首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results are presented of an investigation of solar flare X-ray spectra in the region 1.70–1.95 Å, obtained aboard the Intercosmos-4 satellite during the maximum of solar activity (October–November, 1970). With the use of 6 high resolution spectra in the region 1.85–1.87 Å the identification of lines due to 18 transitions of 2p 1s type, consisting of the resonance, intercombination and forbidden Fe xxv ion lines and the satellite Fe xxiv lines has been performed. With the use of the recent laboratory data the averaged wavelengths of the lines were obtained confirming the theoretically calculated ones with an accuracy about ± 0.0004 Å. A variable Doppler shift of the Fe xxv resonance lines was observed for the flare of November 16, 1970, which points to hot plasma motions with velocities up to 400 km s-1.  相似文献   

2.
Recent atomic data have been used to analyze a solar flare spectrum obtained with the Goddard Space Flight Center's grating spectrometer on the OSO-5 satellite. There exist in the wavelength region 90–200 Å strong lines from each of the ions Fe xviii-Fe xxiv. The Fe xxi lines can be used as an electron density diagnostic for the 107 K plasma. From our analysis of a particular flare, we find a steep positive slope in the emission measure between 106.5 and 107.2 K and an electron density of 4 × 1011 cm–3 at 107 K. We emphasise the need for high spectral and spatial resolution observations of solar flares in this wavelength region, which has to date been largely neglected.  相似文献   

3.
Results are given of the detailed analysis of fourteen Fe xxv-xxiii lines ( = 1.850–1.870 Å) in the spectra of a solar flare on 16 Nov. 1970. The spectra were obtained with a resolution of about 4 × 10–4 Å, which revealed lines not previously observed and allowed the measurement of line profiles. The measured values of the wavelengths and emission fluxes are presented and compared with theoretical calculations. The analysis of the contour of the Fe xxv line ( = 1.850 Å) leads to the conclusion that there is unidirectional macroscopic gas motion in the flare region with the velocity (projection on the line of sight) ± 90 km s–1.Measurements of the 8.42 Å Mg xii and 9.16 Å Mg xi lines in the absence of solar flares indicate prolonged existence of active regions on the solar disk with T e = 4–6 × 106K and emission measure ME 1048 cm–3. The profile of the Mg xii line indicates a macroscopic ion motion with a velocity up to 100 km s–1.  相似文献   

4.
A list of emission lines in the spectra of solar flares between 6 Å and 25 Å has been compiled using data obtained with a KAP crystal spectrometer on the OSO-5 satellite. The emission lines have been classified according to their sensitivity to flare activity. This classification provides a method for discriminating between iron in high stages of ionization (Fe xx-Fe xxv) and lower stages (Fe xvii- Fe xix), the lines of which are both present in the same spectral region during flares. Identifications consistent with these classifications are proposed. Anomalous intensities in the spectra of Fe xvii and Fe xx are pointed out, and implications of the observations for models of the X-ray emitting regions are discussed.  相似文献   

5.
The Bragg-type, flat ADP crystal spectrometer, launched on board the INTERCOSMOS 16 satellite has been used for measurements of the X-ray spectra emitted from solar active region plasmas. During the period of the instrument operation (August–September, 1976) only a few active regions were present on the Sun (minimum of the solar activity). About 60 spectra have been registered. In the present paper using a spectrum averaged over 20 scans, we measured the wavelengths corresponding to the statistically significant spectral features seen in this spectrum in the wavelength range 9.14–9.33 Å. By comparison with the calculated line wavelengths and intensities predicted in the framework of the thermal model of the average active region, we performed the identification of these features. Besides rather prominent resonance, intercombination, and forbidden lines of the He-like ion Mg xi, it was possible to identify the satellite lines which correspond to 1s 2 nl - 1s2p nl transitions from the states with n = 2, 3, and 4. The present paper is the first in a series dealing with the INTERCOSMOS 16 Mg xi spectra.  相似文献   

