首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The runoff regime of glacierized headwater catchments in the Alps is essentially characterized by snow and ice melt. High Alpine drainage basins influence distant downstream catchments of the Rhine River basin. In particular, during the summer months, low-flow conditions are probable with strongly reduced snow and ice melt under climate change conditions. This study attempts to quantify present and future contributions from snow and ice melt to summer runoff at different spatial scales. For the small Silvretta catchment (103 km2) in the Swiss Alps, with a glacierization of 7%, the HBV model and the glacio-hydrological model GERM are applied for calculating future runoff based on different regional climate scenarios. We evaluate the importance of snow and ice melt in the runoff regime. Comparison of the models indicates that the HBV model strongly overestimates the future contribution of glacier melt to runoff, as glaciers are considered as static components. Furthermore, we provide estimates of the current meltwater contribution of glaciers for several catchments downstream on the River Rhine during the month of August. Snow and ice melt processes have a significant direct impact on summer runoff, not only for high mountain catchments, but also for large transboundary basins. A future shift in the hydrological regime and the disappearance of glaciers might favour low-flow conditions during summer along the Rhine.

Citation Junghans, N., Cullmann, J. & Huss, M. (2011) Evaluating the effect of snow and ice melt in an Alpine headwater catchment and further downstream in the River Rhine. Hydrol. Sci. J. 56(6), 981–993.  相似文献   

2.
In this study, summer rainfall contributions to streamflow were quantified in the sub‐arctic, 30% glacierized Tarfala (21.7 km2) catchment in northern Sweden for two non‐consecutive summer sampling seasons (2004 and 2011). We used two‐component hydrograph separation along with isotope ratios (δ18O and δD) of rainwater and daily streamwater samplings to estimate relative fraction and uncertainties (because of laboratory instrumentation, temporal variability and spatial gradients) of source water contributions. We hypothesized that the glacier influence on how rainfall becomes runoff is temporally variable and largely dependent on a combination of the timing of decreasing snow cover on glaciers and the relative moisture storage condition within the catchment. The results indicate that the majority of storm runoff was dominated by pre‐event water. However, the average event water contribution during storm events differed slightly between both years with 11% reached in 2004 and 22% in 2011. Event water contributions to runoff generally increased over 2011 the sampling season in both the main stream of Tarfala catchment and in the two pro‐glacial streams that drain Storglaciären (the largest glacier in Tarfala catchment covering 2.9 km2). We credit both the inter‐annual and intra‐annual differences in event water contributions to large rainfall events late in the summer melt season, low glacier snow cover and elevated soil moisture due to large antecedent precipitation. Together amplification of these two mechanisms under a warming climate might influence the timing and magnitude of floods, the sediment budget and nutrient cycling in glacierized catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Meltwater from glaciers is not only a stable source of water but also affects downstream streamflow dynamics. One of these dynamics is the interannual variability of streamflow. Glaciers can moderate streamflow variability because the runoff in the glacierized part, driven by temperature, correlates negatively with the runoff in the non-glacierized part of a catchment, driven by precipitation, thereby counterbalancing each other. This is also called the glacier compensation effect (GCE), and the effect is assumed to depend on relative glacier cover. Previous studies found a convex relationship between streamflow variability and glacier cover of different glacierized catchments, with lowest streamflow variability at a certain optimum glacier cover. In this study, we aim to revisit these previously found curves to find out if a universal relationship between interannual streamflow variability and glacier cover exists, which could potentially be used in a space-for-time substitution analysis. Moreover, we test the hypothesis that the dominant climate drivers (here precipitation and temperature) switch around the suggested optimum of the curve. First, a set of virtual nested catchments, with the same absolute glacier area but varying non-glacierized area, were modelled to isolate the effect of glacier cover on streamflow variability. The modelled relationship was then compared with a multicatchment data set of gauged glacierized catchments in the European Alps. In the third step, changes of the GCE curve over time were analysed. Model results showed a convex relationship and the optimum in the simulated curve aligned with a switch in the dominant climate driver. However, the multicatchment data and the time change analyses did not suggest the existence of a universal convex relationship. Overall, we conclude that GCE is complex due to entangled controls and changes over time in glacierized catchments. Therefore, care should be taken to use a GCE curve for estimating and/or predicting interannual streamflow variability in glacierized catchments.  相似文献   

4.
