首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Nilpena (173 g), a new ureilite find from the Parachilna area of South Australia, is an unusual polymict breccia containing polymineralic aggregates, mineral fragments and achondritic and chondritic lithic enclaves in a dark, C-rich matrix. The polymineralic aggregates consist of equigranular-textured olivine Fa20 and pigeonite En75Wo9FS16, and exhibit evidence of shock in the form of undulose extinction and kink-banding. Monomineralic fragments consist of olivine Fa19–24 (with highly forsteritic rims up to Fa3) and pigeonite, and appear to be derived by brecciation of the polymineralic aggregates. The enclave material consists of lithic granular olivine fragments, porphyritic enstatite fragments (either enstatite chondrite or aubrite), olivine-clinobronzite fragments resembling an H3 chondrite, and eucritelike lithic fragments composed of plagioclase An98, salitic clinopyroxene Wo48.5En31.4Fs20.1 and olivine Fa49–53. The matrix contains kamacite (generally rich in P), schreibersite and troilite. The texture of Nilpena suggests formation by disruption of a olivine-pigeonite granular aggregate while the presence of the diverse chondritic and achondritic enclave material suggests an origin as a surface or near-surface breccia.Like other ureilites Nilpena is strongly differentiated with respect to cosmic abundances but is significantly enriched in Ba and LREE. A lack of correlation of lithophile elements with Fe(Fe + Mg) ratio among ureilites suggests that the differentiation was not caused by varying degrees of partial melting of a homogeneous source. A cumulate origin therefore seems more plausible.  相似文献   

2.
The Bovedy L-group chondrite contains a light-colored poikilitic lithic fragment with olivine, low-Ca pyroxene and kamacite compositions characteristic of porphyritic chondrules from unequilibrated ordinary chondrites. Its texture, compositional similarities to porphyritic chondrules, and low Na2O, K2O and P2O5 content indicate that the fragment represents a solidified, slightly fractionated impact melt formed from a source that was rich in porphyritic chondrules. The fragment is heterogeneous, with a progressive increase in the bulk MgOFeO ratio and in MgO content of olivines and low-Ca pyroxenes across its length. 39Ar40Ar analyses of the fragment and host indicate that the meteorite experienced extensive degassing due to reheating. The approximate age of 0.5–0.94 Byr dates the reheating event and not the formation of the lithic fragment or the Bovedy breccia. This reheating event renders the fragment's and host's metallographic cooling rate of ~ 5 C/Myr (through 500°C) imprecise. However, the absence of martensite and the presence of kamacite. zoned taenite and tetrataenite in the fragment and host are consistent with such slow cooling through 500°C. This cooling rate must have resulted from burial of the fragment-host assemblage beneath insulating material on the Bovedy parent body. If the thermal diffusivity (κ) of this overburden was approximately comparable to that of the lunar regolith (10?4cm2/sec), then the fragment was buried at a depth ≌ 6.5 km; if K = 10?2 cm2/sec (similar to chondritic material), then the fragment was buried at a depth ?65 km.  相似文献   

