首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steven W. Squyres 《Icarus》1980,44(2):502-510
Surface temperatures and ice evaporation rates are calculated for Ganymede and Callisto as a function of latitude, time of day, and albedo. The model uses surface thermal properties determined by eclipse radiometry (Morrison and Cruikshank, 1973Icarus18 224–236) and albedos determined from photometrically decalibrated Voyager images. Daytime temperatures on Callisto are roughly 8°K warmer than those in Ganymede's cratered terrain and 11°K warmer than those in Ganymede's grooved terrain. Diurnal mean ice evaporation rates are high enough on both bodies that the surface material probably consists of a very low density lag deposit of primarily silicate dust overlying a denser regolith of silicates and ice. The difference in temperature between Ganymede and Callisto is not great enough to account for the lack of bright polar caps on Callisto. This lack seems instead to reflect a real deficiency in the amount of available H2O frost relative to Ganymede. The temperature difference between Ganymede's grooved and cratered terrains also cannot account for the strong concentration of bright ray craters in grooved terrain. This concentration suggests instead that an internal geologic process has enriched the grooved terrain in ice relative to the cratered terrain.  相似文献   

2.
Using high-resolution Galileo images, we counted the number of craters (larger than 1 km) on two of Jupiter's satellites—Callisto (outside and inside the Asgard impact basin) and Ganymede (in the dark cratered Galileo region)—and classified these craters morphologically. Based on the degree of preservation of crater rims, three morphological classes, A, B, and C (from the most preserved to the most degraded), have been identified. The A : B : C ratios, equal, respectively, to 1 : 3 : 5, 1 : 3 : 7, and 1 : 2.5 : 6.5 for fragments of the territory outside and inside the Asgard basin and within Galileo Regio, indicate that these crater populations reached a considerably high degree of maturity. The degradation of kilometer-scale craters on Callisto proceeds by the narrowing of their rims and their disintegration into chains of knobs, probably due to the sublimation of ice that composes the rim material. Comparing the density of craters of different classes in the regions inside and outside Asgard shows that class A craters on the territories examined were formed after the event that formed this impact basin. Kilometer-scale craters on Ganymede degrade through the expansion and smoothing of their rims and the dissection of them by radial furrows. This implies the involvement in the crater destruction of a downslope movement triggered by the seismic activity that accompanied the formation of tectonic grooves. It is possible that ice sublimation also took part in the destruction of craters on Ganymede, but its effect was less prominent than the effect of downslope movements.  相似文献   

3.
The photometric properties of selected surface features on Ganymede and Callisto have been studied using Voyager images over phase angles from 10 to 124° taken with the clear filter (effective wave wavelength ∽0.5 μm). Normal reflectences on Ganymede average 0.35 for the cratered terrain and 0.44 for the grooved terrain. The value for the ubiquitous cratered terrain on Callistro is 0.18. The photometric properties of these regions are described closely by a simple scattering function of the form I = Af(α)μ0/(μ + μ0), where A is a constant, μ is the cosine of the emission angle, μ0 is the cosine of the incidence angle, and f(α) is a function of the phase angle, α, only. For these terrains the shape of f(α) is qualitatively similar to that for the moon—generally concave upward. By contrast, bright craters on both satellites have f(α)'s which are concave downward. The scattering properties of these bright features are definitely not Lambertian, but are described approximately by the scattering law given above. The brightest craters on Callisto have reflectances which are only 10% lower than the brightest craters on Ganymede; both have closely similar scattering laws. We estimate that the brightest craters on Ganymede may reach normal reflectances of 0.7. Our phase functions yield phase integrals of q = 0.8 and 0.6 for Ganymede and Callisto, respectively.  相似文献   

