首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major‐ion compositions of groundwater are employed in this study of the water–rock interactions and hydrogeochemical evolution within a carbonate aquifer system. The groundwater samples were collected from boreholes or underground tunnels in the Ordovician limestone of Yanzhou Coalfield where catastrophic groundwater inflows can be hazardous to mining and impact use of the groundwater as a water supply. The concentration of total dissolved solid (TDS) ranged from 961 to 3555 mg/l and indicates moderately to highly mineralized water. The main water‐type of the middle Ordovician limestone groundwater is Ca‐Mg‐SO4, with SO42‐ ranging from 537 to 2297 mg/l, and average values of Ca2+ and Mg2+ of 455.7 and 116.6 mg/l, respectively. The water samples were supersaturated with respect to calcite and dolomite and undersaturated or saturated with respect to gypsum. Along the general flow direction, deduced from increases of TDS and Cl, the main water–rock interactions that caused hydrogeochemical evolution of the groundwater within the aquifer were the dissolution of gypsum, the precipitation of calcite, the dissolution or precipitation of dolomite, and ion exchange. Ion exchange is the major cause for the lower mole concentration of Ca2+ than that of SO42‐. The groundwater level of Ordovician aquifer is much higher than that of C‐P coal‐bearing aquifers, so the potential flow direction is upward, and the pyrite in coal is not a possible source of sulfate; additional data on the stable sulfur and oxygen isotopic composition of the sulfate may be helpful to identify its origin. Although ion exchange probably accounts for the higher mole concentration of Na+ than that of Cl, the dissolution of aluminosilicate cannot be ruled out. The data evaluation methods and results of this study could be useful in other areas to understand flow paths in aquifers and to provide information needed to identify the origin of groundwater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Stable isotopic (δDVSMOW and δ18OVSMOW) and geochemical signatures were employed to constrain the geochemical evolution and sources of groundwater recharge in the arid Shule River Basin, Northwestern China, where extensive groundwater extraction occurs for agricultural and domestic supply. Springs in the mountain front of the Qilian Mountains, the Yumen‐Tashi groundwater (YTG), and the Guazhou groundwater (GZG) were Ca‐HCO3, Ca‐Mg‐HCO3‐SO4 and Na‐Mg‐SO4‐Cl type waters, respectively. Total dissolved solids (TDS) and major ion (Mg2+, Na+, Ca2+, K+, SO42?, Cl? and NO3?) concentrations of groundwater gradually increase from the mountain front to the lower reaches of the Guazhou Basin. Geochemical evolution in groundwater was possibly due to a combination of mineral dissolution, mixing processes and evapotranspiration along groundwater flow paths. The isotopic and geochemical variations in melt water, springs, river water, YTG and GZG, together with the end‐member mixing analysis (EMMA) indicate that the springs in the mountain front mainly originate from precipitation, the infiltration of melt water and river in the upper reaches; the lateral groundwater from the mountain front and river water in the middle reaches are probably effective recharge sources for the YTG, while contribution of precipitation to YTG is extremely limited; the GZG is mainly recharged by lateral groundwater flow from the Yumen‐Tashi Basin and irrigation return flow. The general characteristics of groundwater in the Shule River Basin have been initially identified, and the results should facilitate integrated management of groundwater and surface water resources in the study area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major‐ions, the chemical composition is classified as Na‐Ca‐Cl‐SO4, Na‐Cl, or Na‐Ca‐Cl type water. δ2H and δ18O values range from ?47.7‰ to ?12.8‰ and from ?7.0‰ to ?1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. 87Sr/86Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. 3H and 14C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher‐elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest‐to‐southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers.  相似文献   

4.