3.
We have investigated the Na distributions in Semarkona Type II chondrules by electron microprobe, analyzing olivine and melt inclusions in it, mesostasis and bulk chondrule, to see whether they indicate interactions with an ambient gas during chondrule formation. Sodium concentrations of bulk chondrule liquids, melt inclusions and mesostases can be explained to a first approximation by fractional crystallization of olivine ± pyroxene. The most primitive olivine cores in each chondrule are mostly between Fa8 and Fa13, with 0.0022–0.0069 ± 0.0013 wt.% Na2O. Type IIA chondrule olivines have consistently higher Na contents than olivines in Type IIAB chondrules. We used the dependence of olivine–liquid Na partitioning on FeO in olivine as a measure of equilibration. Extreme olivine rim compositions are ~Fa35 and 0.03 wt.% Na2O and are close to being in equilibrium with the mesostasis glass. Olivine cores compared with the bulk chondrule compositions, particularly in IIA chondrules, show very high apparent DNa, indicating disequilibrium and suggesting that chondrule initial melts were more Na-rich than present chondrule bulk compositions. The apparent DNa values correlate with the Na concentrations of the olivine, but not with concentrations in the bulk melt. We use equilibrium DNa to find the Na content of the true parent liquid and estimate that Type IIA chondrules lost more than half their Na and recondensation was incomplete, whereas Type IIAB chondrules recovered most of theirs in their mesostases.Glass inclusions in olivine have lower Na than expected from fractionation of bulk composition liquids, and mesostases have higher Na than expected in calculated daughter liquids formed by fractional crystallization alone. These observations also require open system behavior of chondrules, specifically evaporation of Na before formation of melt inclusions followed by recondensation of Na in mesostases. Within this record of evaporation followed by recondensation, there is no indication of a stage with zero Na in the chondrules, which is predicted by models for shock wave cooling at canonical nebular pressures, suggesting high PT.The high Na concentrations in olivine and mesostases indicate very high PNa while chondrules were molten. This may be explained by local, very high particle densities where Type II chondrules formed. The high PT, PNa and number densities of chondrules implied suggest formation in debris clouds after protoplanetary collisions as an alternative to formation after passage of shock waves through large particle-rich clumps in the disk. Encounters of partially molten chondrules should have been frequent in these dense swarms. However, in many ordinary chondrites like Semarkona, “cluster chondrites”, compound chondrules are not abundant but instead chondrules aggregated into clusters. Chondrule melting, cooling and clustering in dense swarms contributed to rapid accretion, possibly after collision, by fallback on the grandparent body and by reaccretion as a new body downrange.  相似文献   

4.
An empirical method of estimating the last temperature of water-rock interaction has been devised. It is based upon molar Na, K and Ca concentrations in natural waters from temperature environments ranging from 4 to 340°C. The data for most geothermal waters cluster near a straight line when plotted as the function log (NaK) + β log [ √ (Ca)Na] vs reciprocal of absolute temperature, where β is either 13 or 43 depending upon whether the water equilibrated above or below 100°C. For most waters tested, the method gives better results than the NaK methods suggested by other workers. The ratio NaK should not be used to estimate temperature if √ (MCa)MNa is greater than 1. The NaK values of such waters generally yield calculated temperatures much higher than the actual temperature at which water interacted with the rock.A comparison of the composition of boiling hot-spring water with that obtained from a nearby well (170°C) in Yellowstone Park shows that continued water-rock reactions may occur during ascent of water even though that ascent is so rapid that little or no heat is lost to the country rock, i.e. the water cools adiabatically. As a result of such continued reaction, waters which dissolve additional Ca as they ascend from the aquifer to the surface will yield estimated aquifer temperatures that are too low. On the other hand, waters initially having enough Ca to deposit calcium carbonate during ascent may yield estimated aquifer temperatures that are too high if aqueous Na and K are prevented from further reaction with country rock owing to armoring by calcite or silica minerals.The Na-K-Ca geothermometer is of particular interest to those prospecting for geothermal energy. The method also may be of use in interpreting compositions of fluid inclusions.  相似文献   

5.
The coprecipitation of Na and K was experimentally investigated in aragonite. The distribution functions were determined at pH 6.8 and 8.8 over aqueous Na and K concentrations of between 5 × 10?4and 2.0 M and temperatures of between 25 and 75°C.The mole fractions of Na and K in aragonite are related to the aqueous ratios of Na and Ca by a function of the form
log XNa2CO3,K2CO3 = C0 + C1loga2Na ? ,K?aCa2+
where C0 and C1 are constants at a given temperature. This equation was derived by a statistical model assuming a heterogeneous energy distribution for the sites of incorporation. The independence of the coprecipitation process from aqueous anion activities suggests that carbonate is the only anionic species in the solid solution.  相似文献   

