首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This study examines in detail the ‘atmospheric’ radiative feedbacks operating in a coupled General Circulation Model (GCM). These feedbacks (defined as the change in top of atmosphere radiation per degree of global surface temperature change) are due to responses in water vapour, lapse rate, clouds and surface albedo. Two types of radiative feedback in particular are considered: those arising from century scale ‘transient’ warming (from a 1% per annum compounded CO2 increase), and those operating under the model’s own unforced ‘natural’ variability. The time evolution of the transient (or ‘secular’) feedbacks is first examined. It is found that both the global strength and the latitudinal distributions of these feedbacks are established within the first two or three decades of warming, and thereafter change relatively little out to 100 years. They also closely approximate those found under equilibrium warming from a ‘mixed layer’ ocean version of the same model forced by a doubling of CO2. These secular feedbacks are then compared with those operating under unforced (interannual) variability. For water vapour, the interannual feedback is only around two-thirds the strength of the secular feedback. The pattern reveals widespread regions of negative feedback in the interannual case, in turn resulting from patterns of circulation change and regions of decreasing as well as increasing surface temperature. Considering the vertical structure of the two, it is found that although positive net mid to upper tropospheric contributions dominate both, they are weaker (and occur lower) under interannual variability than under secular change and are more narrowly confined to the tropics. Lapse rate feedback from variability shows weak negative feedback over low latitudes combined with strong positive feedback in mid-to-high latitudes resulting in no net global feedback—in contrast to the dominant negative low to mid-latitude response seen under secular climate change. Surface albedo feedback is, however, slightly stronger under interannual variability—partly due to regions of extremely weak, or even negative, feedback over Antarctic sea ice in the transient experiment. Both long and shortwave global cloud feedbacks are essentially zero on interannual timescales, with the shortwave term also being very weak under climate change, although cloud fraction and optical property components show correlation with global temperature both under interannual variability and transient climate change. The results of this modelling study, although for a single model only, suggest that the analogues provided by interannual variability may provide some useful pointers to some aspects of climate change feedback strength, particularly for water vapour and surface albedo, but that structural differences will need to be heeded in such an analysis.  相似文献   

2.
 This study performs a comprehensive feedback analysis on the Bureau of Meteorology Research Centre General Circulation Model, quantifying all important feedbacks operating under an increase in atmospheric CO2. The individual feedbacks are analysed in detail, using an offline radiation perturbation method, looking at long- and shortwave components, latitudinal distributions, cloud impacts, non-linearities under 2xCO2 and 4xCO2 warmings and at interannual variability. The water vapour feedback is divided into terms due to moisture height and amount changes. The net cloud feedback is separated into terms due to cloud amount, height, water content, water phase, physical thickness and convective cloud fraction. Globally the most important feedbacks were found to be (from strongest positive to strongest negative) those due to water vapour, clouds, surface albedo, lapse rate and surface temperature. For the longwave (LW) response the most important term of the cloud ‘optical property’ feedbacks is due to the water content. In the shortwave (SW), both water content and water phase changes are important. Cloud amount and height terms are also important for both LW and SW. Feedbacks due to physical cloud thickness and convective cloud fraction are found to be relatively small. All cloud component feedbacks (other than height) produce conflicting LW/SW feedbacks in the model. Furthermore, the optical property and cloud fraction feedbacks are also of opposite sign. The result is that the net cloud feedback is the (relatively small) product of conflicting physical processes. Non-linearities in the feedbacks are found to be relatively small for all but the surface albedo response and some cloud component contributions. The cloud impact on non-cloud feedbacks is also discussed: greatest impact is on the surface albedo, but impact on water vapour feedback is also significant. The analysis method here proves to be a␣powerful tool for detailing the contributions from different model processes (and particularly those of the clouds) to the final climate model sensitivity. Received: 15 June 2000 / Accepted: 10 January 2001  相似文献   

