended particulate materials from present day surface waters in the Ligurian Sea (Mediterranean) and in two different Holocene time horizons (Unit I and Unit II deposits) in Black Sea sediments. However, the positions of the double bonds are different from those that we now report in our culture, implying a different biosynthetic sequence. These alkenones are most likely derived from another, as yet unknown, haptophyte species. If this other organism accounts for all documented occurrences of these compounds in natural samples, then either it has a capacity for growth over a remarkably wide salinity range or surface water salinity in the early Holocene Black Sea may not have been as low as is currently believed.  相似文献   

2.
The distributions of a series of structurally related C25 and C30 biogenic alkenes in sediments of the Narragansett Bay estuary have been determined. The suite of alkenes detected differs both quantitatively and qualitatively from those previously reported in other estuanne and coastal regions. Four C25 mono- and dienes and one C30 diene comprise 73–91% of the total alkenes in all surface (upper 2.5–5 cm) sediments analyzed. However, significant geographic variations exist in the relative abundance of these five compounds throughout the estuary. A comparison of alkene concentrations with δ13C of the bulk sedimentary organic matter has shown that the geographic variations of some alkenes reflect the distribution of marine organic matter, suggesting a marine source for these compounds. The distributions of other alkenes are not similarly correlated. In particular, concentrations of the C30 diene are relatively constant and exhibit no dependence on the origin of organic matter in these sediments. This distribution implies an in situ production of this alkene throughout the estuary. Analysis of several sediment cores reveals that alkene concentrations are generally highest at the surface and decrease to low, constant values within the upper 25 cm. An exception is the subsurface concentration of one C25 diene, which exhibits an increase at the same depth in two separate upper bay cores.  相似文献   

3.
The triterpenoid hydrocarbons of some West Australian shales have been examined by GC-MS. In addition to the common 17α(H),21β(H)-hopanes, 17β(H),21β(H)-hopanes and 17β(H),21α(H)-moretanes, 28,30-bisnorhopane, 25,28,30-trisnorhopane and 25-norhopanes were identified in the organic extracts. In contrast, pyrolysates of the solvent-extracted sediments contained only the common hopane and moretane series, indicating that 28,30-bisnorhopane, 25,28,30-trisnorhopane and 25-norhopanes are not bonded to kerogen, but rather are present in the sediments as free hydrocarbons.  相似文献   

4.
Mathematical models of hydrocarbon formation can be used to simulate the natural evolution of different types of organic matter and to make an overall calculation of the amounts of oil and/or gas produced during this evolution. However, such models do not provide any information on the composition of the hydrocarbons formed or on how they evolve during catagenesis.From the kinetic standpoint, the composition of the hydrocarbons formed can be considered to result from the effect of “primary cracking” reactions having a direct effect on kerogen during its evolution as well as from the effect of “secondary cracking” acting on the hydrocarbons formed.This report gives experimental results concerning the “primary cracking” of Types II and III kerogens and their modelling. For this, the hydrocarbons produced have been grouped into four classes (C1, C2–C5, C6–C15 and C15+). Experimental data corresponding to these different classes were obtained by the pyrolysis of kerogens with temperature programming of 4°C/min with continuous analysis, during heating, of the amount of hydrocarbons corresponding to each of these classes.The kinetic parameters of the model were optimized on the basis of the results obtained. This model represents the first step in the creation of a more sophisticated mathematical model to be capable of simulating the formation of different hydrocarbon classes during the thermal history of sediments. The second step being the adjustment of the kinetic parameters of “secondary cracking”.  相似文献   

5.
Agricultural grasses cover a major part of the land surface in temperate agro-ecosystems and contribute significantly to the formation of soil organic matter. Crop-derived lipids are assumed to be responsible for fast carbon turnover in soils. Differences in lipid distribution patterns between crops following C3 and C4 photosynthesis pathways have rarely been described, but could be useful for source apportionment of crop-derived input into soils or sediments. The distribution of long chain n-carboxylic acids (C22, C24, C26) reveals significant differences between crop plants following either the C3 or the C4 photosynthetic carbon fixation pathway. The plant compartments leaves, stems and roots of C4 plants contain relatively large proportions (> 40%) of n-C24 carboxylic acid when compared to C3 plants. These reveal larger relative proportions of n-C22 and n-C26 acids, whose relative abundance is subject to change between different plant compartments and during the growing season. The carboxylic acid ratio [CAR = n-C24/(n-C22 + n-C26) carboxylic acids] provides distinct ratios for C4 (> 0.67) and C3 crops (< 0.67) and can thus be used as a molecular marker for the differentiation of crop plant biomass. In combination with the bulk stable carbon isotopic composition (δ13C) the CAR can be used as a tool for the estimation of the C4 derived carbon proportion in soils or sediments.  相似文献   

