首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dissolved pollutants in stormwater are a main contributor to water pollution in urban environments. However, many existing transport models are semi-empirical and only consider one-dimensional flows, which limit their predictive capacity. Combining the shallow water and the advection–diffusion equations, a two-dimensional physically based model is developed for dissolved pollutant transport by adopting the concept of a ‘control layer’. A series of laboratory experiments has been conducted to validate the proposed model, taking into account the effects of buildings and intermittent rainfalls. The predictions are found to be in good agreement with experimental observations, which supports the assumption that the depth of the control layer is constant. Based on the validated model, a parametric study is conducted, focusing on the characteristics of the pollutant distribution and transport rate over the depth. The hyetograph, including the intensity, duration and intermittency, of rainfall event has a significant influence on the pollutant transport rates. The depth of the control layer, rainfall intensity, surface roughness and area length are dominant factors that affect the dissolved pollutant transport. Finally, several perspectives of the new pollutant transport model are discussed. This study contributes to an in-depth understanding of the dissolved pollutant transport processes on impermeable surfaces and urban stormwater management.  相似文献   

2.
Introducing a concept of equivalent mass depth of flow, this study describes the phenomenon of non‐point source pollutant (metal) transport for pavement (or overland) flow in analogy with wave propagation in wide open channels. Hysteretic and normal mass rating curves are developed for runoff rate and mass of 12 dissolved and particulate‐bound metal elements (pollutants) using the rainfall‐runoff and water quality data of the 15 × 20 m2 instrumented pavement in Cincinnati, USA. Normal mass rating curves developed for easy computation of pollutant load are found to be of a form similar to Manning's, which is valid for open channel flows. Based on the hysteresis analysis, wave types for dissolution and mixing of particulate‐bound metals are identified. The analysis finds that the second‐order partial‐differential equation normally used for metal transport does not have the efficacy to describe fully the strong non‐linear phenomena such as is described for various metal elements by dynamic waves. In addition, the proportionality concept of the popular SCS‐CN concept is extended for determining the potential maximum metal mass Mp of all the 12 elements transported by a rain storm and related to the antecedent dry period (ADP). For the primary metal zinc element, Mp is found to increase with the ADP and vice versa. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Connections between the catchment hydrology and accumulation, washoff and transport of pollutants in wet weather greatly affect the management of urban drainage and its wet‐weather effluents. In recent years, the concept of the first flush has gained on prominence and was further developed for analyzing the interaction between the hydrology and transport of runoff pollutants. One of the most important definitions of the first flush can be derived from the analysis of the m(v) curves (i.e. the curves in which the normalized cumulative pollutant mass is plotted vs the normalized cumulative runoff volume). Indeed the m(v) curves, indicating the distribution of pollutant mass versus volume in wet‐weather flow (WWF) discharges, are commonly used for comparing pollutant discharges for different rainfall events and catchments. In this study, the m(v) curves were used to define the concepts of flow‐limited and mass‐limited WWF events. These two different behaviours have been analysed for rainfall/runoff events observed in the urbanized part of the Liguori catchment in Cosenza (Italy). In order to advance the understanding of the intra‐event variability of m(v) curves, the mathematical rainfall/runoff model Storm Water Management Model of the US Environmental Protection Agency (SWMM) was calibrated for eight observed rainfall/runoff events and the differences between observed and simulated m(v) curves were analysed. The results showed a good correlation between the observed and simulated m(v) curves, and this finding offers further benefits in SWMM model calibration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A nuclear accident involving the leaking of radioactive pollutants occurred at the Fukushima Nuclear Power Plant in Japan,following an earthquake and subsequent tsunami on March 11,2011.Using official Japanese data on pollutant emissions during the accident,this study simulates the dispersion of nuclear pollutants.The source term of the nuclear leakage of radioactive material is designed using PM2.5as the tracer of radioactive pollutants,and the study considers dry and wet deposition processes.A coupled-model system is constructed from the air-quality model Models-3/CMAQ and the Weather Research and Forecasting atmospheric model.The transport path and distribution of radioactive pollutants over long and short distances are simulated with different model horizontal resolutions of 30 and 4 km respectively.The long-distance simulation shows that,following the Fukushima nuclear accident,under the effect of westerly winds,radioactive pollutants are transported generally towards the eastern Pacific and reach the American continent after 5 days,but their concentration is only about 10–7 times the concentration near the Fukushima Nuclear Power Plant.The time required for pollutants to reach the United States is basically consistent with measurements made in California on March 18.Because the upper westerly wind is faster than the lower westerly wind,the distribution of pollutants tilts eastward in terms of its vertical structure.The short-distance(local)highresolution simulation indicates that strong winds and precipitation associated with a cyclone can accelerate the deposition,diffusion and transport of pollutions,and local cyclonic circulation can change the transport path of pollutants,even resulting in repeated effects of pollution in some areas.Pollutants disperse to southeastern Honshu,Japan,on March 14,2011,agreeing well with the timing of local observations of increases in the absorbed dose rate.Results also show that radioactive pollutants from the Fukushima nuclear accident are mainly transported and diffuse eastward,resulting in a relatively short-term impact on the Japanese mainland even under the influence of the cyclone system.Therefore,in terms of atmospheric conditions,the location of the Fukushima Nuclear Power Plant is appropriate and could serve as a reference to site selection and protection of other nuclear facilities.  相似文献   