6.
Scanning spectrometer measurements in the range 1310–270 Å, observed from the satellite OSO 3, are reported for the solar flare of 2114 UT March 27, 1967. This flare was a long lasting sequence of bursts with EUV spectra consisting of enhanced lines and recombination continua normally emitted from the chromosphere and chromosphere-corona transition region, with unusually small increases in lines normally emited from the corona. An EUV flare spectrum is presented and suggested as one example for interpreting broadband observations of EUV bursts. Any broadband continuum other than known recombination continua contributed less than 6 % of the meassured line and hydrogen recombination continua in the range 270–1310 Å. The ratio of photon flux of Ciii 1176 Å to that of Ciii 977 Å was 0.86, which suggests an ambient density in the region of emission greater than 1012 cm-3 at temperatures near 60000 K.  相似文献   

7.
Properties of solar-flare EUV flashes measured via a type of ionospheric event, called a sudden frequency deviation (SFD), are presented. SFD's are sensitive to bursts of radiation in the 1–1030 Å wavelength range. He ii 303.8 Å, O v 629.7 Å, HL 972.5 Å and C iii 977.0 Å have essentially the same impulsive time dependence as the 1–1030 Å flash responsible for SFD's. Soft X-rays (2–20 Å) and certain EUV lines have a much slower time dependence than the 1–1030 Å flash. Most SFD's have some fine structure, but marked quasi-periodicity in EUV flashes is quite rare. EUV flashes are closely associated with hard X-ray bursts, white-light emission, microwave radio bursts and small bright impulsive kernels in the H flare. The intensity of EUV flashes depends on the central meridian distance of the H flare location; the intensity decreases at the limb. The total energy radiated in the 10–1030 Å flash for the largest events observed is about 1031 ergs.  相似文献   

8.
The Bragg Crystal Spectrometer (BCS) is one of the instruments which makes up the scientific payload of the SOLAR-A mission. The spectrometer employs four bent germanium crystals, views the whole Sun and observes the resonance line complexes of H-like Fexxvi and He-like Fexxv, Caxix, and Sxv in four narrow wavelength ranges with a resolving power (/) of between 3000 and 6000. The spectrometer has approaching ten times better sensitivity than that of previous instruments thus permitting a time resolution of better than 1 s to be achieved. The principal aim is the measurement of the properties of the 10 to 50 million K plasma created in solar flares with special emphasis on the heating and dynamics of the plasma during the impulsive phase. This paper summarizes the scientific objectives of the BCS and describes the design, characteristics, and performance of the spectrometers.After the launch the name of SOLAR-A has been changed to YOHKOH.Tragically Professor K. Tanaka died on January 2, 1990.  相似文献   

9.
In this paper we study the far-UV as well as the UV spectrum of the spectroscopic binary system SZ Psc in the wavelength ranges 1235–1950 Å and 2710–3090 Å, respectively, from spectra obtained with the International Ultraviolet Explorer (IUE). The UV spectrum of SZ Psc is mainly an emission spectrum. The short wavelength region includes emission lines formed from the low chromosphere to the transition region (e.g., Siiv,Civ, andNv) and also a deep and broad absorption line of Feii.The Mgii[1] resonance doublet at about 2800 Å presents a P Cygni profile and a multiple structure with two emission and two absorption satellite components. We also present the emission measure diagram in the temperature region 4.4T e <53.  相似文献   

10.
Extreme ultraviolet spectra of several active regions are presented and analyzed. Spectral intensities of 3 active regions observed with the NRL Skylab XUV spectroheliograph (170–630 Å) are derived. From this data density sensitive line ratios of Mg viii, Si x, S xii, Fe ix, Fe x, Fe xi, Fe xii, Fe xiii, Fe xiv, and Fe xv are examined and typically yield, to within a factor of 2, electron pressures of 1 dyne cm–2 (n e T = 6 × 1015 cm–3 K). The differential emission measure of the brightest 35 × 35 portion of an active region is obtained between 1.4 × 104 K and 5 × 106 K from HCO OSO-VI XUV (280–1370 Å) spectra published by Dupree et al. (1973). Stigmatic EUV spectra (1170–1710 Å) obtained by the NRL High Resolution Telescope and Spectrograph (HRTS) are also presented. Doppler velocities as a function of position along the slit are derived in an active region plage and sunspot. The velocities are based on an absolute wavelength scale derived from neutral chromospheric lines and are accurate to ±2 km s–1. Downflows at 105 K are found throughout the plage with typical velocities of 10 km s–1. In the sunspot, downflows are typically 5 to 20 km s–1 over the umbra and zero over the penumbra. In addition localized 90 and 150 km s–1 downflows are found in the umbra in the same 1 × 1 resolution elements which contain the lower velocity downflows. Spectral intensities and velocities in a typical plage 1 resolution element are derived. The velocities are greatest ( 10 km s–1) at 105 K with lower velocities at higher and lower temperatures. The differential emission measure between 1.3 × 104 K and 2 × 106 K is derived and is found to be comparable to that derived from the OSO-VI data. An electron pressure of 1.4 dynes cm–2 (n e T = 1.0 × 1016 cm–3 K) is determined from pressure sensitive line ratios of Si iii, O iv, and N iv. From the data presented it is shown that convection plays a major role in determining the structure and dynamics of the active region transition zone and corona.  相似文献   