6.
A novel temperature proxy, the tetraether index of lipids with 86 carbon atoms (TEX86), was applied to the suspended particulate organic matter (POM) and sediment core tops from eight sites in the southern North Sea in different seasons. The TEX86-derived temperatures in many samples did not correlate with mean annual sea surface temperature (SST), but were shifted toward winter SST, apparently because Crenarchaeota are more abundant and metabolically active during periods of low primary production. This indicates that TEX86-derived SST estimates do not necessarily reflect annual mean SST and may provide essential information about seasonal SST palaeoreconstruction. High TEX86-derived SSTs were measured in the water of the river Rhine and in the sediment core tops and seawater from several stations in the southern North Sea. These sites were all characterised by important input of organic matter from soil and peat, as revealed by the relatively high values obtained with the new terrestrial proxy, the branched and isoprenoid tetraether (BIT) index. These data demonstrate that to reconstruct palaeotemperatures it is essential to estimate both TEX86 and BIT indices to check that TEX86 temperatures are not biased as a result of large terrestrial input. Important seasonal variations in TEX86-derived SST were also evident for the surface sediments of several stations characterised by extremely low sedimentation rates, indicating temporary settlement of laterally transported organic matter with a warmer temperature signal. This implies that sediment core top correlations between TEX86 and mean annual SST should not be carried out in areas characterised by transient sediment deposition.  相似文献   

7.
A series of novel long-chain 3,4-dialkylthiophenes (C36–C54) was identified in a number of sediments ranging from Pleistocene to Cretaceous. The identifications were based on mass spectral characterisation, desulphurisation and mass spectral data of synthesised model compounds. These organic sulphur compounds are probably formed by sulphur incorporation into mid-chain dimethylalkadienes with two methylenic double bonds. These putative precursor lipids are unprecedented and may be considered rather unusual. The distribution of 3,4-dialkylthiophenes in sediments varies considerably with the depositional palaeoenvironment, indicating that these compounds have a potential as molecular markers reflecting changes in palaeoenvironment.  相似文献   

8.
C3、C4植物及其硅酸体研究的古生态意义   总被引:25,自引:3,他引:25       下载免费PDF全文
本文概述了C3、C4植物生理、生态学意义、地理分布及其相应的植物硅酸体形态,进一步讨论了C3、C4植物硅酸体形态在我国表层土壤中的分布规律及生态学意义。最后,对洛川黑木沟全新世黄土剖面中C3、C4植物硅酸体形态变化特点做了分析,表明地层中典型的C3、C4植物硅酸体形态,作为古植物的直接证据,可以较准确地反映古植被、古环境的变化规律。  相似文献   

9.
Surface sediments from an anoxic marine environment, the Upper Basin of the Pettaquamscutt River, Rhode Island, were analyzed for volatile organic compounds in the C1C7 range. The compounds identified included methane, ethane, alkenes (C2C5), carbon disulfide, cyclopentane, 3-methylpentane, methylfuran, aldehydes and ketones. Ethane, methylfuran, and most of the aldehydes and ketones showed maxima at the sediment water interface. Methane levels were very high-10–100 times greater than observed in most other surface sediments examined in this laboratory.  相似文献   

10.
Two C28H48-pentacyclic triterpanes were isolated from Monterey shale. X-ray crystallography of a crystal containing both compounds proved their structures as 17β,18α,21α(H)-28,30-bisnorhopane and 17β,18α,21β(H)-28,30-bisnorhopane. Several differences are found between 28,30-bisnorhopanes and the regular hopanes. Unlike the regular hopane epimers, for practical purposes the three epimeric 28,30-bisnorhopanes [17α,21β(H)-, 17β,21α(H)-, and 17β,21β(H)-]cannot be distinguished by their mass spectra. Special conditions are needed to separate them by gas chromatography. The diagenetically first-formed epimer is thought to be 17α,21β(H)- because it predominates in immature shales. The order of thermodynamic stability is 17β,2lα(H) < > 17α,21β(H) > 17β,21β(H), and all three epimers are present in petroleum. 25,28,30-Trisnorhopanes can be analyzed in similar fashion and are found to have similar thermodynamic characteristics. The percent of the ring D/E cis epimer of 28,30-bisnorhopane and/or 25,28,30-trisnorhopane is a useful maturation parameter similar to the 20S/20R sterane ratio. Evidence indicates 25-demethylation of 28,30-bisnorhopane to 25,28,30-trisnorhopane during advanced stages of biodegradation. Hence, percent ring DEcis 25,28,30-trisnorhopane has an application to maturation assessment in heavily biodegraded oils.  相似文献   