We apply the process‐based, distributed TOPKAPI‐ETH glacio‐hydrological model to a glacierized catchment (19% glacierized) in the semiarid Andes of central Chile. The semiarid Andes provides vital freshwater resources to valleys in Chile and Argentina, but only few glacio‐hydrological modelling studies have been conducted, and its dominant hydrological processes remain poorly understood. The catchment contains two debris‐free glaciers reaching down to 3900 m asl (Bello and Yeso glaciers) and one debris‐covered avalanche‐fed glacier reaching to 3200 m asl (Piramide Glacier). Our main objective is to compare the mass balance and runoff contributions of both glacier types under current climatic conditions. We use a unique dataset of field measurements collected over two ablation seasons combined with the distributed TOPKAPI‐ETH model that includes physically oriented parameterizations of snow and ice ablation, gravitational distribution of snow, snow albedo evolution and the ablation of debris‐covered ice. Model outputs indicate that while the mass balance of Bello and Yeso glaciers is mostly explained by temperature gradients, the Piramide Glacier mass balance is governed by debris thickness and avalanches and has a clear non‐linear profile with elevation as a result. Despite the thermal insulation effect of the debris cover, the mass balance and contribution to runoff from debris‐free and debris‐covered glaciers are similar in magnitude, mainly because of elevation differences. However, runoff contributions are distinct in time and seasonality with ice melt starting approximately four weeks earlier from the debris‐covered glacier, what is of relevance for water resources management. At the catchment scale, snowmelt is the dominant contributor to runoff during both years. However, during the driest year of our simulations, ice melt contributes 42 ± 8% and 67 ± 6% of the annual and summer runoff, respectively. Sensitivity analyses show that runoff is most sensitive to temperature and precipitation gradients, melt factors and debris cover thickness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Mountain water resources management often requires hydrological models that need to handle both snow and ice melt. In this study, we compared two different model types for a partly glacierized watershed in central Switzerland: (1) an energy‐balance model primarily designed for snow simulations; and (2) a temperature‐index model developed for glacier simulations. The models were forced with data extrapolated from long‐term measurement records to mimic the typical input data situation for climate change assessments. By using different methods to distribute precipitation, we also assessed how various snow cover patterns influenced the modelled runoff. The energy‐balance model provided accurate discharge estimations during periods dominated by snow melt, but dropped in performance during the glacier ablation season. The glacier melt rates were sensitive to the modelled snow cover patterns and to the parameterization of turbulent heat fluxes. In contrast, the temperature‐index model poorly reproduced snow melt runoff, but provided accurate discharge estimations during the periods dominated by glacier ablation, almost independently of the method used to distribute precipitation. Apparently, the calibration of this model compensated for the inaccurate precipitation input with biased parameters. Our results show that accurate estimates of snow cover patterns are needed either to correctly constrain the melt parameters of the temperature‐index model or to ensure appropriate glacier surface albedos required by the energy‐balance model. Thus, particularly when only distant meteorological stations are available, carefully selected input data and efficient extrapolation methods of meteorological variables improve the reliability of runoff simulations in high alpine watersheds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
We present a field‐data rich modelling analysis to reconstruct the climatic forcing, glacier response, and runoff generation from a high‐elevation catchment in central Chile over the period 2000–2015 to provide insights into the differing contributions of debris‐covered and debris‐free glaciers under current and future changing climatic conditions. Model simulations with the physically based glacio‐hydrological model TOPKAPI‐ETH reveal a period of neutral or slightly positive mass balance between 2000 and 2010, followed by a transition to increasingly large annual mass losses, associated with a recent mega drought. Mass losses commence earlier, and are more severe, for a heavily debris‐covered glacier, most likely due to its strong dependence on snow avalanche accumulation, which has declined in recent years. Catchment runoff shows a marked decreasing trend over the study period, but with high interannual variability directly linked to winter snow accumulation, and high contribution from ice melt in dry periods and drought conditions. The study demonstrates the importance of incorporating local‐scale processes such as snow avalanche accumulation and spatially variable debris thickness, in understanding the responses of different glacier types to climate change. We highlight the increased dependency of runoff from high Andean catchments on the diminishing resource of glacier ice during dry years.  相似文献   

7.