4.
Large impact structures on Ganymede and Callisto are characterized by one or more concentric rings or scarps. Their formation is probably due to the collapse of the transient crater when the excavation depth is comparable to the thickness of the planetary lithosphere. The number, spacing, and morphology of the rings is a function of this thickness, the strength of the lithosphere, and crater diameter. When the lithosphere is thin and weak, the collapse is regulated by flow induced in the asthenosphere. The lithosphere fragments in a multiply concentric pattern (e.g., Valhalla, Asgard, Galileo Regio, and a newly discovered ring system on Callisto). The thickness and viscosity of a planetary lithosphere increases with time as the mantle cools. A thicker lithosphere leads to the formation of one (or very few) irregular normal faults concentric to the crater (e.g., Gilgamesh). A gravity wave or tsunami induced by impact into a liquid mantle would result in both concentric and radial extension features. Since these are not observed, this process cannot be responsible for the generation of the rings around the basins and basin palimpsests on Ganymede and Callisto. Subtle differences in thin lithosphere ring morphology between Ganymede and Callisto reflect (at least) the varying ice/silicate ratios, subsequent tectonic histories, and erosional mechanisms of the two bodies. The appearance of Galileo Regio and portions of Valhalla is best explained by ring graben, and though the Valhalla system is older, the lithosphere was 1.5 to 2.0 times as thick at the time of formation. Subsequent tectonic activity destroyed most of the basin-ring structure on Ganymede. The present lithosphere thickness is too great to permit development of any rings.  相似文献   

5.
Cratering rates on the Galilean satellites   总被引:1,自引:0,他引:1  
Zahnle K  Dones L  Levison HF 《Icarus》1998,136(2):202-222
We exploit recent theoretical advances toward the origin and orbital evolution of comets and asteroids to obtain revised estimates for cratering rates in the jovian system. We find that most, probably more than 90%, of the craters on the Galilean satellites are caused by the impact of Jupiter-family comets (JFCs). These are comets with short periods, in generally low-inclination orbits, whose dynamics are dominated by Jupiter. Nearly isotropic comets (long period and Halley-type) contribute at the 1-10% level. Trojan asteroids might also be important at the 1-10% level; if they are important, they would be especially important for smaller craters. Main belt asteroids are currently unimportant, as each 20-km crater made on Ganymede implies the disruption of a 200-km diameter parental asteroid, a destruction rate far beyond the resources of today's asteroid belt. Twenty-kilometer diameter craters are made by kilometer-size impactors; such events occur on a Galilean satellite about once in a million years. The paucity of 20-km craters on Europa indicates that its surface is of order 10 Ma. Lightly cratered surfaces on Ganymede are nominally of order 0.5-1.0 Ga. The uncertainty in these estimates is about a factor of five. Callisto is old, probably more than 4 Ga. It is too heavily cratered to be accounted for by the current flux of JFCs. The lack of pronounced apex-antapex asymmetries on Ganymede may be compatible with crater equilibrium, but it is more easily understood as evidence for nonsynchronous rotation of an icy carapace.  相似文献   

6.
E.M. Parmentier  J.W. Head 《Icarus》1981,47(1):100-111
Spacecraft images show that the icy Galilean satellites have surfaces with very low topographic relief. Impact craters on Ganymede and Callisto are anomalously shallow and are characterized by sharp well-defined rims and domed floors. These morphological characteristics can be explained by viscous relaxation of topography on an icy crust in which the viscosity is uniform or decreases with depth. Under these conditions, large craters relax more rapidly than small craters, therefore explaining a possible underabundance of large craters. Viscous relaxation on an icy crust that is thin compared to the crater diameter or on a thick icy crust in which viscosity increases with depth could not produce this crater morphology and would result in the more rapid relaxation of small craters rather than large craters. The results of this study suggest that more detailed analysis of relaxing impact crater morphology may resolve the rate of viscosity decrease with depth and so provide evidence on the interior thermal evolution of icy planetary bodies.  相似文献   

7.
The presence of craters with central peaks on the ice satellites of Saturn implies that their surface elastic strength is comparable to that of the Moon, Mars, and Mercury which have central peak craters, rather than that of the Jovian ice satellites Ganymede and Callisto which do not have central peak craters.  相似文献   