3.
This study presents a comparison of the water vapor and clear-sky greenhouse effect dependence on sea surface temperature for climate variations of different types. Firstly, coincident satellite observations and meteorological analyses are used to examine seasonal and interannual variations and to evaluate the performance of a general circulation model. Then, this model is used to compare the results inferred from the analysis of observed climate variability with those derived from global climate warming experiments. One part of the coupling between the surface temperature, the water vapor and the clear-sky greenhouse effect is explained by the dependence of the saturation water vapor pressure on the atmospheric temperature. However, the analysis of observed and simulated fields shows that the coupling is very different according to the type of region under consideration and the type of climate forcing that is applied to the Earth-atmosphere system. This difference, due to the variability of the vertical structure of the atmosphere, is analyzed in detail by considering the temperature lapse rate and the vertical profile of relative humidity. Our results suggest that extrapolating the feedbacks inferred from seasonal and short-term interannual climate variability to longer-term climate changes requires great caution. It is argued that our confidence in climate models' predictions would be increased significantly if the basic physical processes that govern the variability of the vertical structure of the atmosphere, and its relation to the large-scale circulation, were better understood and simulated. For this purpose, combined observational and numerical studies focusing on physical processes are needed.  相似文献   

4.
We here use a coupled atmosphere-surface single column climate model to illustrate how the CFRAM, a new climate feedback analysis framework formulated in Part I of the two-part series papers, can be applied to isolate individual contributions to the total temperature change of a climate system from the external forcing alone, and from each of individual physical and dynamical processes associated with the energy transfer with the space and within the climate system. We demonstrate that the isolation of individual feedbacks in the CFRAM is achieved without referencing to a virtual climate system as in the online feedback suppression method. We show that partial temperature changes estimated by the online feedback suppression method include the “compensating effects” of other feedbacks when the feedback under consideration is suppressed. The partial temperature changes are addable in the CFRAM but they are not in the online feedback suppression method. We also apply the CFRAM to isolate the contributions to the lapse rate feedback from individual physical and dynamical feedback processes. We show that the lapse rate feedback includes not only the partial effect of each feedback that directly contributes to energy flux perturbations at the TOA (such as water vapor feedback), but also the total effects of those feedbacks that do not contribute to energy flux perturbations at the TOA (such as evaporation and moist convection feedbacks). Because the contributions to the lapse rate feedback from various physical and dynamical processes tend to cancel one another, the net lapse rate feedback is a residual of many large terms. This leads to a large uncertainty not only in estimating the lapse rate feedback itself, but also in other feedbacks whose effects are either partially or totally lumped into the lapse rate feedback.  相似文献   

5.
In this study, a coupled atmosphere-surface “climate feedback-response analysis method” (CFRAM) was applied to the slab ocean model version of the NCAR CCSM3.0 to understand the tropospheric warming due to a doubling of CO2 concentration through quantifying the contributions of each climate feedback process. It is shown that the tropospheric warming displays distinct meridional and vertical patterns that are in a good agreement with the multi-model mean projection from the IPCC AR4. In the tropics, the warming in the upper troposphere is stronger than in the lower troposphere, leading to a decrease in temperature lapse rate, whereas in high latitudes the opposite it true. In terms of meridional contrast, the lower tropospheric warming in the tropics is weaker than that in high latitudes, resulting in a weakened meridional temperature gradient. In the upper troposphere the meridional temperature gradient is enhanced due to much stronger warming in the tropics than in high latitudes. Using the CFRAM method, we analyzed both radiative feedbacks, which have been emphasized in previous climate feedback analysis, and non-radiative feedbacks. It is shown that non-radiative (radiative) feedbacks are the major contributors to the temperature lapse rate decrease (increase) in the tropical (polar) region. Atmospheric convection is the leading contributor to temperature lapse rate decrease in the tropics. The cloud feedback also has non-negligible contributions. In the polar region, water vapor feedback is the main contributor to the temperature lapse rate increase, followed by albedo feedback and CO2 forcing. The decrease of meridional temperature gradient in the lower troposphere is mainly due to strong cooling from convection and cloud feedback in the tropics and the strong warming from albedo feedback in the polar region. The strengthening of meridional temperature gradient in the upper troposphere can be attributed to the warming associated with convection and cloud feedback in the tropics. Since convection is the leading contributor to the warming differences between tropical lower and upper troposphere, and between the tropical and polar regions, this study indicates that tropical convection plays a critical role in determining the climate sensitivity. In addition, the CFRAM analysis shows that convective process and water vapor feedback are the two major contributors to the tropical upper troposphere temperature change, indicating that the excessive upper tropospheric warming in the IPCC AR4 models may be due to overestimated warming from convective process or underestimated cooling due to water vapor feedback.  相似文献   