Snow and glacier melt are significant contributors to streamflow in Himalayan catchments, and their increasing contributions serve as key indicators of climate change. Consequently, the quantification of these streamflow components holds significant importance for effective water resource management. In this study, we utilized the spatio-temporal variability of isotopic signatures in stream water, rainfall, winter fresh snow, snowpack, glaciers, springs, and wells, in conjunction with hydrometeorological observations and Snow Cover Area (SCA) data, to identify water sources and develop a conceptual understanding of streamflow dynamics in three catchments (Lidder, Sindh, and Vishow) within the western Himalayas. The following results were obtained: (a) endmember contributions to the streamflow exhibit significant spatial and seasonal variability across the three catchments during 2018–2020; (b) snowmelt dominates streamflow, with average contributions across the entire catchment varying: 59% ± 9%, 55% ± 4%, 56% ± 6%, and 55% ± 9% in Lidder, 43% ± 6%, 38% ± 6%, 32% ± 4%, and 33% ± 5% in Sindh and 45% ± 8%, 40% ± 6%, 39% ± 6%, and 32% ± 5% in Vishow during spring, summer, autumn, and winter seasons, respectively; (c) glacier melt contributions can reach ~30% to streamflow near the source regions during peak summer; (d) The primary uncertainties in streamflow components are attributed to the spatiotemporal variability of tracer signatures of winter fresh snow/snowpack (±1.9% to ±20%); (e)regarding future streamflow components, if the glacier contribution were to disappear completely, the annual average streamflow in Lidder and Sindh could decrease up to ~20%. The depletion of the cryosphere in the region has led to a rapid increase in runoff (1980–1900), but it has also resulted in a significant streamflow reduction due to glacier mass loss and changes in peak streamflow over the past three decades (1990–2020). The findings highlight the significance of environmental isotope analysis, which provides insights into water resources and offers a critical indication of the streamflow response to glacier loss under a changing climate.  相似文献   

8.
A model study on the impact of climate change on snow cover and runoff has been conducted for the Swiss Canton of Graubünden. The model Alpine3D has been forced with the data from 35 Automatic Weather Stations in order to investigate snow and runoff dynamics for the current climate. The data set has then been modified to reflect climate change as predicted for the 2021–2050 and 2070–2095 periods from an ensemble of regional climate models.The predicted changes in snow cover will be moderate for 2021–2050 and become drastic in the second half of the century. Towards the end of the century the snow cover changes will roughly be equivalent to an elevation shift of 800 m. Seasonal snow water equivalents will decrease by one to two thirds and snow seasons will be shortened by five to nine weeks in 2095.Small, higher elevation catchments will show more winter runoff, earlier spring melt peaks and reduced summer runoff. Where glacierized areas exist, the transitional increase in glacier melt will initially offset losses from snow melt. Larger catchments, which reach lower elevations will show much smaller changes since they are already dominated by summer precipitation.  相似文献   

9.