8.
Nathalia Alzate 《Icarus》2011,211(2):1274-1283
Central pit craters are common on Mars, Ganymede and Callisto, and thus are generally believed to require target volatiles in their formation. The purpose of this study is to identify the environmental conditions under which central pit craters form on Ganymede. We have conducted a study of 471 central pit craters with diameters between 5 and 150 km on Ganymede and compared the results to 1604 central pit craters on Mars (diameter range 5-160 km). Both floor and summit pits occur on Mars whereas floor pits dominate on Ganymede. Central peak craters are found in similar locations and diameter ranges as central pit craters on Mars and overlap in location and at diameters <60 km on Ganymede. Central pit craters show no regional variations on either Ganymede or Mars and are not concentrated on specific geologic units. Central pit craters show a range of preservation states, indicating that conditions favoring central pit formation have existed since crater-retaining surfaces have existed on Ganymede and Mars. Central pit craters on Ganymede are generally about three times larger than those on Mars, probably due to gravity scaling although target characteristics and resolution also may play a role. Central pits tend to be larger relative to their parent crater on Ganymede than on Mars, probably because of Ganymede’s purer ice crust. A transition to different characteristics occurs in Ganymede’s icy crust at depths of 4-7 km based on the larger pit-to-crater-diameter relationship for craters in the 70-130-km-diameter range and lack of central peaks in craters larger than 60-km-diameter. We use our results to constrain the proposed formation models for central pits on these two bodies. Our results are most consistent with the melt-drainage model for central pit formation.  相似文献   

9.
Although we can observe current activity on Saturn's satellite Enceladus with Cassini, insight into past activity is best achieved (for now) through studying the impact crater distributions. Furthermore, approximation of terrain ages can only be attained through calculations using crater densities and estimations of impact rates in the saturnian system. Here we focus on what the impact crater distribution in Enceladus' heavily cratered plains can tell us about Enceladus' geologic history. We use Cassini ISS images to count craters in the heavily cratered plains on Enceladus, along with Rhea, Dione, Tethys and Mimas as references, to develop and compare their size-frequency distributions. Comparisons of our counts show that Enceladus' cratered plains distribution is unique in that it appears to have a relative deficiency of craters for diameters ?2 km and ?6 km compared to the other satellites' heavily cratered plains. Our data also indicates that the impact crater density within the cratered plains changes with latitude. Specifically, both the north and south mid-latitude regions have approximately three times higher density than the equatorial region. We hypothesize that the “missing” small and large craters in Enceladus' cratered plains is due to a combination of viscous relaxation of the larger craters, and burial of the relaxed large craters and small craters by south polar plume and possibly E-ring material. We also conclude that the spatial density distribution is not consistent with recent polar wander.  相似文献   

10.
11.
Abstract— Ice thickness estimates and impactor dynamics indicate that some impacts must breach Europa's ice crust; and outcomes of impact experiments using ice‐over‐water targets range from simple craters to chaos‐like destroyed zones, depending on impact energy and ice competence. First‐order impacts‐into thick ice or at low impact energy‐produce craters. Second‐order impacts punch through the ice, making holes that resemble raft‐free chaos areas. Third‐order impacts‐into thinnest ice or at highest energy‐produce large irregular raft‐filled zones similar to platy chaos. Other evidence for an impact origin for chaos areas comes from the size‐frequency distribution of chaos+craters on Europa, which matches the impact production functions of Ganymede and Callisto; and from small craters around the large chaos area Thera Macula, which decrease in average size and density per unit area as a function of distance from Thera's center. There are no tiny chaos areas and no craters >50 km diameter. This suggests that small impactors never penetrate, whereas large ones (ÜberPenetrators: >2.5 km diameter at average impact velocity) always do. Existence of both craters and chaos areas in the size range 2–40 km diameter points to spatial/temporal variation in crust thickness. But in this size range, craters are progressively outnumbered by chaos areas at larger diameters, suggesting that probability of penetration increases with increasing scale of impact. If chaos areas do represent impact sites, then Europa's surface is older than previously thought. The recalculated resurfacing age is 480 (‐302/+960) Ma: greater than prior estimates, but still very young by solar system standards.  相似文献   