11.
Concentration profiles of five C25 and C30 biogenic alkenes in a sediment core collected from the upper anoxic basin of the Pettaquamscutt River have been determined. The five alkenes were identified usin gas chromatography/mass spectrometry as three isomeric C25 dienes, a C25 triene and a bicyclic C30 diene. All five compounds exhibit subsurface concentration maxima, thought to result from either preservation of a past increase in alkene production or a current bacterial in situ production at depth. Similarities exist in the concentrations of two alkenes common to this core and a core from upper Narragansett Bay, despite significant differences in the origin and content of sedimentary organic matter (as inferred from organic carbon and δ 13C measurements) at each location. These observations support the proposed bacterial in situ synthesis of alkenes. Other alkenes, whose concentration in sediments had been previously correlated with the incidence of marine organic matter, were not detected in the upper basin sediments. Their absence is consistent with the range of organic carbon δ 13C values measured, which indicate that the component originating from marine sources is small. A comparison of organic carbon and δ 13C values in this core with those previously reported from a core collected in an adjoining basin indicate that the sedimentary regimes at the two sites differ despite their close proximity and similar hydrography.  相似文献   

12.
A suite of 18 oils from the Barrow Island oilfield, Australia, and a non-biodegraded reference oil have been analysed compositionally in order to detail the effect of minor to moderate biodegradation on C5 to C9 hydrocarbons. Carbon isotopic data for individual low molecular weight hydrocarbons were also obtained for six of the oils. The Barrow Island oils came from different production wells, reservoir horizons, and compartments, but have a common source (the Upper Jurassic Dingo Claystone Formation), with some organo-facies differences. Hydrocarbon ratios based on hopanes, steranes, alkylnaphthalenes and alkylphenanthrenes indicate thermal maturities of about 0.8% Rc for most of the oils. The co-occurrence in all the oils of relatively high amounts of 25-norhopanes with C5 to C9 hydrocarbons, aromatic hydrocarbons and cyclic alkanes implies that the oils are the result of multiple charging, with a heavily biodegraded charge being overprinted by fresher and more pristine oil. The later oil charge was itself variably biodegraded, leading to significant compositional variations across the oilfield, which help delineate compartmentalisation. Biodegradation resulted in strong depletion of n-alkanes (>95%) from most of the oils. Benzene and toluene were partially or completely removed from the Barrow Island oils by water washing. However, hydrocarbons with lower water solubility were either not affected by water washing, or water washing had only a minor effect. There are three main controls on the susceptibility to biodegradation of cyclic, branched and aromatic low molecular weight hydrocarbons: carbon skeleton, degree of alkylation, and position of alkylation. Firstly, ring preference ratios at C6 and C7 show that isoalkanes are retained preferentially relative to alkylcyclohexanes, and to some extent alkylcyclopentanes. Dimethylpentanes are substantially more resistant to biodegradation than most dimethylcyclopentanes, but methylhexanes are depleted faster than methylpentanes and dimethylcyclopentanes. For C8 and C9 hydrocarbons, alkylcyclohexanes are more resistant to biodegradation than linear alkanes. Secondly, there is a trend of lower susceptibility to biodegradation with greater alkyl substitution for isoalkanes, alkylcyclohexanes, alkylcyclopentanes and alkylbenzenes. Thirdly, the position of alkylation has a strong control, with adjacent methyl groups reducing the susceptibility of an isomer to biodegradation. 1,2,3-Trimethylbenzene is the most resistant of the C3 alkylbenzene isomers during moderate biodegradation. 2-Methylalkanes are the most susceptible branched alkanes to biodegradation, 3-methylalkanes are the most resistant and 4-methylalkanes have intermediate resistance. Therefore, terminal methyl groups are more prone to bacterial attack compared to mid-chain isomers, and C3 carbon chains are more readily utilised than C2 carbon chains. 1,1-Dimethylcyclopentane and 1,1-dimethylcyclohexane are the most resistant of the alkylcyclohexanes and alkylcyclopentanes to biodegradation. The straight-chained and branched C5–C9 alkanes are isotopically light (depleted in 13C) relative to cycloalkanes and aromatic hydrocarbons. The effects of biodegradation consistently lead to enrichment in 13C for each remaining hydrocarbon, due to preferential removal of 12C. Differences in the rates of biodegradation of low molecular weight hydrocarbons shown by compositional data are also reflected in the level of enrichment in 13C. The carbon isotopic effects of biodegradation show a decreasing level of isotopic enrichments in 13C with increasing molecular weight. This suggests that the kinetic isotope effect associated with biodegradation is site-specific and often related to a terminal carbon, where its impact on the isotopic composition becomes progressively ‘diluted’ with increasing carbon number.  相似文献   