The spatial and temporal characterization of geochemical tracers over Alpine glacierized catchments is particularly difficult, but fundamental to quantify groundwater, glacier melt, and rain water contribution to stream runoff. In this study, we analysed the spatial and temporal variability of δ2H and electrical conductivity (EC) in various water sources during three ablation seasons in an 8.4‐km2 glacierized catchment in the Italian Alps, in relation to snow cover and hydro‐meteorological conditions. Variations in the daily streamflow range due to melt‐induced runoff events were controlled by maximum daily air temperature and snow covered area in the catchment. Maximum daily streamflow decreased with increasing snow cover, and a threshold relation was found between maximum daily temperature and daily streamflow range. During melt‐induced runoff events, stream water EC decreased due to the contribution of glacier melt water to stream runoff. In this catchment, EC could be used to distinguish the contribution of subglacial flow (identified as an end member, enriched in EC) from glacier melt water to stream runoff, whereas spring water in the study area could not be considered as an end member. The isotopic composition of snow, glacier ice, and melt water was not significantly correlated with the sampling point elevation, and the spatial variability was more likely affected by postdepositional processes. The high spatial and temporal variability in the tracer signature of the end members (subglacial flow, rain water, glacier melt water, and residual winter snow), together with small daily variability in stream water δ2H dynamics, are problematic for the quantification of the contribution of the identified end members to stream runoff, and call for further research, possibly integrated with other natural or artificial tracers.  相似文献   

10.
Understanding how explicit consideration of topographic information influences hydrological model performance and upscaling in glacier dominated catchments remains underexplored. In this study, the Urumqi glacier no. 1 catchment in northwest China, with 52% of the area covered by glaciers, was selected as study site. A conceptual glacier‐hydrological model was developed and tested to systematically, simultaneously, and robustly reproduce the hydrograph, separate the discharge into contributions from glacier and nonglacier parts of the catchment, and establish estimates of the annual glacier mass balance, the annual equilibrium line altitude, and the daily catchment snow water equivalent. This was done by extending and adapting a recently proposed landscape‐based semidistributed conceptual hydrological model (FLEX‐Topo) to represent glacier and snowmelt processes. The adapted model, FLEXG, allows to explicitly account for the influence of topography, that is, elevation and aspect, on the distribution of temperature and precipitation and thus on melt dynamics. It is shown that the model can not only reproduce long‐term runoff observations but also variations in glacier and snow cover. Furthermore, FLEXG was successfully transferred and up‐scaled to a larger catchment exclusively by adjusting the areal proportions of elevation and aspect without the need for further calibration. This underlines the value of topographic information to meaningfully represent the dominant hydrological processes in the region and is further exacerbated by comparing the model to a model formulation that does not account for differences in aspect (FLEXG,nA) and which, in spite of satisfactorily reproducing the observed hydrograph, does not capture the influence of spatial variability of snow and ice, which as a consequence reduces model transferability. This highlights the importance of accounting for topography and landscape heterogeneity in conceptual hydrological models in mountainous and snow‐, and glacier‐dominated regions.  相似文献   

11.
The retreat of mountain glaciers and ice caps has dominated the rise in global sea level and is likely to remain an import component of eustatic sea‐level rise in the 21st century. Mountain glaciers are critical in supplying freshwater to populations inhabiting the valleys downstream who heavily rely on glacier runoff, such as arid and semi‐arid regions of western China. Owing to recent climate warming and the consequent rapid retreat of many glaciers, it is essential to evaluate the long‐term change in glacier melt water production, especially when considering the glacier area change. This paper describes the structure, principles and parameters of a modified monthly degree‐day model considering glacier area variation. Water balances in different elevation bands are calculated with full consideration of the monthly precipitation gradient and air temperature lapse rate. The degree‐day factors for ice and snow are tuned by comparing simulated variables to observation data for the same period, such as mass balance, equilibrium line altitude and glacier runoff depth. The glacier area–volume scaling factor is calibrated with the observed glacier area change monitored by remote sensing data of seven sub‐basins of the Tarim interior basin. Based on meteorological data, the glacier area, mass balance and runoff are estimated. The model can be used to evaluate the long‐term changes of melt water in all glacierized basins of western China, especially for those with limited observation data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Recent understanding of chemical weathering in glacierized