12.
New models for the interiors of Io, Ganymede, and Callisto are proposed. The model of Io consists of a thin, high-rigidity outer layer separated from a solid interior by a thin, molten or partially molten shell. The modulus of rigidity of the outer layer must be at least 100 times larger than that of the underlying partially molten shell. These layers have thicknesses of order 100 km or less. The near-surface partially molten layer was most likely produced early in Io's history as a consequence of accretional heating; enhanced tidal heating in the outer rigid layer has kept the underlying region partially molten to the present day. The model of Ganymede consists of an ice outer layer, a shell of undifferentiated, primordial ice-silicate mixture, and a rock core. Accretional heating is responsible for melting the ice in the outer layers of Ganymede's initially homogeneous ice-silicate interior. Most of the rock in this outer layer accumulates in a shell on top of Ganymede's early cold and rigid central region; the water in the outer layer quickly refreezes. Heating of the undifferentiated region by the decay of radioactive elements in the silicate fraction would gradually warm it and reduce its viscosity. The rock layer would become gravitationally unstable and sink through the undifferentiated materials to form a rock core. Callisto's heavily cratered surface strongly suggests that relatively little, if any, ice-rock differentiation has occured in its interior.  相似文献   

13.
《Icarus》1987,70(1):99-110
Recent interpretations of the reflectance spectra of the icy Galilean satellites (Europa, Ganymede, and Callisto) have implied very ice-rich surfaces, as high as 90 wt% ice even on the dark surface of Callisto. A reevaluation of the spectra, taking into account the depth of the 3-μm fundamental water ice absorption feature as well as the shorter wavelength bands, suggests that the spectra of at least Ganymede and Callisto may also be consistent with much lower ice abundances if the ice is segregated from the nonicy material. Reasonable fits to all band depths (including the shallow 1.04- and 1.25-μm bands) are obtained with around 50% areal coverage of ice on Ganymede and 10% on Callisto, the rest of the surface being occupied by carbonaceous chondrite-like material which has a strong 3-μm absorption due to bound water. Europa's spectrum probably indicates a homogeneous icy surface. The darkness beyond 3 μm, and lack of a 3.6-μm peak, for all three objects may be consistent with the presence of small quantities of sulfuric acid on the satellite surfaces.  相似文献   

14.
Roger N. Clark 《Icarus》1980,44(2):388-409
The reflectance spectra of Ganymede, Europa, Callisto, and Saturn's rings are analyzed using recent laboratory reflectance studies of water frost, water ice, and water and mineral mixtures. It is found that the spectra of the icy Galilean satellites are characteristic of water ice (e.g., ice blocks or possibly very large ice crystals ? 1 cm) or frost on ice rather than pure water frost, and that the decrease in reflectance at visible wavelengths is caused by other mineral grains in the surface. The spectra of Saturn's rings are more characteristic of water frost with some other mineral grains mixed in the frost but not on the surface. The impurities on all these objects are not in spectrally isolated patches but appear to be intimately mixed with the water. The impurity grains appear to have reflectance spectra typical of minerals containing Fe3+. Some carbonaceous chondrite meteorite spectra show the necessary spectral shape. Ganymede is found to have more water ice on the surface than previously thought (~90 wt%), as is Callisto (30–90 wt%). The surface of Europa has a vast frozen water surface with only a few percent impurities. Saturn's rings also have only a few percent impurities. The amount of bound water or bound OH for these objects is 5 ± 5 wt% averaged over the entire surface. Thus with the small amount of nonicy material present on these objects, no hydrated minerals can be ruled out. A new absorption feature is identified in Ganymede, Callisto, and probably Europa at 1.5 μm which is also seen in the spectra of Io but not in Saturn's rings. This feature has not been seen in laboratory studies and its cause is unknown.  相似文献   