Affected by structural uplift,the Ordovician carbonate rockbed in the Tarim Basin,China,was exposed to dissolution and reformation of atmospheric precipitation many times,and formed a large quantity of karst caves serving as hydrocarbon reservoir.However,drilling in Tahe area showed that many large karst caves,small pores and fractures are filled by calcite,resulting in decrease in their reservoir ability.Calcite filled in the karst caves has very light oxygen isotopic composition and87Sr/86Sr ratio.Its 18OPDB ranges from 21.2‰to 13.3‰with the average of 16.3‰and its87Sr/86Sr ratio ranges from0.709561 to 0.710070 with the average of 0.709843.The isotope composition showed that calcite is related to atmospheric precipitation.Theoretic analyses indicated that the dissolving and filling actions of the precipitation on carbonate rocks are controlled by both thermodynamic and kinetic mechanisms.Among them,the thermodynamic factor determines that the precipitation during its flow from the earth surface downward plays important roles on carbonate rocks from dissolution to saturation,further sedimentation,and finally filling.In other words,the depth of the karstification development is not unrestricted,but limited by the precipitation beneath the earth surface.On the other hand,the kinetic factor controls the intensity,depth,and breadth of the karstification development,that is,the karstification is also affected by topographic,geomorphologic,climatic factors,the degree of fracture or fault,etc.Therefore,subject to their joint effects,the karstification of the precipitation on the Ordovician carbonate rocks occurs only within a certain depth(most about 200 m)under the unconformity surface,deeper than which carbonate minerals begin to sedimentate and fill the karst caves that were formed previously.  相似文献   

5.
High groundwater salinity has become a major concern in the arid alluvial plain of the Dunhuang Basin in northwestern China because it poses a significant challenge to water resource management. Isotopic and geochemical analyses were conducted on 55 water samples from springs, boreholes and surface water to identify potential sources of groundwater salinity and analyse the processes that control increasing salinity. The total dissolved solid (TDS) content in the groundwater ranged from 400 to 41 000 mg/l, and high TDS values were commonly associated with shallow water tables and flow‐through and discharge zones in unconfined aquifers. Various groundwater contributions from rainwater, agricultural irrigation, river water infiltration and lateral inflows from mountains were identified by major ions and δD and δ18O. In general, HCO3? and SO42? were the dominant anions in groundwater with a salinity of <2500 mg/l, whereas Cl? and SO42? were the dominant anions in groundwater with a salinity of >2500 mg/l. The major ion concentrations indicated that mineral weathering, including carbonate and evaporite dissolution, primarily affected groundwater salinity in recharge areas. Evapotranspiration controlled the major ion concentration evolution and salinity distribution in the unconfined groundwaters in the flow‐through and discharge areas, although it had a limited effect on groundwater in the recharge areas and confined aquifers. Agricultural irrigation increased the water table and enhanced evapotranspiration in the oasis areas of the basin. TDS and Cl became more concentrated, but H and O isotopes were not enriched in the irrigation district, indicating that transpiration dominated the increasing salinity. For other places in the basin, as indicated by TDS, Cl, δD and δ18O characteristics, evaporation, transpiration and water–rock interactions dominated at different hydrogeological zones, depending on the plant coverage and hydrogeological conditions. Groundwater ages of 3H, and δD and δ18O compositions and distributions suggest that most of the groundwaters in Dunhuang Basin have a paleometeoric origin and experienced a long residence time. These results can contribute to groundwater management and future water allocation programmes in the Dunhuang Basin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Intensive water sampling in conjunction with hydrological observations was conducted during three different rainstorms in order to understand the effects of rainfall events on the temporal variation of streamwater chemistry in a small headwater forest catchment. Concentrations of Na+ and SO42? decreased as the discharge rate increased. Hydrograph separation of the components was made using the three‐component model based on the end‐members mixing analysis (EMMA). The three end‐members were:
  • 1 the groundwater in the saturated zone that prescribes the chemistry of the baseflow;
  • 2 the throughfall that dilutes the streamwater;
  • 3 the groundwater in the transient saturated zone prescribed, which was dependent on the groundwater level.