5.
The Jing‐Jin‐Ji (Beijing‐Tianjin‐Hebei) and the surrounding Jin‐Lu‐Yu (Shanxi‐Shandong‐Henan) regions are experiencing severe problems with air pollution. To measure the change in pollutant concentrations over the next few years, the fractional order accumulation grey model is used to forecast the air quality indicators. The results show that the concentrations of fine particulate matter, particulate matter 10, and sulfur dioxide show a downward trend, and 8‐h O3 (annual) and 8‐h O3 (spring and summer) show an upward trend in these areas. There is a slight increase in nitrogen dioxide concentration in Shanxi, but its concentration in other areas shows a slight decline. The results obtained can provide a clear direction for air quality management decisions.  相似文献   

6.
1 INTRODUCT1ONWaer bodies commonly receive both point soure and nonpoint source pollutans. NonPoint pollution ischaracterized by occasional high loads and high concotions (PfatO, et al, l990; Shen, et al., l992;Novotuy and Olem,l994; Li and Shen, l996). It is very difficult to measure, to colltrOl and to trCat. FornonPoint source pollution control, the most productive research area is probably the develOPmnt andtesting of better watershed water quality models (Haith, l998). Measureme…  相似文献   

7.
V. P. Singh 《水文研究》2002,16(12):2441-2477
Kinematic wave solutions are derived for transport of a conservative non‐point‐source pollutant during a rainfall‐runoff event over an infiltrating plane for two cases: (i) finite‐period mixing and (ii) soil‐mixing zone. Rainfall is assumed to be steady, uniform and finite in duration, and it is assumed to have zero concentration of pollutants. Infiltration is assumed constant in time and space. Prior to the start of rainfall, the pollutant is distributed uniformly over the plane. In the first case, when rainfall occurs, the mixing of pollutant in the runoff water occurs in a finite period of time. In the second case, the chemical concentration is assumed to be a linearly decreasing function of rainfall intensity and overland flow. The solute concentration and discharge are found to depend on the flow characteristics as well as the solute concentration parameters. The characteristics of solute concentration and discharge graphs seem to be similar to those reported in the literature and observed in laboratory experiments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Solute transport in overland flow is considered as one of the main contributors to water pollution. Although many models of pollutant transport mechanism from soil to run‐off water have been proposed, the characteristics of solute transport accompanying the water run‐off over vegetated surface have not been well studied. In this study, a series of laboratory experiments were conducted to study the solute transport over vegetated surfaces. Based on the experimental results, an idea of the “stationary water layer” in run‐off was proposed. Applying the complete mixing theory in the stationary water layer, an analytical solute transport model was developed with the assumption that the upper run‐off completely mixes with the underlying water in the stationary water layer for each site. The results show that the predictions made by the present model are in good agreement with the measured experimental data. For the vegetated surfaces, the depth of stationary water layer is related to the rainfall intensity, bed slope, and vegetation density. The analytical solution shows that the maximum solute transport occurs at the time of concentration. This study advances our understanding of the mechanisms of solute transport over vegetated areas.  相似文献   