6.
Alteration of basaltic glass to palagonite is characterized by a nearly isomolar exchange of SiO2, Al2O3, MnO, MgO, CaO, Na2O, P2O5, Zn, Cu, Ni, Cr, Hf, Sc, Co and REE for H2O and K2O, whilst TiO2 and FeO are passively accumulated during removal of the remaining cations. The network forming cations Al and Si are removed from the glass in proportion to the gain in Ti and Fe, whilst the other cations do not show a significant relationship to the amount of Ti and Fe accumulation. Sr isotopic data show that during palagonite formation approximately 85% of the basaltic Sr is lost to the hydrous solutions and 40% of seawater Sr is added to the glass, yielding an average loss of the same order of magnitude as of the network forming cations. Losses and gains of oxides yield an average increase of +105% TiO2.K, Rb, and Cs show high increases, but KRb and KCs ratios indicate two different alteration processes: (1) formation of palagonite involves a drastic decrease in these ratios, indicating structural similarities between palagonite and smectite; (2) surface alteration of glass is characterized by an increase in KRb and KCs ratios, probably best interpreted as sorption of alkalies in ratios approximating those of seawater.The total fluxes involved in alteration of glass in the upper portion of the oceanic crust are estimated from the modal abundance of palagonite in the oceanic crust and the abundance of the vein materials smectite and carbonate. Smectite and carbonates act as a sink for a significant portion of the elements liberated up during alteration of basaltic glass except for Na and Al, which are probably taken up by zeolites and/or albite, possibly hidden in the macroscopic estimate of carbonate. Formation of the observed quantity of secondary phases requires additional sources for Si, Fe. Ca and K. K is provided in excess from the inflowing seawater at reasonable water/rock ratios. The remaining excess Ca, Si and Fe required may be derived by alteration of interstitial glass and breakdown of anorthite rich plagioclase and titano-magnetite, and/or by supply of deeper seated metamorphic reactions.  相似文献   

7.
8.
New data from geothermal wells in Iceland have permitted empirical calibration of the chalcedony and NaK geothermometers in the range of 25–180°C and 25–250°C respectively. The temperature functions are:
t°C=11124.91?log SiO2?273.15
t°C=9330.993+log Na/K?273.15
Concentrations are expressed in ppm. These temperature functions correspond well with the chalcedony solubility data of Fournier (1973) and the thermodynamic data for low-albite/microcline/solution equilibria of Heloeson (1969).A new CO2 geothermometer is proposed which is considered to be useful in estimating underground temperatures in fumarolic geothermal fields. Its application involves analysis of CO2 concentrations in the fumarole steam. The temperature function which applies in the range 180?300°C is: logCO2 = 37.43 + 73192/T- 11829· 103/T2 + 0.18923T- 86.187·logT where T is in °K and CO2 in moles per kg of steam.  相似文献   

9.
Petrographic observations and analyses of CM matrices are consistent with their origin as in situ low temperature (<400°K) aqueous alteration products in a parent body regolith. At least four different phyllosilicates were tentatively characterized in Murray and Murchison meteorites, in addition to Fe- and Mg-serpentines in Nogoya. In comparison with bulk meteorite compositions, all phyllosilicates and bulk matrices show enrichment of K relative to Na. Possible loss of Na and possibly some Cl, with addition of H2O and CO2 and water-soluble organic compounds during alteration, indicates a partially open system during alteration. Poorly characterized phases (PCP) are fine-grained (< 1 μm) admixtures of variable proportions of phyllosilicates, carbonaceous matter and opaque oxides of sulfur with high Fe, Ni and Cr contents. Calcite and some magnetite show paragenetic overlap with PCP and phyllosilicates. Carbonaceous matter is largely associated with PCP in altered CM matrices. In the unaltered CV Allende, carbonaceous matter is concentrated on olivine surfaces as a micromounded coating, particularly in the dark haloes that surround some chondrules and aggregates. Precursive alteration material may have been analogous to similarly coated olivine mixed with smaller amounts of metal and sulfides.Synthesis of the water soluble organic compounds found in CM matrices may have occurred prior to or in the same environment as did aqueous alteration of the precursive phases. Preservation or partial preservation of this organic matter may reflect the degree of overlap in episodes of synthesis and alteration.Nogoya is 95% altered and has a bulk carbon content of 5.2 wt%, which is higher than any meteorite. In addition, it has the lowest measured 13C12C ratio of any other carbonaceous chondrite, except for Karoonda.  相似文献   