When the groundwater level was lower, only the two components, groundwater in the saturated zone and throughfall, affected the streamwater chemistry. When the groundwater level rose and the saturated zone spread, the groundwater in the transient saturated zone became the third component. When the groundwater in the transient saturated zone contributed to the discharge, this component became the dominant source and the streamwater chemistry was affected by the groundwater chemistry in the transient saturated zone. When this component was discharged as the saturation overland flow, the streamwater chemistry was greatly affected by this component. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Multiple sulfur and oxygen isotope compositions in Beijing aerosol   总被引:1,自引:0,他引:1  
Multiple sulfur isotopes(32S, 33 S, 34 S, 36S) and oxygen isotopes(16O, 18O) in Beijing aerosols were measured with MAT-253 isotope mass spectrometer. The δ34S values of Beijing aerosol samples range from 1.68‰ to 12.57‰ with an average value of 5.86‰, indicating that the major sulfur source is from direct emission during coal combustion. The δ18O values vary from 5.29‰ to 9.02‰ with an average value of 5.17‰, revealing that the sulfate in Beijing aerosols is mainly composed of the secondary sulfate. The main heterogeneous oxidation of SO2 in atmosphere is related to H2O2 in July and August, whereas H2O2 oxidation and Fe3+ catalytic oxidation with SO2 exist simultaneously in September and October. Remarkable sulfur isotope mass-independent fractionation effect is found in Beijing aerosols, which is commonly attributed to the photochemical oxidation of SO2 in the stratosphere. In addition, thermochemical reactions of sulfur-bearing compounds might be also a source of sulfur isotope anomalies based on the correlation between ?33S and CAPE.  相似文献   

8.
The hydrochemical analyses of twenty-three springs were used to determine the properties and types of groundwater of the Tertiary-Quaternary Aquifer of northern Jordan. The result shows that the geological formation influences the quality of the investigated groundwater more than the anthropogenic factors. The water of the Quaternary-Tertiary aquifer is enriched in Ca++ due to the dissolution of the nearby carbonate rocks. The investigated water has a low EC values with Ca(Na)-HCO3 water type. Most springs belong to this hydrochemical facies except Malka. Groundwater in the Malka wells has high salinity with NaCl waters and a strong Ca(Mg)-HCO3 facies (900 to 1000 mg/l TDS). The area long-term hydrochemical data have been also evaluated; general trend of increase of the analyzed ion was observed. Bicarbonate represents the most abundant anion in the studied water, which exceeds the permissible limits. Nitrates (NO 3 ? ) also exceed the permissible limit and are the most common contaminant in the investigated water. Data on dissolved major and trace elements (K+, Na+, Mg2+, Ca2+, Cl?, SO 4 2? , Fe, Zn, Cu and Pb) in the investigated water revealed that the concentrations lie within the natural background range. The positive correlation values between various ions indicate that most of ions come from same lithological sources. According to the residual sodium carbonate, and EC values, the studied springs are suitable for agricultural purposes.  相似文献   

9.
This paper reports a detailed geochemical study of thermal occurrences as observed in the edifice and on the flanks of Mendeleev Volcano, Kunashir Island in August and September 2015. We showed that three main types of thermal water are discharged there (neutral chloride sodium, acid chloride sulfate, and acid sulfate types); these waters exhibit a zonality that is typical of volcano-hydrothermal island arc systems. Spontaneous and solfataric gases have relatively low 3He/4He ratios, ranging between 5.4Ra and 5.6Ra, and δ13C-CO2 between –4.8‰ and –3.1‰, and contain a light isotope of carbon in methane (δ13C ≈ –40‰). Gas and isotope geothermometers yield relatively low temperatures around 200°C. The isotope compositions in all types of water are similar to that of local meteoric water. The distribution of microcomponents varies among different types. The isotope composition of dissolved Sr varies considerably, from 0.7034 as observed in Kunashir rocks on an average to 0.7052 in coastal springs, which may have resulted from admixtures of seawater. The total hydrothermal transport rates of magmatic Cl and SO4, as observed for Mendeleev Volcano, are 7.8 t/d and 11.6 t/d, respectively. The natural outward transport of heat by the volcano’s hydrothermal system is estimated as 21 MW.  相似文献   

10.
The recharge location for many springs is unknown because they can be sourced from proximal, shallow, atmospheric sources or long‐traveled, deep, regional aquifers. The stable isotope (18O and 2H) geochemistry of springs water can provide cost‐effective indications of relative flow path distance without the expense of drilling boreholes, conducting geophysical studies, or building groundwater flow models. Locally sourced springs generally have an isotopic signature similar to local precipitation for that region and elevation. Springs with a very different isotopic composition than local meteoric inputs likely have non‐local recharge, representing a regional source. We tested this local vs. regional flow derived hypothesis with data from a new, large springs isotopic database from studies across Western North America in Arizona, Nevada, and Alberta. The combination of location‐specific precipitation data with stable isotopic groundwater data provides an effective method for flow path determination at springs. We found springs in Arizona issue from a mix of regional and local recharge sources. These springs have a weak elevation trend across 1588 m of elevation where higher elevation springs are only slightly more depleted than low elevation springs with a δ18O variation of 5.9‰. Springs sampled in Nevada showed a strong elevation‐isotope relationship with high‐elevation sites discharging depleted waters and lower elevation springs issuing enriched waters; only a 2.6‰ difference exists in 18O values over an elevation range of more than 1500 m. Alberta's springs are mostly sourced from local flow systems and show a moderate elevation trend of 1200 m, but the largest range in δ18O, 7.1‰.  相似文献   

11.