13.
Pollen grains from grasses using the C3 and C4 photosynthetic pathways have distinct ranges of δ13C values that may be used to estimate their relative abundance in paleorecords. We evaluated a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer (SWiM-IRMS) for δ13C analysis of individual grass-pollen grains. Pollen from four C3 and four C4 grass species was isolated through micromanipulation and analyzed as single grains suspended in water. A carbon yield greater than the 2σ range of the carbon content of blanks containing only water was used to distinguish samples containing pollen (“pollen present”) from those not containing pollen. This criterion resulted in the exclusion of ∼45% of the 946 samples applied to the wire. The average δ13C values (±1σ) of the remaining samples were −26.9‰ (±6.3‰) and −11.5‰ (±9.6‰) for C3 grasses and C4 grasses, respectively, after blank-correcting the δ13C data. These results suggest that the SWiM-IRMS system can be used to distinguish C3 from C4 grass pollen. The high variability in measured δ13C values is likely caused by a combination of factors. These include natural isotopic variability among individual pollen grains; the relatively poor precision that can be obtained when determining δ13C values of such small samples; and the uncertainty in the magnitude, isotopic composition, and stability of the analytical blank. Nonetheless, high percentages of individual pollen grains were correctly classified as being of either C3 or C4 origin. On average, 90% (range = 78-100%) of pollen grains from C3 grasses had δ13C values more negative than the cutoff threshold of −19.2‰; while 84% (range = 77-90%) of pollen grains from C4 grasses had δ13C values more positive than −19.2‰. Compared with analysis using an elemental analyzer interfaced with an IRMS (EA-IRMS), the number of pollen grains required for δ13C-based evaluation of C3/C4 grass composition is many times lower with the SWiM-IRMS. Additionally, δ13C data from the SWiM-IRMS does not need to be incorporated into a mixing model to derive estimates of the abundance of C3 and C4 grass pollen. Carbon-isotopic analysis of individual grass-pollen grains using the SWiM-IRMS system may help improve our understanding of the evolutionary and ecological significance of grass taxa in the paleorecord.  相似文献   

14.
Sixty-five samples from selected source bed-type shale sequences from three exploration wells were analysed for yield and detailed composition of light hydrocarbons(C2C7) by a new hydrogen stripping/capillary gas chromatographic technique. In spite of low maturation levels (0.35–0.55% vitrinite reflectance), significant generation of ethane and propane was recognized in a Jurassic source bed sequence bearing hydrogen-poor kerogens. Light hydrocarbon generation in another and mature Jurassic source rock sequence is controlled by kerogen quality. Associated with a change from hydrogen-poor to hydrogen-rich kerogens, yields of total and most individual hydrocarbons exhibit orders-of-magnitude increases. At the same time, iso/n-alkane ratios for butanes, pentanes and heptanes decrease significantly. A study of an interbedded marine/nonmarine coal-bearing sequence of Upper Carboniferous age from the Ruhr area, West Germany, revealed that a marine shale unit in comparison to the adjacent coal seam is more prolific in generating n-alkanes of increasing molecular size.A case history for migration of light hydrocarbons by means of diffusion through shales is presented. In two shallow core holes in Campanian/Maastrichtian shales in West Greenland, upward diffusion of ethane to pentane range hydrocarbons is an active process within the near-surface 3 m interval. Diffusive losses within this interval amount to 99.8% for propane, 85.6% for n-butane and 38.9% for n-pentane.  相似文献   