10.
The rates of volatilization of Na from liquid spheres of chondrule compositions have been determined as functions of time, temperature, partial pressure of oxygen, and sizes of the spheres. The Na2O content in the sphere is uniform in each run. but it decreases with time of the run, indicating that the rate of diffusion of Na in the liquid is greater than that of volatilization, and that the latter is the rate-controlling process. The rate of sodium volatilization becomes greater with increasing temperature and with decreasing PO2 and size of the spheres. The relation of the Na2O content in the liquid sphere with time and its size indicate that the amount of Na2O volatilized from the liquid spheres within unit time is proportional to the surface area of the spheres and the concentration of Na2O in the liquid. From these relations, the rate of volatilization of sodium can be obtained at constant temperature and Po2. The rate of volatilization of sodium satisfies the Arrhenius relation within the temperature range from about 1450–1600 C at 10?9,2 atm pO2; the activation energy for the sodium volatilization is approximately 100 kcal-mole?1. The rate is also approximately proportional to pO2?14 within the range of pO2 from 10?10.2 to 10?5.0 atm at about 1500° C. Based on the present results and the Na2O contents in chondrules. it is suggested that they experienced an instant heating with maximum temperature of 1400–2200° C followed by an immediate cooling.  相似文献   

11.
Mantle degassing continually releases gases onto the earth's surface. Over geologically long time intervals, a general equilibrium probably exists between mantle CO2 release and uptake by surficial sinks. However, during periods of rapid plate movement, or continental flood basalt volcanism, the increased rate of mantle CO2 release may exceed that of uptake, leading to CO2 accumulation in the atmosphere and the marine mixed layer (top 50–100 m). This in turn triggers chemical changes in the mixed layer, climatic warming, and bioevolutionary turnover. The Cretaceous/Tertiary (KT) transition at 65 Ma seems to have been a time of major mantle degassing which induced a perturbation of the carbon cycle. During the KT transition, Deccan Traps volcanism, perhaps the greatest episode of continental flood basalt volcanism in the Phanerozoic, flooded an estimated 2.6 × 106 km2 of India with basaltic lavas, releasing 5 × 1017 moles of CO2 into the earth's atmosphere over a duration 0.53–1.36 Ma at the rate of 3.9 × 1011 to 9.6 × 1011 moles CO2 per year. The modern mean annual rate of mantle CO2 release from all sources is 4.1 × 1012 moles CO2 per year; assuming a comparable rate of release prior to the Deccan Traps volcanism, the Deccan Traps addition would have elevated the rate of mantle CO2 release by 10–25%. Sluggish marine circulation and warm, deep, oceans (14–15°C) would have exacerbated CO2 buildup in the atmosphere, accounting for the Cretaceous to Tertiary drop in oxygen-18 via climatic warming, and, in the marine mixed layer (top 50–100 m), explaining the selective nature of the terminal Cretaceous marine extinctions via a pH change. The extinctions were most severe amongst the calcareous microplankton of the mixed layer; calcareous microplankton (planktonic foraminifera and coccolithophorids) begin to have pH problems at 7.8 and 7.5, respectively. Failure of the coccolithophorids would have disrupted the Williams-Riley pump (algal productivity-gravity pump of CO2 from the atmosphere and mixed layer into the deep oceans) producing dead ocean conditions (severely reduced photosynthesis and CaCO3 production). Failure of the Williams-Riley pump is reflected in the extinctions themselves, and in the loss of biogenic CaCO3 to the sea floor, causing the KT boundary hiatus and (or) the KT boundary clay. Failure of the pump today would elevate atmospheric pCO2 severalfold; the KT failure would have responded comparably. Dead ocean conditions would, in themselves, have produced a major CO2 buildup. Early Tertiary “Strangelove” conditions in the mixed layer, characterized by a dominance of the thoracosphaerids, braarudosphaerids and small planktonic foraminifera, were coeval with the main pulse of Deccan Traps volcanism. Overall, the record is one of gradual KT bioevolutionary turnover during a period of disequilibrium between the rate of mantle CO2 degassing and uptake by sinks. Mantle degassing during the Deccan Traps volcanism unifies the KT biological and physicochemical records.  相似文献   