Comparison of the chemical characteristics of spring and river water draining the flanks of Poa´s Volcano, Costa Rica indicates that acid chloride sulfate springs of the northwestern flank of the volcano are derived by leakage and mixing of acid brines formed in the summit hydrothermal system with dilute flank groundwater. Acid chloride sulfate waters of the Rio Agrio drainage basin on the northwestern flank are the only waters on Poa´s that are affected by leakage of acid brines from the summit hydrothermal system. Acid sulfate waters found on the northwestern flank are produced by the interaction of surface and shallow groundwater with dry and wet acid deposition of SO2 and H2SO4 aerosols, respectively. The acid deposition is caused by a plume of acid gases that is released by a shallow magma body located beneath the active crater of Poa´s.No evidence for a deep reservoir of neutral pH sodium chloride brine is found at Poa´s. The lack of discharge of sodium chloride waters at Poa´s is attributed to two factors: (1) the presence of a relatively volatile-rich magma body degassing at shallow depths (< 1 km) into a high level summit groundwater system; and (2) the hydrologic structure of the volcano in which high rates of recharge combine with rapid lateral flow of shallow groundwater to prevent deep-seated sodium chloride fluids from ascending to the surface. The shallow depth of the volatile-rich magma results in the degassing of large quantities of SO2 and HCl. These gases are readily hydrolyzed and quickly mix with meteoric water to form a reservoir of acid chloride-sulfate brine in the summit hydrothermal system. High recharge rates and steep hydraulic gradients associated with elevated topographic features of the summit region promote lateral flow of acid brines generated in the summit hydrothermal system. However, the same high recharge rates and steep hydraulic gradients prevent lateral flow of deep-seated fluids, thereby masking the presence of any sodium chloride brines that may exist in deeper parts of the volcanic edifice.Structural, stratigraphic, and topographic features of Poa´s Volcano are critical in restricting flow of acid brines to the northwestern flank of the volcano. A permeable lava-lahar sequence that outcrops in the Rio Agrio drainage basin forms a hydraulic conduit between the crater lake and acid chloride sulfate springs. Spring water residence times are estimated from tritium data and indicate that flow of acid brines from the active crater to the Rio Agrio source springs is relatively rapid (3 to 17 years). Hydraulic conductivity values of the lava-lahar sequence calculated from residence time estimates range from 10−5 to 10−7 m/s. These values are consistent with hydraulic conductivity values determined by aquifer tests of fractured and porous lava/pyroclastic sequences at the base of the northwestern flank of the volcano.Fluxes of dissolved rock-forming elements in Rio Agrio indicate that approximately 4300 and 1650 m3 of rock are removed annually from the northwest flank aquifer and the active crater hydrothermal system, respectively. Over the lifetime of the hydrothermal system (100's to 1000's of years), significant increases in aquifer porosity and permeability should occur, in marked contrast to the reduction in permeability that often accompanies hydrothermal alteration in less acidic systems. Average fluxes of fluoride, chloride and sulfur calculated from discharge and compositional data collected in the Rio Agrio drainage basin over the period 1988–1990 are approximately 2, 38 and 30 metric tons/day. These fluxes should be representative of minimum volatile release rates at Poa´s in the last 10 to 20 years.  相似文献   

12.