6.
The finding that surface warming over the Arctic exceeds that over the rest of the world under global warming is a robust feature among general circulation models (GCMs). While various mechanisms have been proposed, quantifying their relative contributions is an important task in order to understand model behavior. Here we apply a recently proposed feedback analysis technique to an atmosphere–ocean GCM under two and four times CO2 concentrations which approximately lead to seasonally and annually sea ice-free climates. The contribution of feedbacks to Arctic temperature change is investigated. The surface warming in the Arctic is contributed by albedo, water vapour and large-scale condensation feedbacks and reduced by the evaporative cooling feedback. The surface warming contrast between the Arctic and the global averages (AA) is maintained by albedo and evaporative cooling feedbacks. The latter contributes to AA predominantly by cooling the low latitudes more than the Arctic. Latent heat transport into the Arctic increases and hence evaporative cooling plus large-scale condensation feedback contributes positively to AA. On the other hand, dry-static energy transport into the Arctic decreases and hence dynamical heating feedback contributes negatively to AA. An important contribution is thus made via changes in hydrological cycle and not via the ‘dry’ heat transport process. A larger response near the surface than aloft in the Arctic is maintained by the albedo, water vapour, and dynamical heating feedbacks, in which the albedo and water vapour feedbacks contribute through warming the surface more than aloft, and the dynamical heating feedback contributes by cooling aloft more than the surface. In our experiments, ocean and sea ice dynamics play a secondary role. It is shown that a different level of CO2 increase introduces a latitudinal and seasonal difference into the feedbacks.  相似文献   

7.
The water vapour feedback is the largest physical climate feedback. It also gives the second-largest contribution to the range of uncertainty in climate sensitivity in General Circulation Models (GCMs). Tracing these differences back to their physical causes in the hope of constraining climate sensitivity requires an appropriate quantification. Yet the Intergovernmental Panel on Climate Change judge that the conventional diagnosis of a “water vapour feedback” and a “lapse rate feedback” provides little insight into differences between GCMs’ climate sensitivities. We show that the conventionally diagnosed water vapour feedback is in fact formally useless for investigating differences between GCMs’ climate sensitivities—the anticorrelation between conventional “water vapour feedback” and “lapse rate feedback” makes the correlation between the “water vapour feedback” and their sum insignificant: i.e. statistically, knowing this “feedback” allows one to conclude nothing about the sum and thence about climate sensitivity. This follows primarily from how little relative humidity (RH) changes with climate change in GCMs. A more detailed physical analysis concludes that the overall mean decrease of RH on warming seen in GCMs is robustly physically based. This and other physical arguments then suggest that the stronger the positive “water vapour feedback”, the less sensitive climate can be expected to be. A diagnosis based on the “partly-Simpsonian” model of water vapour feedback avoids these problems. On the conventional view of the water vapour feedback, naive extrapolation of variations within present-day climate suggests that parts of our planet are close to locally reaching conditions that would allow a run-away water vapour greenhouse effect once they were extensive enough. Of course this has never occurred in geological history, and is not seen in Earth-like GCMs. Again, the “partly-Simpsonian” approach provides a simple qualitative explanation, by showing that the water vapour feedback can only cancel part of the basic Planck’s Law negative feedback.  相似文献   