12.
We have studied fission tracks in phosphates from one gas-poor chondrite and three gas-rich chondrites to determine their thermal history and brecciation time scales. More than 70 percent of the tracks in whitlockites in these meteorites are due to the decay of extinct Pu244.Whitlockites separated from Bhola, a gas-poor chondrite, have ρPuρU = 2.6–5.2 and a model fission track age of 4.0 Gyr for a (PuU)4.55Gyr = 0.045. Brecciation of the Bhola meteorite must have occurred at ?4.3 Gyr to account for the metal data (Scott and Rajan, 1981). A minimum cooling rate of 0.9–0.20.3KMyr in the temperature interval 800 to 300 K obtained from the track data is a factor of seven higher than the metallographic cooling rate (0.1 KMyr).For the gas-rich chondrites, the ρPuρU in whitlockites are: Weston, 32–148; Fayetteville, 21–227; and St. Mesmin, 26–137. Whitlockites from all these meteorites give model fission track ages of 4.4 Gyr assuming a (PuU)4.55 Gyr = 0.045. The final brecciation event definitely did not reset the track clock in phosphates of St. Mesmin. Our data suggest that it is also true for Weston and Fayetteville. We conclude that our observed fission track ages date the end of metamorphic cooling in the meteorite parent bodies and support the planetesimal model for the formation of xenolithic chondrites.  相似文献   

13.
The distribution of trace amounts of Na, Rb and Cs, between muscovite, phlogopite, sanidine and hydrothermal solution have been studied by ion exchange in a temperature range from 400 to 800°C.These distributions have been expressed with a partition ratio Paq?mx = (XK)aq(XK)m (where X is Na, Rb or Cs).In the case of Na and Cs in muscovite, even for the dilute solutions, the ratio Paq?mx is not the equilibrium constant kx of exchange reactions. In other cases, Paq?mx does not depend on the trace alkali ion concentration in silicates (X) and is equal to kx. Variations of Px or kx with T are greater for Na and Cs than for Rb. Generally, kx decreases with increase in T. The function log Px = f(1T) is not linear for Na or Cs, but in the case of Rb, f(1T) is linear and the standard enthalpy and entropy of exchange reactions have been estimated by applying the Arrhenius relation.The distribution relations obtained between silicate and vapour phase permit the determination of distributions of Na, Rb and Cs between two minerals mI and mII, relative to K. These have been expressed with the partition ratio Qx =(XK)mI(XK)mII. Variations of Qx with T are not remarkable, and even for Rb between phlogopite and feldspar are negligible. Nevertheless, one may use the distributions of Rb and Cs between muscovite and feldspar for geothermometry. Experimental results have been applied to some rocks by effecting corrections from the major element composition of the natural minerals. Estimated temperatures are near to 400°C in the granites and pegmatite studied here.  相似文献   

14.
Luna 20 soil 22003,1 (250–500 μ) is similar to Apollo 16 soil 61501,47 (250–500 μ) in terms of the percentage of different types of particles. However, among the lithic fragments, the Apollo 16 sample contains a greater percentage of fragments with more than 70 wt. % modal plagioclase and a significantly greater proportion of KREEP-rich particles. Modal analyses of non-mare lithic fragments in Luna 20 and Apollo 11, 14, 15 and 16 indicate that the KREEP-poor highland regions (the bulk of the lunar terrae), though relatively feldspathic, are compositionally inhomogeneous, ranging in plagioclase content from approximately 35 to 100 wt. %. The average plagioclase content lies in the range 45–70 wt.%. Luna 20 pyroxene analyses cluster in two groups, one more magnesian than the other. The groups persist when pyroxene analyses from KREEP-poor noritic, troctolitic and anorthositic lithic fragments from Apollo 11, 14, 15 and 16 and Luna 20 are included. Olivine compositions mimic these pyroxene groups.Within each pyroxene group Cr2O3 and TiO2 decrease as Fe(Fe + Mg) increases, suggesting a relationship by fractional crystallization. The two groups suggest that at least two magma compositions were involved. To account for these observations we envisage a Moon-wide magma system in which initial accretionary heterogeneities were imperfectly erased by diffusion and convection. During the cooling of this magma system fractional crystallization was effected by the flotation of plagioclase and sinking of pyroxene, olivine and perhaps ilmenite. The endproduct was an upper layer enriched in plagioclase and a lower layer enriched in mafic silicates. KREEP-rich rocks, which are predominantly noritic in major element composition, may be mechanical mixtures of KREEP-poor norite and material residual after fractional crystallization of the surface magma system.  相似文献   