Concerns related to climate change have resulted in an increasing interest in the importance of hydrological events such as droughts in affecting biogeochemical responses of watersheds. The effects of an unusually dry summer in 2002 had a marked impact on the biogeochemistry of three watersheds in the north‐eastern USA. Chemical, isotopic and hydrological responses with particular emphasis on S dynamics were evaluated for Archer Creek (New York), Sleepers River (Vermont) and Cone Pond (New Hampshire) watersheds. From 1 August to 14 September 2002, all three watersheds had very low precipitation (48 to 69 mm) resulting in either very low or no discharge (mean 0·015, 0·15 and 0·000 mm day?1 for Archer Creek, Sleepers River and Cone Pond, respectively). From 15 September to 31 October 2002, there was a substantial increase in precipitation totals (212, 246 and 198 mm, respectively) with increased discharge. Archer Creek was characterized by a large range of SO42? concentrations (152 to 389 µeq L?1, mean = 273 µeq L?1) and also exhibited the greatest range in δ34S values of SO42? (?1·4 to 8·8 ‰ ). Sleepers River's SO42? concentrations ranged from 136 to 243 µeq L?1 (mean = 167 µeq L?1) and δ34S values of SO42? ranged from 4·0 to 9·0 ‰ . Cone Pond's SO42? concentrations (126–187 µeq L?1, mean = 154 µeq L?1) and δ34S values (2·4 to 4·3 ‰ ) had the smallest ranges of the three watersheds. The range and mean of δ18O‐SO42? values for Archer Creek and Cone Pond were similar (3·0 to 8·9 ‰ , mean = 4·5 ‰ ; 3·9 to 6·3 ‰ , mean = 4·9 ‰ ; respectively) while δ18O‐SO42? values for Sleepers River covered a larger range with a lower mean (1·2 to 10·0 ‰ , mean = 2·5). The difference in Sleepers River chemical and isotopic responses was attributed to weathering reactions contributing SO42?. For Archer Creek wetland areas containing previously reduced S compounds that were reoxidized to SO42? probably provided a substantial source of S. Cone Pond had limited internal S sources and less chemical or isotopic response to storms. Differences among the three watersheds in S biogeochemical responses during these storm events were attributed to differences in S mineral weathering contributions, hydrological pathways and landscape features. Further evaluations of differences and similarities in biogeochemical and hydrological responses among watersheds are needed to predict the impacts of climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Major inorganic ions and stable carbon and oxygen isotopes in stream water, groundwater, groundwater seeps and springs were measured in the Corral Canyon meadow complex and watershed in the Toquima Mountains of central Nevada, USA. The purpose of the study was to determine whether stream water or groundwater was the source of water that supports vegetation in the meadow complex. Water samples from the watershed and meadow complex were mixed cation–HCO3 type. Stream water sampled at different locations in the meadow complex showed variations in temperature, pH and specific conductance. The cation–anion proportions for stream water were similar to groundwater, groundwater seeps and runoff from the meadow complex. Stable oxygen isotope ratios for stream water (?17·1 to ?17·6‰ versus VSMOW) and groundwater and groundwater seeps in the meadow site (?17·0 to ?17·7‰ versus VSMOW) were similar, and consistent with a local meteoric origin. Dissolved inorganic carbon (DIC) and the δ 13CDIC for stream water (?12·1 to ?15·0‰ versus VPDB) were different from that of groundwater from the meadow complex (?15·3 to ?19·9‰ versus VPDB), suggesting different carbon evolution pathways. However, a simple model based on cation–δ 13CDIC suggests that stream water was being recharged by shallow groundwater, groundwater seeps and runoff from the meadow complex. This leads to the conclusion that the source of water that supports vegetation in the meadow complex was primarily groundwater. The results of this study suggest that multiple chemical and stable carbon isotope tracers are useful in determining the source of water that supports vegetation in meadow complexes in small alpine watersheds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The Nyangqu River, the largest right bank tributary of the Yarlung Zangbo River in the Qinghai–Tibet Plateau, was representative of an alpine riverine carbon cycle experiencing climate change. In this study, dissolved inorganic carbon (DIC) spatial and seasonal variations, as well as their carbon isotopic compositions (δ13CDIC) in river water and groundwater were systematically investigated to provide constraints on DIC sources, recharge and cycling. Significant changes in the δ13CDIC values (from −2.9‰ to −23.4‰) of the water samples were considered to be the result of different contributions of two dominant DIC origins: soil CO2 dissolution and carbonate weathering. Three types of rock weathering (dissolution of carbonate minerals by H2CO3 and H2SO4, and silicate dissolution by H2CO3) were found to control the DIC input into the riverine system. In DIC cycling, groundwater played a significant role in delivering DIC to the surface water, and DIC supply from tributaries to the main stream increased from the dry season to the wet season. Notably, the depleted δ13CDIC ‘peak’ around the 88.9° longitude, especially in the September groundwater samples, indicated the presence of ‘special’ DIC, which was attributed to the oxidation of methane from the Jiangsa wetland located nearby. This wetland could provide large amounts of soil organic matter available for bacterial degradation, producing 13C-depleted methane. Our study provided insights regarding the role of wetlands in riverine carbon cycles and highlighted the contribution of groundwater to alpine riverine DIC cycles.  相似文献   

15.