8.
This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.  相似文献   

9.
The use of radiative kernels to diagnose climate feedbacks is a recent development that may be applied to existing climate change simulations. We apply the radiative kernel technique to transient simulations from a multi-thousand member perturbed physics ensemble of coupled atmosphere-ocean general circulation models, comparing distributions of model feedbacks with those taken from the CMIP-3 multi GCM ensemble. Although the range of clear sky longwave feedbacks in the perturbed physics ensemble is similar to that seen in the multi-GCM ensemble, the kernel technique underestimates the net clear-sky feedbacks (or the radiative forcing) in some perturbed models with significantly altered humidity distributions. In addition, the compensating relationship between global mean atmospheric lapse rate feedback and water vapor feedback is found to hold in the perturbed physics ensemble, but large differences in relative humidity distributions in the ensemble prevent the compensation from holding at a regional scale. Both ensembles show a similar range of response of global mean net cloud feedback, but the mean of the perturbed physics ensemble is shifted towards more positive values such that none of the perturbed models exhibit a net negative cloud feedback. The perturbed physics ensemble contains fewer models with strong negative shortwave cloud feedbacks and has stronger compensating positive longwave feedbacks. A principal component analysis used to identify dominant modes of feedback variation reveals that the perturbed physics ensemble produces very different modes of climate response to the multi-model ensemble, suggesting that one may not be used as an analog for the other in estimates of uncertainty in future response. Whereas in the multi-model ensemble, the first order variation in cloud feedbacks shows compensation between longwave and shortwave components, in the perturbed physics ensemble the shortwave feedbacks are uncompensated, possibly explaining the larger range of climate sensitivities observed in the perturbed simulations. Regression analysis suggests that the parameters governing cloud formation, convection strength and ice fall speed are the most significant in altering climate feedbacks. Perturbations of oceanic and sulfur cycle parameters have relatively little effect on the atmospheric feedbacks diagnosed by the kernel technique.  相似文献   

10.
This study aims to analyse the interannual variability simulated by several regional climate models (RCMs), and its potential for disguising the effect of seasonal temperature increases due to greenhouse gases. In order to accomplish this, we used an ensemble of regional climate change projections over North America belonging to the North American Regional Climate Change Program, with an additional pair of 140-year continuous runs from the Canadian RCM. We find that RCM-simulated interannual variability shows important departures from observed one in some cases, and also from the driving models’ variability, while the expected climate change signal coincides with estimations presented in previous studies. The continuous runs from the Canadian RCM were used to illustrate the effect of interannual variability in trend estimation for horizons of a decade or more. As expected, it can contribute to the existence of transitory cooling trends over a few decades, embedded within the expected long-term warming trends. A new index related to signal-to-noise ratio was developed to evaluate the expected number of years it takes for the warming trend to emerge from interannual variability. Our results suggest that detection of the climate change signal is expected to occur earlier in summer than in winter almost everywhere, despite the fact that winter temperature generally has a much stronger climate change signal. In particular, we find that the province of Quebec and northwestern Mexico may possibly feel climate change in winter earlier than elsewhere in North America. Finally, we show that the spatial and temporal scales of interest are fundamental for our capacity of discriminating climate change from interannual variability.  相似文献   