9.
Vijay P. Singh 《水文研究》2002,16(9):1831-1863
Kinematic wave solutions are derived for transport of a conservative non‐point‐source pollutant during a rainfall‐runoff event over an impervious plane. Rainfall is assumed to be steady, uniform and finite in duration. Prior to the start of rainfall, the pollutant is distributed uniformly over the plane. When rainfall occurs, the pollutant is washed off in a particular manner and the mixing of pollutant in the runoff water occurs either instantaneously or in a finite period of time under the assumption that the pollutant is soluble and is mixed completely in the runoff water. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
This study developed a one‐dimensional model of downslope rain splash transport based on field experiments and previous studies. The developed model considers soil detachment processes, ground cover, probability densities, and the effect of overland run‐off in preventing detachment. Field monitoring was conducted to observe precipitation run‐off, ground cover, and sediment production on steep hillslopes. Field‐observed data were used to develop the splash detachment rate equation, probability densities for splash transport, and the maximum splash transport distance. Observed and estimated splash transport showed overall agreement, with some differences for small storm events or events with relatively low intensity, probably caused by variation of overland run‐off depth and connectivity as well as differences in soil surface cohesion at various degrees of wetness. Our model can provide insights on the interactions among rainfall intensity, soil surface condition, soil wetness, and splash transport on forested hillslopes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Mathematical relationships have been developed for reaeration rate coefficient (Ka) by various researchers. These relationships have a number of variables such as depth, velocity, width, slope, Froud number, molecular diffusion coefficient, kinematic viscosity and the gas‐transfer Reynolds number. From these variables, 29 relations have been developed and divided into four groups. To evaluate their predictive capability for highly variable flow rivers receiving high pollution loads form large cities, these relationships have been used to model dissolved oxygen (DO) in the River Ravi. Such rivers are either saturated with DO during high flows or anaerobic during critical low‐flow conditions. The evaluation is based on the agreement between model DO values calculated using Ka obtained from the available equations and the measured DO concentrations in the river samples in terms of sum of square of residuals (SSR) and coefficient of determination (R2). It has been found that in general, the group of equations containing depth and velocity as the only two variables affecting Ka performed better than the equations in other groups as reflected by lower SSR and higher R2 values. The study results also reveal that the turbulence‐based reaeration rate coefficient equation containing additional variables also resulted in close agreement between DO model results and the measured values. The study results identify the most important parameters affecting the reaeration rate coefficient and the suitability of various Ka relationships as well for rivers with highly variable flows. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Beside damages of infrastructure in industrial regions, extreme floods can cause contamination with particle‐bound pollutants, e. g., due to erosion of soils and sediments. In order to predict contamination with inorganic pollutants, the transport and fate of arsenic, lead, and mercury during a fictive flood event of River Vereinigte Mulde in the region of Bitterfeld (Germany) with 200 years recurrence time was modeled. The finite element model system Telemac2D, which is subdivided into a hydrodynamic (Telemac‐2D), a transport (Subief‐2D), and a water quality module (wq2subief) was applied. The transport and water quality model models were calibrated using results of sediment trap exposures in the floodplain of River Vereinigte Mulde. Model results exhibited that the spatial patterns of particle‐associated arsenic and lead concentrations significantly changed. Extended, mostly agriculturally used areas showed arsenic and lead concentrations between 150 and 200 mg kg–1 and 250 and 300 mg kg–1, respectively, while urban areas were to a great extent spared from high contamination with arsenic and lead. Concentrations of particle‐associated mercury showed a pattern distinct from those of arsenic and lead. Outside of small patches with concentrations up to 63 mg kg–1, concentrations of particle‐associated mercury remained close to zero. Differences in the spatial patterns of the three pollutants regarded mainly arise from significantly different initial and boundary conditions. Sensitivity analyses of initial and boundary conditions revealed a high sensitivity of particle‐bound pollutant concentrations, whereas the sensitivities of concentrations of suspended sediments and soluble pollutants were mediocre to negligible.  相似文献   

13.
The investigation focuses on the analysis of dissolved sulfonamides, tetracyclines, analgesics, anticonvulsants and hormones in surface water. Runoff event and baseflow samples were analysed in two small river catchments of different land use in Luxembourg. For most of the flood events, similar pollutant loads to those transported during 1 day with average baseflow discharge were observed. The maximum contents during flood events and the event mean concentrations are controlled by pre‐event hydro‐climatological conditions. For all substances under investigation, maximum concentrations and event mean concentrations show a decrease with raising antecedent rainfall. In addition, the interstorm and intrastorm variability of the pollutant transport was determined. Runoff generation and corresponding transport of xenobiotic compounds show a complex pattern with many interrelated processes, taking place within bedrock, soil, anthropogenic facilities and channel and in different parts of the basins under investigation. Different sources of pollutants can be identified and related to particular locations in the basin. The influence of the sewer systems is obvious. In the agricultural Mess basin, higher rainfall amounts lead to greater quantities of laterally inflowing soil water with higher concentrations of dissolved oxytetracycline. This originates from veterinary medicines administered to livestock and enters the environment through the application of organic fertilisers, especially by slurry that is applied to the fields. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
舒金华 《湖泊科学》1994,6(1):67-78
本文在湖水白净能力研究基础上,根据我国“水污染防治法”和排放水污染物许可证制度的要求,结合各地湖泊污染的实际情况,提出了制订湖泊水污染物排放标准的技术原则、工作程序和计算方法,其中:(一)为均匀混合型湖泊计算方法;(二)为非均匀混合型湖泊计算方法。最后附有不同类型湖泊排放标准的计算实例,可供各地湖泊管理部门在制订地方水污染物排放标准中参考选用。  相似文献   