We used hydrochemistry and environmental isotope data (δ18O, δD, tritium, and 14C) to investigate the characteristics of river water, groundwater, and groundwater recharge in China's Heihe River basin. The river water and groundwater could be characterized as Ca2+? Mg2+? HCO3?? SO42? and Na+? Mg2+? SO42?? Cl? types, respectively. Hydrogeochemical modelling using PHREEQC software revealed that the main hydrogeochemical processes are dissolution (except for gypsum and anhydrite) along groundwater flow paths from the upper to middle Heihe reaches. Towards the lower reaches, dolomite and calcite tend to precipitate. The isotopic data for most of the river water and groundwater lie on the global meteoric water line (GMWL) or between the GMWL and the meteoric water line in northwestern China, indicating weak evaporation. No direct relationship existed between recharge and discharge of groundwater in the middle and lower reaches based on the isotope ratios, d‐excess, and 14C values. On the basis of tritium in precipitation and by adopting an exponential piston‐flow model, we evaluated the mean residence time of shallow groundwater with high tritium activities, which was around 50 years (a). Furthermore, based on the several popular models, it is calculated that the deep groundwaters in piedmont alluvial fan zone of the middle reaches and in southern part of the lower reaches are modern water, whereas the deep groundwaters in the edge of the middle reaches and around Juyan Lake in the lower reaches of Heihe river basin are old water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Gypsum and halite crystals, together with saponite and phillipsite, were found in a vein in a basalt sill 625 m below the sea floor at DSDP Site 395A, located 190 km west of the crest of the Mid-Atlantic Ridge. The δ34S value of the gypsum (+19.4‰) indicates a seawater source for the sulfate. The δ18O values of the saponite (+19.9‰) and phillipsite (+18.1‰) indicate either formation from normal seawater at about 55°C or formation from18O-depleted seawater at a lower temperature.The gypsum (which could be secondary after anhydrite) was formed by reaction between Ca2+ released from basalt and SO42? in circulating seawater. The halite could have formed when water was consumed by hydration of basalt under conditions of extremely restricted circulation. A more probable mechanism is that the gypsum was originally precipitated as anhydrite at temperatures above 60°C. As the temperature dropped the anhydrite converted to gypsum. The conversion would consume water, which could cause halite precipitation, and would cause an increase in the volume of solids, which would plug the vein and prevent subsequent dissolution of the halite.  相似文献   

17.
Identifying aquifer vulnerability to climate change is of vital importance in the Sierra Nevada and other snow‐dominated basins where groundwater systems are essential to water supply and ecosystem health. Quantifying the component of new (current year's) snowmelt in groundwater and surface water is useful in evaluating aquifer vulnerability because significant annual recharge may indicate that streamflow will respond rapidly to annual variability in precipitation, followed by more gradual decreases in recharge as recharge declines over decades. Hydrologic models and field‐based studies have indicated that young (<1 year) water is an important component of streamflow. The goal of this study was to utilize the short‐lived, naturally occurring cosmogenic isotope sulfur‐35 (35S) to quantify new snowmelt contribution to groundwater and surface waters in Sagehen Creek Basin (SCB) and Martis Valley Groundwater Basin (MVGB) located within the Tertiary volcanics of the central Sierra Nevada, CA. Activities of 35S were measured in dissolved sulfate (35SO42?) in SCB and MVGB snowpack, groundwater, springs, and streamflow. The percent of new snowmelt (PNS) in SCB streamflow ranged from 0.2 ± 6.6% during baseflow conditions to 14.0 ± 3.4% during high‐flow periods of snowmelt. Similar to SCB, the PNS in MVGB groundwater and streamflow was typically <30% with the largest fractions occurring in late spring or early summer following peak streamflow. The consistently low PNS suggests that a significant fraction of annual snowmelt in SCB and MVGB recharges groundwater, and groundwater contributions to streamflow in these systems have the potential to mitigate climate change impacts on runoff.  相似文献   

18.