catchments has been focused on mid-latitude, Alpine catchments; comparable studies from the high latitudes are currently lacking. This paper attempts to address this deficiency by examining solute provenance, transport and denudation in a glacierized catchment at 78°N in the Svalbard High Arctic archipelago. Representative samples of snow, glacier ice, winter proglacial icing and glacier meltwater were obtained from the catchment during spring and summer 1993 and analysed for major ion chemistry. Seasonal variations in the composition of glacier meltwater occur and are influenced by proglacial solute acquisition from the icing at the very start of the melt season, and subsequently by a period of discharge of concentrated snowmelt caused by snowpack elution; weathering within the ice-marginal channels that drain the glacier, particularly carbonation reactions, continues to furnish solute to meltwater when suspended sediment concentrations increase later in the melt season. Partitioning the solute flux into its various components (sea-salt, crustal, aerosol and atmospheric sources) shows that c. 25% of the total flux is sea salt derived, consistent with the maritime location of the glacier, and c. 71% is crustally derived. Estimated chemical denudation, 160 meq m−2 a−1 sea salt-corrected cation equivalent weathering rate, is somewhat low compared with other studied glacierized catchments (estimates in the range 450–1000 meq m−2 a−1), which is probably attributable to the relatively short melt season and low specific runoff in the High Arctic. A positive relationship was identified between discharge and CO2 drawdown owing to carbonation reactions in turbid meltwater. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
The active rock glacier “Innere Ölgrube” and its catchment area (Ötztal Alps, Austria) are assessed using various hydro(geo)logical tools to provide a thorough catchment characterization and to quantify temporal variations in recharge and discharge components. During the period from June 2014 to July 2018, an average contribution derived from snowmelt, ice melt and rainfall of 35.8%, 27.6% and 36.6%, respectively, is modelled for the catchment using a rainfall-runoff model. Discharge components of the rock glacier springs are distinguished using isotopic data as well as other natural and artificial tracer data, when considering the potential sources rainfall, snowmelt, ice melt and longer stored groundwater. Seasonal as well as diurnal variations in runoff are quantified and the importance of shallow groundwater within this rock glacier-influenced catchment is emphasized. Water derived from ice melt is suggested to be provided mainly by melting of two small cirque glaciers within the catchment and subordinately by melting of permafrost ice of the rock glacier. The active rock glacier is characterized by a layered internal structure with an unfrozen base layer responsible for groundwater storage and retarded runoff, a main permafrost body contributing little to the discharge (at the moment) by permafrost thaw and an active layer responsible for fast lateral flow on top of the permafrost body. Snowmelt contributes at least 1/3rd of the annual recharge. During droughts, meltwater derived from two cirque glaciers provides runoff with diurnal runoff variations; however, this discharge pattern will change as these cirque glaciers will ultimately disappear in the future. The storage-discharge characteristics of the investigated active rock glacier catchment are an example of a shallow groundwater aquifer in alpine catchments that ought to be considered when analysing (future) river runoff characteristics in alpine catchments as these provide retarded runoff during periods with little or no recharge.  相似文献   

14.
Himalayan basins have considerable snow‐ and glacier‐covered areas, which are an important source of water, particularly during summer season. In the Himalayan region, in general, the glacier melt season is considered to be from May to October. Changes in hydrological characteristics of the runoff over the melt season can be understood by studying the variation in time to peak and time lag between melt generation and its emergence as runoff. In the present study, the runoff‐delaying characteristics of Gangotri Glacier, one of the largest glaciers in the Indian Himalayas, have been studied. For this purpose, hourly discharge and temperature data were collected near the snout of the glacier (4000 m) for three ablation seasons (2004–2006). The diurnal variations in discharge and temperature provided useful information on water storage and runoff characteristics of the glacier. In the early stages of the ablation period, poor drainage network and stronger storage characteristics of the glaciers due to the presence of seasonal snow cover resulted in a much delayed response of melt water, providing a higher time lag and time to peak as compared to the peak melt season. A comparison of runoff‐delaying parameters with the discharge ratio clearly indicated that changes in time lag and time to peak are inversely correlated with variations in discharge. Impact of such meltwater storage and delaying characteristics of glaciers on hydropower projects being planned/developed on glacier‐fed streams in India has been discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In glacierized catchments, meteorological inputs driving surface melting are translated into runoff outputs mediated by the glacier hydrological system: analysis of the relationship