15.
We measured hydrogen isotope compositions (δD) of high-molecular-weight n-alkanes (C27-C33) from grasses grown in greenhouses and collected from the US Great Plains. In both cases, n-alkanes from C4 grasses are enriched in D by more than 20‰ relative to those from C3 grasses. The apparent enrichment factor (εC29-GW) between C29n-alkane and greenhouse water is −165 ± 12‰ for C3 grasses and −140 ± 15‰ for C4 grasses. For samples from the Great Plains, δD values of C29n-alkanes range from −280 to −136‰, with values for C4 grasses ca. 21‰ more positive than those for C3 grasses from the same site. Differences in C3 and C4 grass n-alkane δD values are consistent with the shorter interveinal distance in C4 grass leaves, and greater back-diffusion of enriched water from stomata to veins, than in C3 grass leaves. Great Plains’ grass n-alkane isotopic ratios largely reflect precipitation δD values. However, the offset or apparent fractionation between n-alkanes and precipitation is not uniform and varies with annual precipitation and relative humidity, suggesting climatic controls on lipid δD values. The dryer sites exhibit smaller absolute apparent fractionation indicative of D-enrichment of source waters through transpiration and/or soil evaporation. To explore the relationship between climate and n-alkane δD values, we develop three models. (1) The ‘direct analog’ model estimates δDC29 values simply by applying the apparent enrichment factors, εC29-GW, observed in greenhouse grasses to precipitation δD values from the Great Plains. (2) The ‘leaf-water’ model uses a Craig-Gordon model to estimate transpirational D-enrichment for both greenhouse and field sites. The transpiration-corrected enrichment factors between C29 and bulk leaf-water, εC29-GW, calculated from the greenhouse samples (−181‰ for C3 and −157‰ for C4) are applied to estimate δDC29 values relative to modeled bulk leaf-water δD values. (3) The ‘soil- and leaf-water’ model estimates the combined effects of soil evaporation, modeled by analogy with a flow-through lake, and transpiration on δDC29 values. Predictions improve with the addition of the explicit consideration of transpiration and soil evaporation, indicating that they are both important processes in determining plant lipid δD values. D-enrichment caused by these evaporative processes is controlled by relative humidity, suggesting that important climatic information is recorded in leaf wax n-alkane δD values. Calibration studies such as this one provide a baseline for future studies of plant-water-deuterium systematics and form the foundation for interpretation of plant wax hydrogen isotope ratios as a paleo-aridity proxy.  相似文献   

16.
The alkenone unsaturation index UK′37 has been applied to reconstruct past temperature changes in both marine and lacustrine systems. However, few studies have addressed whether the relative abundance of the C37:4 alkenone to the total C37 production (%C37:4) can reflect surface salinity changes in lacustrine systems. Here we present long-chain C37 alkenone distribution patterns in surface sediments from Lake Qinghai, China. Surface sediments were sampled over a large range of surface salinity changes (1.7-25 g/l) within Lake Qinghai and its surrounding lakes, while temperature differences at these sampling locations should be relatively small. We have found that %C37:4 varies from 15% to 49% as surface salinity decreases. We tentatively describe this %C37:4-salinity link with a general linear regression: %C37:4 = 53.4 (±7.8) − 1.73 (±0.45) × S (n = 28, r2 = 0.62), although step-wise %C37:4 changes in response to salinity variation may exist. UK′37 values vary between 0.10 and 0.16 at these sites and the inferred range of lake water temperature changes is ∼2-3 °C, suggesting that UK′37 largely reflects temperature signal across a large salinity range, consistent with previous findings that UK′37 can indicate temperature changes over a large diversity of environmental settings. We have also found that UK′37 values are correlated with salinity changes (r2 = 0.4), and thus cannot exclude potential temperature effect on %C37:4 and salinity effect on UK′37 in this study. However, even extreme estimates of temperature differences within the lake are still unable to explain the observed %C37:4 changes. We therefore suggest that %C37:4 could be used to infer past lake salinity changes at a regional scale.  相似文献   