Column experiments containing an aquifer sand were subjected to static and oscillating water tables to investigate the impact of natural fluctuations and rainfall infiltration on the groundwater bacterial community just below the phreatic surface, and its association with the geochemistry. Once the columns were established, the continuously saturated zone was anoxic in all three columns. The rate of soil organic matter (SOM) mineralization was higher when the water table varied cyclically than when it was static due to the greater availability of NO3 and SO42−. Natural fluctuations in the water table resulted in a similar NO3 concentration to that observed with a static water table but the cyclic wetting of the intermittently saturated zone resulted in a higher SO42− concentration. Rainfall infiltration induced cyclic water-table variations resulted in a higher NO3 concentration than those in the other two columns, and a SO42− concentration intermediate between those columns. As rainwater infiltration resulted in slow downward displacement of the groundwater, it is inferred that NO3 and SO42− were being mobilized from the vadose zone. NO3 was mainly released by SOM mineralization (which was enhanced by the infiltration of oxygenated rainwater), but the larger amount of SO42− release required a second mechanism (possibly desorption). Different groundwater bacterial communities evolved from initially similar populations due to the different groundwater histories.  相似文献   

19.
Most sulphur diagenesis models predict that SO42- concentrations decrease exponentially with increasing sediment depth and are lower than that of the overlying water throughout the sediments. Low SO42- concentrations (less than 0.2 mM) are common in the sediments of Lake Anna that receive acid mine drainage; however, sediment with as much as 20 mM SO42- at about 20cm below the sediment surface is also seen in this section of the lake. A decision tree was proposed to investigate the cause of the high SO42- concentrations at depth (HSD) in the sediment. The first possibility proposed was that an increase in the quantity of groundwater flowing through Lake Anna sediments may increase groundwater advection of SO42- or oxygen which would induce sulphide oxidation. This hypothesis was tested by measuring groundwater flow. HSD profiles were found in a discrete region of the lake; however, stations having these profiles did not have higher groundwater flow than other sites sampled. Alternate explanations for the HSD profiles were that the region in which they occurred had: (1) unusual sediment chemical compositions; (2) a different source of regional groundwater, or (3) a lateral intrusion of high SO42- groundwater. There were no differences in sulphide and organic matter concentrations between the two regions. The area which has HSD in the sediment covers a large area in the middle of the lake, so it is unlikely that it has a unique source of regional groundwater. The third alternative was supported by the fact that in all three sample years, HSD stations were located in the preimpoundment stream channel, which is a likely lateral flow path for groundwater containing high SO42- concentrations.  相似文献   

20.
The role of faults in controlling groundwater flow in the Sahara and most of the hyper-arid deserts is poorly understood due to scarcity of hydrological data. The Wadi Araba Basin (WAB), in the Eastern Sahara, is highly affected by folds and faults associated with Senonian tectonics and Paleogene rifting. Using the WAB as a test site, satellite imagery, aeromagnetic maps, field observations, isotopic and geochemical data were examined to unravel the structural control on groundwater flow dynamics in the Sahara. Analysis of satellite imagery indicated that springs occur along structurally controlled scarps. Isotopic data suggested that cold springs in the WAB showed a striking similarity with the Sinai Nubian aquifer system (NAS) water and the thermal springs along the Gulf of Suez (e.g., δ18O = −8.01‰ to −5.24‰ and δD = −53.09‰ to −31.12‰) demonstrating similar recharge sources. The findings advocated that cold springs in the WAB represent a natural discharge from a previously undefined aquifer in the Eastern Desert of Egypt rather than infiltrated precipitation over the plateaus surrounding the WAB or through hydrologic windows from deep crystalline basement flow. A complex role of the geological structures was inferred including: (1) channelling of the groundwater flow along low-angle faults, (2) compartmentalization of the groundwater flow upslope from high-angle faults, and (3) reduction of the depth to the main aquifer in a breached anticline setting, which resulted in cold spring discharge temperatures (13–22°C). Our findings emphasize on the complex role of faults and folds in controlling groundwater flow, which should be taken into consideration in future examination of aquifer response to climate variability in the Sahara and similar deserts worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号