11.
Two European temperature reconstructions for the past half-millennium, January-to-April air temperature for Stockholm (Sweden) and seasonal temperature for a Central European region, both derived from the analysis of documentary sources and long instrumental records, are compared with the output of climate simulations with the model ECHO-G. The analysis is complemented by comparisons with the long (early)-instrumental record of Central England Temperature (CET). Both approaches to study past climates (simulations and reconstructions) are burdened with uncertainties. The main objective of this comparative analysis is to identify robust features and weaknesses in each method which may help to improve models and reconstruction methods. The results indicate a general agreement between simulations obtained with temporally changing external forcings and the reconstructed Stockholm and CET records for the multi-centennial temperature trend over the recent centuries, which is not reproduced in a control simulation. This trend is likely due to the long-term change in external forcing. Additionally, the Stockholm reconstruction and the CET record also show a clear multi-decadal warm episode peaking around AD 1730, which is absent in the simulations. Neither the reconstruction uncertainties nor the model internal climate variability can easily explain this difference. Regarding the interannual variability, the Stockholm series displays, in some periods, higher amplitudes than the simulations but these differences are within the statistical uncertainty and further decrease if output from a regional model driven by the global model is used. The long-term trend of the CET series agrees less well with the simulations. The reconstructed temperature displays, for all seasons, a smaller difference between the present climate and past centuries than is seen in the simulations. Possible reasons for these differences may be related to a limitation of the traditional ‘indexing’ technique for converting documentary evidence to temperature values to capture long-term climate changes, because the documents often reflect temperatures relative to the contemporary authors’ own perception of what constituted ‘normal’ conditions. By contrast, the amplitude of the simulated and reconstructed inter-annual variability agrees rather well.  相似文献   

12.
Understanding the response of the global hydrological cycle to recent and future anthropogenic emissions of greenhouse gases and aerosols is a major challenge for the climate modelling community. Recent climate scenarios produced for the fourth assessment report of the Intergovernmental Panel on Climate Change are analysed here to explore the geographical origin of, and the possible reasons for, uncertainties in the hydrological model response to global warming. Using the twentieth century simulations and the SRES-A2 scenarios from eight different coupled ocean–atmosphere models, it is shown that the main uncertainties originate from the tropics, where even the sign of the zonal mean precipitation change remains uncertain over land. Given the large interannual fluctuations of tropical precipitation, it is then suggested that the El Niño Southern Ocillation (ENSO) variability can be used as a surrogate of climate change to better constrain the model reponse. While the simulated sensitivity of global land precipitation to global mean surface temperature indeed shows a remarkable similarity between the interannual and climate change timescales respectively, the model ability to capture the ENSO-precipitation relationship is not a major constraint on the global hydrological projections. Only the model that exhibits the highest precipitation sensitivity clearly appears as an outlier. Besides deficiencies in the simulation of the ENSO-tropical rainfall teleconnections, the study indicates that uncertainties in the twenty-first century evolution of these teleconnections represent an important contribution to the model spread, thus emphasizing the need for improving the simulation of the tropical Pacific variability to provide more reliable scenarios of the global hydrological cycle. It also suggests that validating the mean present-day climate is not sufficient to assess the reliability of climate projections, and that interannual variability is another suitable and possibly more useful candidate for constraining the model response. Finally, it is shown that uncertainties in precipitation change are, like precipitation itself, very unevenly distributed over the globe, the most vulnerable countries sometimes being those where the anticipated precipitation changes are the most uncertain.  相似文献   

13.
The interannual variability of global temperature and precipitation during the last millennium is analyzed using the results of ten coupled climate models participating in the Paleoclimate Modelling Intercomparison Project Phase 3. It is found that large temperature(precipitation) variability is most dominant at high latitudes(tropical monsoon regions), and the seasonal magnitudes are greater than the annual mean. Significant multi-decadal-scale changes exist throughout the whole period for the zonal mean of both temperature and precipitation variability, while their long-term trends are indistinctive. The volcanic forcings correlate well with the temperature variability at midlatitudes, indicating possible leading drivers for the interannual time scale climate change.  相似文献   