15.
New near-infrared (0.65–2.5 μm) reflectance spectra of the Galilean satellites with 1.5% spectral resolution and ≈2% intensity precision are presented. These spectra more precisely define the water ice absorption features previously identified on Europa, Ganymede, and Callisto at 1.55 and 2.0 μm. In addition, previously unreported spectral features due to water ice are seen at 1.25, 1.06, 0.90, and 0.81 μm on Europa, and at 1.25, 1.04, and possibly 0.71 μm on Ganymede. Unreported absorption features in Callisto's spectrum occur at 1.2 μm, probably due to H2O, and a weak, broad band extending from 0.75 to 0.95 μm, due possibly to other minerals. The spectrum of Io has only weak absorption features at 1.15 μm and between 0.8 and 1.0 μm. No water absorptions are positively identified in the Io spectra, indicating an upper limit of areal water frost coverage of 2% (leading and trailing sides). It is found for Callisto, Ganymede, and Europa that the water ice absorption features are due to free water and not to water bound or absorbed onto minerals. The areal coverage of water frost is ≈ 100% on Europa (trailing side), ≈65% on Ganymede (leading side), and 20–30% on Callisto (leading side). An upper limit of ≈5% bound water (in addition to the 20–30% ice) may be present on Callisto, based on the strong 3-μm band seen by other investigators. A summary of spectra of the satellites from 0.325 to about 5 μm to aid in laboratory and interpretation studies is also presented.  相似文献   

16.
Thermal histories of the small icy Saturnian satellites Mimas, Tethys, Dione, Rhea, and Iapetus are constructed by assuming that they formed as homogeneous ice-silicate mixtures. The models include effects of radiogenic and accretional heating, conductive and subsolidus convective heat transfer, and lithospheric growth. Accretional heating is unlikely to have melted the water ice in the interiors of these bodies and solid state creep of the predominately ice material precludes melting by radiogenic heating. Mimas is so small that its thermal evolution is essentially purely conductive; at present it is a cold, nearly isothermal body. Any subsolidus convection or thermal activity in Mimas would have been confined to a brief period in its early history and would have been due to a warm formation. The four largest satellites are big enough and contain sufficient heat-producing silicates that solid state convection beneath a rigid lithosphere is inevitable independent of initial conditions. Dione and Rhea have convective interiors for most of their thermal histories, while Tethys and Iapetus have mainly conductive thermal histories with early periods of convective 0activity. The thermal histories of the five satellites for the last 4 by are independent of initial conditions; at present they have cold, conductive interiors. The model thermal histories are qualitatively consistent with the appearances of these satellites: Mimas has an ancient heavily cratered surface, Tethys and probably Iapetus have both heavily cratered and more lightly cratered areas, and Dione and Rhea have extensively modified surfaces. Because of their similar sizes and densities, Mimas and Enceladus are expected to have similar surfaces and thermal histories, but instead Enceladus has the most modified surface of all the small icy Saturnian satellites. Our results suggest a heat source for Enceladus, in addition to radiogenic and accretional heating; tidal dissipation is a possibility. Because the water ice in these bodies does not melt, resurfacing must be accomplished by the melting of a low-melting-temperature minor component such as ammonia hydrate.  相似文献   

17.
Craters with central peaks occur on the Uranian satellites Ariel, Umbriel, Titania, and Oberon; but do not occur on Miranda. The inelastic surface of Miranda is apparently due to the heavy tectonic reworking of its surface. A theory of expansion/contraction is proposed to explain the tectonic history of Miranda. The existence of central peak craters on the four largest satellites of Uranus implies that they have surface strengths similar to those of the Saturnian satellites and silicate bodies of the inner solar system which all have central peak craters. The absence of central peak craters on Miranda implies that it has an inelastic surface similar to those of the Jovian ice satellites Ganymede and Callisto whose surfaces do not contain central peak craters.  相似文献   