11.
We present results from eclipse spectra in the wavelength region 4588–4682 Å, taken during the eclipse of February 15, 1961 at Bra, Yugoslavia. Absolute line intensities have been determined in the photosphere-chromosphere transition region. The method of reduction is discussed in Section 2 and the observed variation of the total intensity as a function of the height is shown for a number of lines in Figures 5–8. The results for the Fe i lines are compared with computations (as described in Paper I: van Dessel, 1970) for various solar model atmospheres (Section 4). The model, which combines Holweger's (1967) temperature distribution for the excitation temperature with the HSRA model (Gingerich et al., 1971) for the electron temperature, yields a better agreement than all pure LTE-models.  相似文献   

12.
The Transition Region and Coronal Explorer is a space-borne solar telescope featuring high spatial and temporal resolution. TRACE images emission from solar plasmas in three extreme-ultraviolet (EUV) wavelengths and several ultraviolet (UV) wavelengths, covering selected ion temperatures from 6000 K to 1 MK. The TRACE UV channel employs special optics to collect high-resolution solar images of the H i L line at 1216 Å, the C iv resonance doublet at 1548 and 1550 Å, the UV continuum near 1550 Å, and also a white-light image covering the spectrum from 2000–8000 Å.We present an analytical technique for creating photometrically accurate images of the C iv resonance lines from the data products collected by the TRACE UV channel. We use solar spectra from several space-borne instruments to represent a variety of solar conditions ranging from quiet Sun to active regions to derive a method, using a linear combination of filtered UV images, to generate an image of solar C iv 1550 Å emission. Systematic and statistical error estimates are also presented. This work indicates that C iv measurements will be reliable for intensities greater than 1014 photons s–1 cm–2 sr–1. This suggests that C iv 1550 Å images will be feasible with statistical error below 20% in the magnetic network, bright points, active regions, flares and other features bright in C iv. Below this intensity the derived image is dominated by systematic error and read noise from the CCD.  相似文献   

13.
We describe the RESIK (REntgenovsky Spektrometr s Izognutymi Kristalami) instrument, consisting of two double-channel X-ray spectrometers, designed to observe solar active region and flare plasmas. RESIK is one of the instruments making up the scientific payload of the Russian CORONAS-F solar mission. The uncollimated spectrometer uses two silicon and two quartz bent crystals observing flare, active region and coronal spectra in four wavelength bands with a resolving power (/ ) of 1000. The wavelength coverage, 3.3–6.1 Å, includes emission lines of Si, S, Cl, Ar, and K and in the third diffraction order, the wavelength range includes He-like Fe lines (1.85 Å) and Ni lines (1.55 Å) with dielectronic satellites, emitted during intense, hot flares. The instrument is believed to be the best calibrated space-borne crystal spectrometer flown to date. The spectrometer dynamically adjusts the data gathering intervals from 1 s to 5 minutes, depending on the level of solar X-ray emission at the time of observation. The principal aims of RESIK are the measurements of relative and absolute element abundances in the emitting plasma and the temperature distribution of plasma (differential emission measure) over the temperature interval 3 and 50 MK. This paper summarizes the scientific objectives of RESIK and describes the design, characteristics, and performance of the instrument.  相似文献   