15.
Significant amounts of SO42?, Na+, and OH? are incorporated in marine biogenic calcites. Biogenic high Mg-calcites average about 1 mole percent SO42?. Aragonites and most biogenic low Mg-calcites contain significant amounts of Na+, but very low concentrations of SO42?. The SO42? content of non-biogenic calcites and aragonites investigated was below 100 ppm. The presence of Na+ and SO42? increases the unit cell size of calcites. The solid-solutions show a solubility minimum at about 0.5 mole percent SO42? beyond which the solubility rapidly increases. The solubility product of calcites containing 3 mole percent SO42? is the same as that of aragonite. Na+ appears to have very little effect on the solubility product of calcites. The amounts of Na+ and SO42? incorporated in calcites vary as a function of the rate of crystal growth. The variation of the distribution coefficient (D) of SO42? in calcite at 25.0°C and 0.50 molal NaCl is described by the equation D = k0 + k1R where k0 and k1 are constants equal to 6.16 × 10?6 and 3.941 × 10?6, respectively, and R is the rate of crystal growth of calcite in mg·min?1·g?1 of seed. The data on Na+ are consistent with the hypothesis that a significant amount of Na+ occupies interstitial positions in the calcite structure. The distribution of Na+ follows a Freundlich isotherm and not the Berthelot-Nernst distribution law. The numerical value of the Na+ distribution coefficient in calcite is probably dependent on the number of defects in the calcite structure. The Na+ contents of calcites are not very accurate indicators of environmental salinities.  相似文献   

16.
The effect of presure on the solubility of minerals in water and seawater can be estimated from In
(KPspK0sp) + (?ΔVP + 0.5ΔKP2)RT
where the volume (ΔV) and compressibility (ΔK) changes at atmospheric pressure (P = 0) are given by
ΔV = V?(M+, X?) ? V?[MX(s)]ΔK = K?(M+, X?) ? K?[MX(s)]
Values of the partial molal volume (V?) and compressibilty (K?) in water and seawater have been tabulated for some ions from 0 to 50°C. The compressibility change is quite large (~10 × 10?3 cm3 bar?1 mol?1) for the solubility of most minerals. This large compressibility change accounts for the large differences observed between values of ΔV obtained from linear plots of In Ksp versus P and molal volume data (Macdonald and North, 1974; North, 1974). Calculated values of KPspKosp for the solubility of CaCO3, SrSO4 and CaF2 in water were found to be in good agreement with direct measurements (Macdonald and North, 1974). Similar calculations for the solubility of minerals in seawater are also in good agreement with direct measurements (Ingle, 1975) providing that the surface of the solid phase is not appreciably altered.  相似文献   

17.
Aqueous solubilities of methane at 25°C have been determined in single-salt solutions equilibrated with a CH4 gas phase at 350, 550, and 750 psia. Measurements were made over a range of ionic strengths in NaCl, KCl, CaCl2, MgCl2, Na2SO4, K2SO4, MgSO4, Na2CO3, K2CO3, NaHCO3, and KHCO3 aqueous solutions.At 25°C and constant pressure and methane fugacity, methane solubilities were largely controlled by the stoichiometric ionic strength, I, and the cation of the salt. Except for an increased salting-out due to HCO3?, the anion effect was relatively insignificant. Different but consistent solubility trends were followed in monovalent and divalent cation salt solutions as a function of I. Solubilities increased in salt solutions having a common anion in the following cation sequence: Na+ < K+ ? Ca2+ < Mg2+.The molal salting coefficient, km, for each salt was constant under the experimental conditions of the study, km is defined by logγch4I where γch4, the molal activity coefficient, is the methane solubility ratio (mH2Omsalt solution) measured at constant temperature, pressure, and CH4 fugacity. Single-salt km values are as follows: 0.121, NaCl (4m); 0.121, Na2SO4 (1m); 0.118, Na2CO3 (1.5m); 0.146, NaHCO3 (0.5m); 0.101, KCl (4m); 0.108, K2SO4 (0.5m); 0.111, K2CO3 (2m); 0.145, KHCO3 (0.5m); 0.071, CaCl2 (2m); 0.063, MgCl2 (2m); and 0.066, MgSO4 (1.5m) where the molalities in parentheses refer to the maximum salt concentrations used in this study.  相似文献   