15.
16.
Like other Asian countries, Pakistan is facing the issue of air pollution due to rapid urbanization, enormous transportation increases, and other related human activities. Moreover, continuously increasing emission sources have not only raised pollutant concentrations but also their types, thus damaging both human health and the environment. Faisalabad is the third largest megacity of Pakistan and its state of air quality is getting worse due to factors such as industrialization, high traffic volumes, and extensive fossil‐fuel‐burning activities. This review article aims to highlight the present status of air pollution in this city with special reference to particulate matter, elemental profiles, gaseous pollutants, organic–inorganic particulate contents as well as their sources. The concentration levels of these entities were also compared with other national and international cities, and related environmental standards. It is found that current levels of these pollutants are beyond safety limits as specified by various environment protection agencies and organizations. Several weak aspects and gaps are also identified along with suggestions for improvements of the present situation and directions for future research.  相似文献   

17.
庞琰瑾  袁增伟 《湖泊科学》2021,33(2):439-448
如何精细量化降雨径流污染负荷是流域尺度实现面源精准治污全过程控制的重要前提.本研究以水污染较为严重的望虞河西岸综合示范区为例,通过开展不同土地利用类型的降雨观测实验,修正SCS-CN模型中的初损率,并基于土地利用类型遥感解译和降雨径流污染物浓度测定,精细刻画降雨径流中总磷(TP)、总氮(TN)、氨氮(NH3-N)、化学...  相似文献   

18.
Tafoni are pits formed by non‐uniform weathering in otherwise uniform rock. Two equations have been proposed for the rate of development of tafoni, both based on 2000‐year‐old outcrops from the coast of Japan. We have taken tafoni measurements from the Meteor Crater, Arizona, and vicinity that extend the equations back at least 50 000 years. As reported in earlier studies, we found pit depth to be the best tafone parameter to measure. The size of the pit decreases significantly with increasing inclination of the rock surface; however, the size of the pit can vary greatly for other reasons. In some cases the measurements are statistically significantly different between two stations taken from contiguous areas of similar inclination and aspect in an apparently homogeneous bed. It is clear, however, that over tens of thousands of years tafoni enlarge significantly. Our data are generally log‐normal and all are markedly heteroscedastic. The 1991 equation proposed by Matsukura and Matsuoka does not fit our data. The 1996 equation proposed by Sunamura provides a better fit. We propose a sigmoidal equation D = b1 + e(b2+(b3/t)) where D is the depth, t is the age, and b1, b2 and b3 vary with lithology. This new equation fits our data far better than the earlier published equations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Ougolnitsky  G. A.  Usov  A. B. 《Water Resources》2003,30(2):226-232
Different approaches to studying hierarchical problems are compared with the use of a two-stage dynamic model of water quality control in the case of point pollution sources. Variations in pollutant concentrations in a watercourse are described by partial differential equations. The study embraces the cases of a single and multiple point pollution sources and different types of pollutants.  相似文献   

20.
Non‐point source (NPS) pollution from agricultural land is increasing exponentially in many countries of the world, including India. A modified approach based on the conservation of mass and reaction kinetics has been derived to estimate the inflow of non‐point source pollutants from a river reach. Two water quality variables, namely, nitrate (NO3) and ortho‐phosphate (o‐PO4), which are main contributors as non‐point source pollution, were monitored at four locations of River Kali, western Uttar Pradesh, India, and used for calibration and validation of the model. Extensive water quality sampling was done with a total of 576 field data sets collected during the period from March 1999 to February 2000. Remote sensing and geographical information system (GIS) techniques were used to obtain land use/land cover of the region, digital elevation model (DEM), delineation of basin area contributing to non‐point source pollution at each sampling location and drainage map. The results obtained from a modified approach were compared with the existing mass‐balance equations and distributed modelling, and the performances of different equations were evaluated using error estimation viz. standard error, normal mean error, mean multiplicative error and correlation statistics. The developed model for the River Kali minimizes error estimates and improves correlation between observed and computed NPS loads. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号