14.
A detailed list and analysis of line identifications of five UV spectra of the RS CVn-type binary system TY Pyxidis are presented. These spectra are recorded at different phases with the International Ultraviolet Explorer (IUE). Two of them are in the wavelength range1235–1950 Å while the other three in the range2700–3110 Å.The far-UV spectrum of TY Pyx is mainly an emission spectrum dominated by the emission lines of the ions:Ci, Oi, Cii, Siii, Heii, Alii, and Feiii. We also pointed out the existence of a Feiii [34] line in absorption.The UV spectrum between 2700–3110 Å is dominated by weak absorption lines. Two satellite components are indicated for many lines, which correspond to the two stars of the system, in the two out of the three spectra (LWP 13386 and LWP 13347).Violet emission wings are observed for Fei [1], Tii [1],Oiv [1], and Siiii [1]. The UV spectrum of TY Pyx is also characterized by the multi-structure of Mgii [1] resonance lines.Based on data from the International Ultraviolet Explorer, de-archived from the Villafranca Data Archive of the European Space Agency.  相似文献   

15.
We report some results of a rocket experiment flown on 29 April, 1971. A survey of the solar corona was carried out with a pair of collimated Bragg spectrometers to study the resonance, intersystem and forbidden line emission from the helium-like ions O vii (22 Å) and Ne ix (13 Å). In the direction of dispersion the collimator provided a field of view of 1.7. Also, the continuum radiation near 3 Å was monitored by a collimated proportional counter within a view angle of 4.2. The observed X-ray emission came from the general corona, seven plage regions, and one dynamic feature- the late stage of a small flare. From the intensity of the O vii and Ne ix resonance lines the electron temperature and emission measure of the individual emitting regions are derived on the basis of two models, one (a) in which the region is assumed to be isothermal and another (b) in which the emission measure decreases exponentially with increasing temperature. The latter model, which is the most adequate of the two, yields for the electron temperature of the time-varying feature 2–3 × 106 K, for the other active regions 1.5–2.5 × 106 K, and for the general corona 1.3–1.7 × 106 K. The Ne ix emitting regions are about 1.5 times as hot as the O vii regions. The emission measure ranges from 0.4–2.3 × 1048 cm–3 for all active regions and is about 2 × 1049 cm–3 for one hemisphere of the general corona above 106 K. From an analysis of the ratio, R, of the forbidden and intersystem lines of O vii we conclude that none of the regions producing these lines at the time of the rocket flight had electron densities exceeding about 3 × 109 cm–3. Our data demonstrate a dependence of R upon temperature in agreement with the theory of Blumenthal et al. (1971). The wavelengths for the intersystem, the 1s 22s 2 S e–1s2p2s 2 P 0 satellite, and the forbidden transition show in the case of Ne ix improved agreement with predictions. The observed strength of the satellite lines for both O vii and Ne ix agrees with the predictions of Gabriel's (1972) theory, which attributes their formation to dielectronic recombination.We are saddened to report the death of A. J. Meyerott on 13 November, 1971.  相似文献   

16.
Nova Delphini 1967 has been observed in the red and photographic infrared at the Haute-Provence Observatory from September 7 to November 12, 1968. Dispersions range from 230 Å/mm to 4 Å/mm. The slope of the continuous spectrum in the region 1.3–1.7 –1 leads to a gradient of 3.06, which did not appear to vary during the observing period. This gradient is, however, very different from the value 1.71 measured on plates secured in August 1968. Lines ofHi, Hei, Heii, Feii,Oi,Cii and forbidden transitions due toOi,Oii, Fevii, Fex, Fexi,Siii,Aiii,Av,Axi and Nixv have been identified. Their intensities at various dates are given in Table II. Line profiles could be measured for a few lines taken on a 39 Å/mm spectrogram on October 3. Hei 6678 and 7065 are displayed on Figures 2 and 3. Figure 4 gives the [Oii] doublet at 7319–7330, while the H profile, obtained on October 4 can be seen on Figure 5. The line extends over more than 45 Å and narrow absorptions are seen at 6551.05; 6555.75; 6563.15; 6571.49; 6574.45. Due to the absence of published data on radial velocities of absorption lines in the visible spectrum at that time, it is not possible to give a clear identification for these features. Some of them may belong to H, while others are probably due to metals.  相似文献   