18.
Differences in the apparent ages of the surfaces of Ganymede and Callisto, as revealed by Voyager images, could be due to the persistence of tectonic activity on Ganymede beyond the time of early, heavy bombardment. The slightly greater radioactive content expected in Ganymede could prolong such activity by as much as 0.5 billion years beyond the cessation of endogenic surface activity on Callisto. Tidal dissipation could not have been important for Ganymede for more than 108 years, and it was never important for Callisto.  相似文献   

19.
K. Nagel 《Icarus》2004,169(2):402-412
The recently measured dimensionless moment of inertia (MoI) factor for Callisto of 0.3549±0.0042 (Anderson et al., 2001, Icarus, 153, 157-161) poses a problem: its value cannot be explained by a model in which Callisto is completely differentiated into an ice shell above a rock shell and an iron core such as its neighboring satellite Ganymede nor can it be explained by a model of a homogeneous, undifferentiated ice-rock satellite. We show that Callisto may be incompletely differentiated into an outer ice-rock shell in which the volumetric rock concentration is close to the primordial one at the surface and decreases approximately linearly with depth, an ice mantle mostly depleted of rock, and an about 1800 km rock-ice core in which the rock concentration is close to the close-packing limit. The ice-rock shell thickness depends on uncertain rheology parameters and the heat flow and can be roughly 50 to 150 km thick. We show that if Callisto accreted from a mix of metal bearing rock and ice and if the average size of the rocks was of the order of meters to tens of meters, then Callisto may have experienced a gradual, but still incomplete unmixing of the two components. An ocean in Callisto at a depth of 100-200 km is difficult to obtain if the ice is pure H2O and if the ice-rock lithosphere is 100 km or more thick; a water ocean is more plausible for ice contaminated by ammonia, methane or salts; or for pure H2O at a depth of 400-600 km.  相似文献   

20.
Pre-Cassini images of Saturn's small icy moon Enceladus provided the first indication that this satellite has undergone extensive resurfacing and tectonism. Data returned by the Cassini spacecraft have proven Enceladus to be one of the most geologically dynamic bodies in the Solar System. Given that the diameter of Enceladus is only about 500 km, this is a surprising discovery and has made Enceladus an object of much interest. Determining Enceladus' interior structure is key to understanding its current activity. Here we use the mean density of Enceladus (as determined by the Cassini mission to Saturn), Cassini observations of endogenic activity on Enceladus, and numerical simulations of Enceladus' thermal evolution to infer that this satellite is most likely a differentiated body with a large rock-metal core of radius about 150 to 170 km surrounded by a liquid water-ice shell. With a silicate mass fraction of 50% or more, long-term radiogenic heating alone might melt most of the ice in a homogeneous Enceladus after about 500 Myr assuming an initial accretion temperature of about 200 K, no subsolidus convection of the ice, and either a surface temperature higher than at present or a porous, insulating surface. Short-lived radioactivity, e.g., the decay of 26Al, would melt all of the ice and differentiate Enceladus within a few million years of accretion assuming formation of Enceladus at a propitious time prior to the decay of 26Al. Long-lived radioactivity facilitates tidal heating as a source of energy for differentiation by warming the ice in Enceladus so that tidal deformation can become effective. This could explain the difference between Enceladus and Mimas. Mimas, with only a small rock fraction, has experienced relatively little long-term radiogenic heating; it has remained cold and stiff and less susceptible to tidal heating despite its proximity to Saturn and larger eccentricity than Enceladus. It is shown that the shape of Enceladus is not that of a body in hydrostatic equilibrium at its present orbital location and rotation rate. The present shape could be an equilibrium shape corresponding to a time when Enceladus was closer to Saturn and spinning more rapidly, or more likely, to a time when Enceladus was spinning more rapidly at its present orbital location. A liquid water layer on Enceladus is a possible source for the plume in the south polar region assuming the survivability of such a layer to the present. These results could place Enceladus in a category similar to the large satellites of Jupiter, with the core having a rock-metal composition similar to Io, and with a deep overlying ice shell similar to Europa and Ganymede. Indeed, the moment of inertia factor of a differentiated Enceladus, C/MR2, could be as small as that of Ganymede, about 0.31.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号