18.
High precision mass spectrometric determination of calcium isotope ratios allows the 40K → 40Ca radioactive decay to be used for dating a much broader range of geologic materials than is suggested by previous work. 40Ca42Ca is used to monitor enrichments in 40Ca and can be measured to ±0.01% (2σ) using an exponential mass discrimination correction (Russell et al., 1978) and large ion currents. The earth's mantle has such a low KCa (~0.01) that it has retained “primordial” 40Ca42Ca = 151.016 ± 0.011 (normalized to 42Ca44Ca = 0.31221), as determined by measurements on two meteorites, pyroxene from an ultramafic nodule, metabasalt, and carbonatite. 40Ca42Ca ratios can be conveniently expressed relative to this value as ?Ca in units of 10?4. To test the method for age dating, a mineral isochron has been obtained on a sample of Pikes Peak granite, which has been shown to have concordant KAr, RbSr, and UPb ages. Plagioclase, K-feldspar, biotite, and whole rock yield an age of 1041 ± 32 m.y. (2σ) in agreement with previous age determinations (λK = 0.5543 b.y.?1, λβ?λK = 0.8952, 40K = 0.01167%). The initial 40Ca42Ca of 151.024 ± 0.016 (?Ca = +0.5 ± 1.0), indicates that assimilation of high K/Ca crust was insufficient to affect calcium isotopes. Measurements on two-mica granite from eastern Nevada indicate that the magma sources had K/Ca ≈ 1, similar to intermediate-composition crustal rocks. These results show that the KCa system can be used as a precise geochromometer for common felsic igneous and metamorphic rocks, and may prove applicable to sedimentary rocks containing authigenic K minerals. The relatively short half-life of 40K, the non-volatile daughter, and the fact that potassium and calcium are stoichiometric constituents of many minerals, make the KCa system complementary to other dating methods, and potentially applicable to a variety of geologic problems.  相似文献   

19.
The behaviour of the ratios K2O/Na2O, SiO2/CO2, and SiO2H2O + CO2 + S in the alteration envelopes of a variety of epigenetic deposits is documented. It is concluded that the ratio K2O/Na2O is the most suitable for estimating proximity to ore during exploration drilling programs. The other two ratios are useful in indicating proximity to ore only under certain geological conditions. Before the use of ratios is contemplated in detailed exploration programs within a given mineral belt orientation studies should be carried out to determine the trend of the ratios with proximity to mineralization.  相似文献   

20.
The redox potential of ZoBell's solution, consisting of 3.33 × 10?3 molar K4Fe(CN)6, 3.33 × 10?3 molar K3Fe(CN)6 and 0.10 molar KCl, has been measured by a polished platinum electrode vs a saturated KCl, Ag/AgCl reference electrode. Measurements in the temperature range 8–85°C fit the equation E(volts) = 0.23145 ? 1.5220 × 10?3 (t ? 25) ? 2.2449 × 10?6(t ? 25)2 where t is in degrees Celsius. Evaluation of literature data was necessary to obtain a reliable value for the Ag/AgCl half-cell reference potential as a function of temperature. Combining the measurements from this study with the literature evaluation of the Ag/AgCl reference potential yields the temperature dependent potential for ZoBell's solution: E(volts) = 0.43028 ? 2.5157 × 10?3 (t ? 25) ? 3.7979 × 10?6 (t ? 25)2 relative to the standard hydrogen potential. From these data the enthalpy, entropy, free energy and heat capacity for the ferro-ferricyanide redox couple have been calculated. The temperature equation for the potential of ZoBell's solution may be used for checking potentiometric equipment in the determination of the redox potential of natural waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号