between meteorology and diurnal and seasonal patterns of runoff should reflect the functioning of that system, with the role of meltwater storage likely to be of particular importance. Daily meltwater storage is determined for a glacier at 78 °N in the Svalbard archipelago, by comparing inputs calculated from a surface energy balance model with measured outputs (proglacial discharge). Solar radiation, air temperature, wind speed and proglacial discharge are then analysed by regression and time‐series methods, in order to assess the meteorology–discharge relationship and its variation at diurnal and seasonal time‐scales. The recorded discharge time‐series can be divided into two contrasting intervals: up to early August, proglacial discharge was high and variable, mean hydrographs showed little indication of diurnal cycling, ARIMA models of discharge indicated a non‐seasonal, moving‐average generating process, and there was a net loss of meltwater from storage; from early August, proglacial discharge was low and relatively invariable, but with clearer diurnal cycles, regression models of discharge showed substantially improved correlations with air temperature and solar radiation, ARIMA models indicated a non‐seasonal, autoregressive generating process, and eventually a seasonal component, and there was a net gain in meltwater storage. The transition between the two periods is brief compared with the duration of the melt season. The runoff response to meteorology therefore lacks the strongly progressive element previously identified in mid‐latitude glacierized catchments. In particular, the glacier hydrological system only appears responsive to diurnal forcing following the depletion of the seasonal snowpack meltwater store. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
The continuous increase in the emission of greenhouse gases has resulted in global warming, and substantial changes in the global climate are expected by the end of the current century. The reductions in mass, volume, area and length of glaciers on the global scale are considered as clear signals of a warmer climate. The increased rate of melting under a warmer climate has resulted in the retreating of glaciers. On the long‐term scale, greater melting of glaciers during the coming years could lead to the depletion of available water resources and influence water flows in rivers. It is also very likely that such changes have occurred in Himalayan glaciers, but might have gone unnoticed or not studied in detail. The water resources of the Himalayan region may also be highly vulnerable to such climate changes, because more than 50% of the water resources of India are located in the various tributaries of the Ganges, Indus and the Brahmaputra river system, which are highly dependent on snow and glacier runoff. In the present study, the snowmelt model SNOWMOD has been used to simulate the melt runoff from a highly glacierized small basin for the summer season. The model simulated the distribution and volume of runoff with reasonably good accuracy. Based on a 2‐year simulation, it is found that, on average, the contributions of glacier melt and rainfall in the total runoff are 87% and 13% respectively. The impact of climate change on the monthly distribution of runoff and total summer runoff has been studied with respect to plausible scenarios of temperature and rainfall, both individually and in combined scenarios. The analysis included six temperature scenarios ranging between 0·5 and 3 °C, and four rainfall scenarios (?10%, ?5%, 5%, 10%). The combined scenarios were generated using temperature and rainfall scenarios. The combined scenarios represented a combination of warmer and drier and a combination of warmer and wetter conditions in the study area. The results indicate that, for the study basin, runoff increased linearly with increase in temperature and rainfall. For a temperature rise of 2 °C, the increase in summer streamflow is computed to be about 28%. Changes in rainfall by ±10% resulted in corresponding changes in streamflow by ±3·5%. For the range of climatic scenarios considered, the changes in runoff are more sensitive to changes in temperature, compared with rainfall, which is likely due to the major contribution of melt water in runoff. Such studies are needed for proper assessment of available water resources under a changing climate in the Himalayan region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Glacier mass balance simulation using SWAT distributed snow algorithm   总被引:2,自引:1,他引:1  
Application of a temperature-index melt model incorporated into the Soil and Water Assessment Tool (SWAT) is presented to simulate mass balance (MB) and equilibrium line altitude (ELA) of three glaciers. The snow accumulation/melt parameters were adjusted to glacierized and free glacier areas, respectively. The SWAT snow algorithm enabled us to consider spatial variation of snow parameters by elevation bands across the sub-basins, while in the previous studies using SWAT, the related parameters were constant for an entire basin. The results show slight improvement in runoff simulation and significant improvement in simulated MB when considering ELA in model calibration. The results showed that SWAT can be applied to simulate MB, vertical MB distribution and annual ELA, with light calibration efforts for data-scarce catchments. The accuracy of the results depends on the modelled area of ablation zone from which most of the meltwater is released.  相似文献   

18.