14.
R. A. Colman 《Climate Dynamics》2001,17(5-6):391-405
This study addresses the question: what vertical regions contribute the most to water vapor, surface temperature, lapse rate and cloud fraction feedback strengths in a general circulation model? Multi-level offline radiation perturbation calculations are used to diagnose the feedback contribution from each model level. As a first step, to locate regions of maximum radiative sensitivity to climate changes, the top of atmosphere radiative impact for each feedback is explored for each process by means of idealized parameter perturbations on top of a control (1?×?CO2) model climate. As a second step, the actual feedbacks themselves are calculated using the changes modelled from a 2?×?CO2 experiment. The impact of clouds on water vapor and lapse rate feedbacks is also isolated using `clear sky' calculations. Considering the idealized changes, it is found that the radiative sensitivity to water vapor changes is a maximum in the tropical lower troposphere. The sensitivity to temperature changes has both upper and lower tropospheric maxima. The sensitivity to idealized cloud changes is positive (warming) for upper level cloud increases but negative (cooling) for lower level increases, due to competing long and shortwave effects. Considering the actual feedbacks, it is found that water vapor feedback is a maximum in the tropical upper troposphere, due to the large relative increases in specific humidity which occur there. The actual lapse rate feedback changes sign with latitude and is a maximum (negative) again in the tropical upper troposphere. Cloud feedbacks reflect the general decrease in low- to mid-level low-latitude cloud, with an increase in the very highest cloud. This produces a net positive (negative) shortwave (longwave) cloud feedback. The role of clouds in the strength of the water vapor and lapse rate feedbacks is also discussed.  相似文献   

15.
 A method is described for evaluating the ‘partial derivatives’ of globally averaged top-of-atmosphere (TOA) radiation changes with respect to basic climate model physical parameters. This method is used to analyse feedbacks in the Australian Bureau of Meteorology Research Centre general circulation model. The parameters considered are surface temperature, water vapour, lapse rate and cloud cover. The climate forcing which produces the changes is a globally uniform sea surface temperature (SST) perturbation. The first and second order differentials of model parameters with respect to the forcing (i.e. SST changes) are estimated from quadratic least square fitting. Except for total cloud cover, variables are found to be strong functions of global SST. Strongly non-linear variations of lapse rate and high cloud amount and height appear to relate to the non-linear response in penetrative convection. Globally averaged TOA radiation differentials with respect to model parameters are also evaluated. With the exception of total cloud contributions, a high correlation is generally found to exist, on the global mean level, between TOA radiation and the respective parameter perturbations. The largest non-linear terms contributing to radiative changes are those due to lapse rate and high cloud. The contributions of linear and non-linear terms to the overall radiative response from a 4 K SST perturbation are assessed. Significant non-linear responses are found to be associated with lapse rate, water vapour and cloud changes. Although the exact magnitude of these responses is likely to be a function of the particular model as well as the imposed SST perturbation pattern, the present experiments flag these as processes which cannot properly be understood from linear theory in the evaluation of climate change sensitivity. Received: 16 January 1997/Accepted: 9 May 1997  相似文献   

16.
Integrated assessment models (IAMs) have commonly been used to understand the relationship between the economy, the earth’s climate system and climate impacts. We compare the IPCC simulations of CO2 concentration, radiative forcing, and global mean temperature changes associated with five SRES ‘marker’ emissions scenarios with the responses of three IAMs—DICE, FUND and PAGE—to these same emission scenarios. We also compare differences in simulated temperature increase resulting from moving from a high to a low emissions scenario. These IAMs offer a range of climate outcomes, some of which are inconsistent with those of IPCC, due to differing treatments of the carbon cycle and of the temperature response to radiative forcing. In particular, in FUND temperatures up until 2100 are relatively similar for the four emissions scenarios, and temperature reductions upon switching to lower emissions scenarios are small. PAGE incorporates strong carbon cycle feedbacks, leading to higher CO2 concentrations in the twenty-second century than other models. Such IAMs are frequently applied to determine ‘optimal’ climate policy in a cost–benefit approach. Models such as FUND which show smaller temperature responses to reducing emissions than IPCC simulations on comparable timescales will underestimate the benefits of emission reductions and hence the calculated ‘optimal’ level of investment in mitigation.  相似文献   