17.
We describe and analyse observations of an M1.4 flare which began at 17: 00 UT on 12 November, 1980. Ground based H and magnetogram data have been combined with EUV, soft and hard X-ray observations made with instruments on-board the Solar Maximum Mission (SMM) satellite. The preflare phase was marked by a gradual brightening of the flare site in Ov and the disappearance of an H filament. Filament ejecta were seen in Ov moving southward at a speed of about 60 km s–1, before the impulsive phase. The flare loop footpoints brightened in H and the Caxix resonance line broadened dramatically 2 min before the impulsive phase. Non-thermal hard X-ray emission was detected from the loop footpoints during the impulsive phase while during the same period blue-shifts corresponding to upflows of 200–250 km s–1 were seen in Ca xix. Evidence was found for energy deposition in both the chromosphere and corona at a number of stages during the flare. We consider two widely studied mechanisms for the production of the high temperature soft X-ray flare plasma in the corona, i.e. chromospheric evaporation, and a model in which the heating and transfer of material occurs between flux tubes during reconnection.  相似文献   

18.
We identify the Balmer 9 and 11 lines of He ii at 959 Å and 942 Å in solar spectra. These lines are produced mainly by recombination following photoionization of He ii by coronal XUV radiation. From analysis of the line intensities, we confirm the theoretical model of Avrett et al. (1976), who found that an appreciable amount of He++ is present at temperatures of 1–2 × 104 K and that the anomalously strong He ii 304 line is produced primarily by collisional excitation. We also confirm the suggestion of Kohl (1977) that the photoionization-recombination process is more important in active regions than in the quiet Sun, and we find that the 304 line is produced largely by recombination in solar flares.  相似文献   

19.
We obtained time-sequence spectroscopic observations in (Fe x) 6374 Å and (Fe xiv) 5303 Å lines successively with the 25-cm coronagraph, and narrow-band and Doppler images in 5303 Å line by the 2-D 10-cm Doppler coronagraph NOGIS at the Norikura Solar Observatory, of a coronal region for about 7 h on 9 19–20, 2001. The raster scans were obtained with a quasi-periodicity of about 14 min and NOGIS obtained the images with an interval of about 1 min. The coronal region observed showed the formation of a coronal loop by a high-speed surge in the 6374 Å line rising from one of the footpoints of the loop. Off the limb spectroscopic observations in the 6374 Å line showed large velocities along the line of sight and vertical to the solar limb at the time of formation of the loop. The 5303 Å line observations showed negligible line-of-sight velocities and low vertical velocities when compared to those in the 6374 Å line. A hump in the intensity plots in 5303 Å with height appears to move up with respect to the solar limb with an average velocity of 4km s–1. The FWHM of the 6374 Å showed a much smaller value of about 0.7 Å near the foot point as compared to a value of 1.2 Å at larger heights at the beginning of observations. Later as the loop developed, the FWHM of 6374 Å line showed a gradual decrease along the loop up to 70 from the limb, reached a minimum value of about 0.5 Å and then increased with height during the formation of the loop; this trend lasted for about 2 h. About 3 h after the beginning of the formation of the loop, the FWHM of 6374 Å emission line showed normal values and normal rate of increase with height with some fluctuations. The FWHM of the 5303 Å line did not show such variations along the loop and showed normal decrease in FWHM with height found earlier (Singh et al., 2003a). These observations suggest that a relatively cooler plasma at a temperature of about 0.7 MK or less (corresponding to minimum value of FWHM of 0.5 Å) was ejected from the transition region with a large velocity of about 48km s–1, heated up in the corona by some process and formed a coronal loop with a height of about 200 above the limb that had lifetime greater than 4 h. It appears that the plasma moved from one of the footpoints and the loop was formed by evaporation of chromospheric plasma. No large-scale brightening and H flare were observed in this region during the observational period of 7 h.On leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

20.
In the 1974 eclipse of Zeta Aurigae the satellite line of the Cai intercombination line at 6572 Å appeared in all the phases observed, i.e., near the mid-eclipse and egress, although its equivalent width, 100–200 mÅ, and velocity deviation, –20 im s–1, from the principal line were considerably less than those for the satellite line found just after the fourth contact of the 1971–72 eclipse. 31 Cygni also showed a similar satellite line to Zeta Aurigae's in the 1974 eclipse, not only in the 1972 eclipse but also outside the eclipse. These satellite lines should be due to the circumstellar gas expanding from the binary systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号