17.
Jarosite [KFe3(SO4)2(OH)6] is a mineral that is common in acidic, sulphate-rich environments, such as acid sulphate soils derived from pyrite-bearing sediments, weathering zones of sulphide ore deposits and acid mine or acid rock drainage (ARD/AMD) sites. The structure of jarosite is based on linear tetrahedral-octahedral-tetrahedral (T-O-T) sheets, made up from slightly distorted FeO6 octahedra and SO4 tetrahedra. Batch dissolution experiments carried out on synthetic jarosite at pH 2, to mimic environments affected by ARD/AMD, and at pH 8, to simulate ARD/AMD environments recently remediated with slaked lime (Ca(OH)2), suggest first order dissolution kinetics. Both dissolution reactions are incongruent, as revealed by non-ideal dissolution of the parent solids and, in the case of the pH 8 dissolution, because a secondary goethite precipitate forms on the surface of the dissolving jarosite grains. The pH 2 dissolution yields only aqueous K, Fe, and SO4. Aqueous, residual solid, and computational modelling of the jarosite structure and surfaces using the GULP and MARVIN codes, respectively, show for the first time that there is selective dissolution of the A- and T-sites, which contain K and SO4, respectively, relative to Fe, which is located deep within the T-O-T jarosite structure. These results have implications for the chemistry of ARD/AMD waters, and for understanding reaction pathways of ARD/AMD mineral dissolution.  相似文献   

18.
A regular C25 isoprenoid alkane (2,6,10,14,18-pentamethyleicosane) has been isolated from highly saline Tertiary sediments. The isolation utilized elution chromatography, urea adduction and gas chromatography; identification was based on the mass spectrum. This C25 isoprenoid may represent a biological marker, possibly typical for a lagoonal-type, saline environment.  相似文献   

19.
中侏罗世-早白垩世华北地台东部的北黄海盆地受古亚洲构造体制向滨太平洋构造体制转换的影响,其构造演化经历了伸展-反转挤压-伸展的转变.构造体制的差异不但表现在大地构造性质及其产生的地质效应上,也表现在盆地沉积特征、古生物及古气候等方面.本文以北黄海盆地东部坳陷X1井中侏罗统至下白垩统为研究对象,利用泥岩元素地球化学特征对古气候的指示,结合盆地沉积特征及古生物资料,对古气候演化展开研究.研究显示,中侏罗世-早白垩世X1井泥岩样品的Sr/Cu比值(2.12~34.10)、Sr/Ba比值(0.16~1.60)、Rb/Sr比值(0.13~1.23)、Fe2O3/FeO比值(0.22~11.10)、V/Cr比值(0.91~1.78)、V/Sc比值(4.89~8.33)、Ni/Co比值(1.14~3.85)、δU比值(0.50~0.84)和U/Th比值(0.11~0.24)的纵向变化反映古气候经历了温湿→整体湿润、短暂干热→干热的演化.沉积物经历了暗色细粒沉积物为主→灰色、灰色夹灰绿色、灰色与红褐色互层细粒沉积物为主→灰色粗粒沉积物和红褐色、灰黄色细粒沉积物为主的变化.古生物经历了喜湿植物丰富→喜热植物出现→喜热植物丰富的过程.结果表明,受古亚洲构造体制和滨太平洋构造体制的影响,华北地台向北漂移,北黄海盆地古气候经历了由中侏罗世-晚侏罗世早期以温湿气候为主,至晚侏罗世晚期-早白垩世早期整体相对湿润,出现短暂干热气候,到早白垩世中期-早白垩世晚期为干热气候的演化.北黄海盆地中侏罗世-早白垩世古气候由温湿向干热的转变正是对华北地台东部晚中生代两大构造体制转换的响应.   相似文献   

20.
A series of discontinuous sediment sequences, of Plio/Pleistocene age, occur onshore around the southern North Sea margins, notably in the East Anglian region of Britain. Intensive lithological and palaeontological analyses of these sediments have shown that they record both major and minor oscillations in climate, sea level and environmental conditions. However, significant uncertainties exist regarding the absolute and relative chronostratigraphies of many of these sequences, hindering understanding of the relative impacts of climatic, eustatic and tectonic changes on the palaeogeographic development of the southern North Sea basin. Here, a number of key East Anglian Plio/Pleistocene sites are subjected to robust palaeomagnetic and mineralogical examination, in order to determine those sediments which display reliable, syn‐depositional magnetic polarities, which are thus of use in ascribing a palaeomagnetically determined age from comparison with the Geomagnetic Polarity Timescale (GPTS). Based on a range of palaeomagnetic and complementary mineralogical methods, reliable palaeomagnetic directions were obtained from eight sites, with reversed polarities displayed by sediments from three sites. These polarity determinations can be used to infer absolute ages and test published, between‐site correlations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号