17.
Climate variability is an important inherent characteristic of climate and it varies on all timescales. Through examination of temperature variability on multiple temporal scales at 63 stations over the eastern and central Tibetan Plateau (TP) during 1960-2008, we find decreasing trends in daily and intraannual temperature, especially in cold seasons (autumn and winter). These changes are more sensitive than those in the eastern China coastal region at the same latitude and indicate an asymmetric change of temperature, with hourly, daily, and monthly trends in cold periods stronger than those in warm periods during the recent years. The variation of interannual temperature is complex, showing an increasing trend in autumn and winter and decreasing trend in spring and summer, which is similar to those in the northern polar region. The changes of multiscale variability of temperature are mainly related to changes of atmospheric water vapor, cloudiness, anthropogenic aerosols, monsoon-driven climate, and some local factors. To find the influences of local conditions on temperature variability, we analyze the effects of altitude, topography, and urbanization. The results show that elevation is strongly and positively related to diurnal temperature range (DTR) and slightly positively related to interannual temperature variability (IVT), but intraannual temperature variability shows no clear elevation dependency. Topography and urbanization also play important roles in multiscale temperature variability. Finally, strong relationships are observed between temperature variability on each scale and different extreme indices.  相似文献   

18.
The absence of memory in the climatic forcing of glaciers   总被引:1,自引:1,他引:0  
Glaciers respond to both long-term, persistent climate changes as well as the year-to-year variability that is inherent to a constant climate. Distinguishing between these two causes of length change is important for identifying the true climatic cause of past glacier fluctuations. A key step in addressing this is to determine the relative importance of year-to-year variability in climate relative to more persistent climate fluctuations. We address this question for European climate using several long-term observational records: a century-long, Europe-wide atmospheric gridded dataset; longer-term instrumental measurements of summertime temperature where available (up to 250 years); and seasonal and annual records of glacier mass balance (between 30 and 50 years). After linear detrending of the datasets, we find that throughout Europe persistence in both melt-season temperature and annual accumulation is generally indistinguishable from zero. The main exception is in Southern Europe where a degree of interannual persistence can be identified in summertime temperatures. On the basis of this analysis, we conclude that year-to-year variability dominates the natural climate forcing of glacier fluctuations on timescales up to a few centuries.  相似文献   

19.
Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere.  相似文献   

20.
There is an ongoing important debate about the role of water vapour in climate change. Predictions of future climate change depend strongly on the magnitude of the water vapour feedback and until now models have almost exclusively been relied upon to quantify this feedback. In this work we employ observations of water vapour changes, together with detailed radiative calculations to estimate the water vapour feedback for the case of the Mt. Pinatubo eruption. We then compare our observed estimate with that calculated from a relatively large ensemble of simulations from a complex coupled climate model. We calculate an observed water vapour feedback parameter of –1.6 Wm–2 K–1, with uncertainty placing the feedback parameter between –0.9 to –2.5 Wm–2 K–1. The uncertain is principally from natural climate variations that contaminate the volcanic cooling. The observed estimates are consistent with that found in the climate model, with the ensemble average model feedback parameter being –2.0 Wm–2 K–1, with a 5–95% range of –0.4 to –3.6 Wm–2 K–1 (as in the case of the observations, the spread is due to an inability to separate the forced response from natural variability). However, in both the upper troposphere and Southern Hemisphere the observed model water vapour response differs markedly from the observations. The observed range represents a 40%–400% increase in the magnitude of surface temperature change when compared to a fixed water vapour response and is in good agreement with values found in other studies. Variability, both in the observed value and in the climate models feedback parameter, between different ensemble members, suggests that the long-term water vapour feedback associated with global climate change could still be a factor of 2 or 3 different than the mean observed value found here and the model water vapour feedback could be quite different from this value; although a small water vapour feedback appears unlikely. We also discuss where in the atmosphere water vapour changes have their largest effect on surface climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号