Potential changes in glacier area, mass balance and runoff in the Yarkant River Basin (YRB) and Beida River Basin (BRB) are projected for the period from 2011 to 2050 employing the modified monthly degree‐day model forced by climate change projection. Future monthly air temperature and precipitation were derived from the simple average of 17, 16 and 17 General Circulation Model (GCM) projections following the A1B, A2 and B1 scenarios, respectively. These data were downscaled to each station employing the Delta method, which computes differences between current and future GCM simulations and adds these changes to observed time series. Model parameters calibrated with observations or results published in the literature between 1961 and 2006 were kept unchanged. Annual glacier runoff in YRB is projected to increase until 2050, and the total runoff over glacier area in 1970 is projected to increase by about 13%–35% during 2011–2050 relative to the average during 1961–2006. Annual glacier runoff and the total runoff over glacier area in 1970 in BRB is projected to increase initially and then to reach a tipping point during 2011–2030. There are prominent increases in summer, but only small increase in May and October of glacier runoff in YRB, and significant increases during late spring and early summer and significant decreases in July and late summer of glacier runoff in BRB. This study highlights the great differences among basins in their response to future climate warming. The specific runoff from areas exposed after glacier retreat relative to 1970 is projected to general increasing, which must be considered when evaluating the potential change of glacier runoff. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Min Xu  Hao Wu  Shichang Kang 《水文研究》2018,32(1):126-145
The Tianshan Mountains represent an important water source for the arid and semi‐arid regions of Central Asia. The discharge and glacier mass balance (GMB) in the Tianshan Mountains are sensitive to changes in climate. In this study, the changes in temperature, precipitation, and discharge of six glacierized watersheds of Tianshan Mountains were explored using non‐parametric tests and wavelet transforms during 1957–2004. On the basis of the statistical mechanics and maximum entropy principle model, the GMB at the watershed scale were reconstructed for the study period. The discharge and GMB responses to climate change were examined in different watersheds. The results showed that regional climate warming was obvious, especially after 1996. The warming trend increased gradually from east to west, and the increase in temperature was greater on the north slope than on the south slope. The changing trends in precipitation increased from eastern region to central region, and then, the trend decreased in the western region, although the value was higher than that in the eastern region. The discharge presented significant periods of 2.7–5.4 years and increased from east to west. Significant periodicity indicated that the discharge in the different watersheds exhibited obviously different patterns. The GMB losses were larger in south and east than in north. The large glaciers had more stable interannual variations in discharge, and large fluctuations in discharge will be observed as the glacier areas shrink. Precipitation was the dominant factor for discharge during the study period, although the influence of increasing temperatures on hydrological regimes should not be neglected in the long term. Systematic differences in discharge and the GMB in glacierized watersheds in response to climate change are apparent in the Tianshan Mountains.  相似文献   

20.
We analysed contributions to run‐off using hourly stream water samples from seven individual melt‐induced run‐off events (plus one rainfall event) during 2011, 2012 and 2013 in two nested glacierized catchments in the Eastern Italian Alps. Electrical conductivity and stable isotopes of water were used for mixing analysis and two‐component and three‐component hydrograph separation. High‐elevation snowmelt, glacier melt and autumn groundwater were identified as major end‐members. Discharge and tracers in the stream followed the diurnal variations of air temperature but markedly reacted to rainfall inputs. Hysteresis patterns between discharge and electrical conductivity during the melt‐induced run‐off events revealed contrasting loop directions at the two monitored stream sections. Snowmelt contribution to run‐off was highest in June and July (up to 33%), whereas the maximum contribution of glacier melt was reached in August (up to 65%). The maximum groundwater and rainfall contributions were 62% and 11%, respectively. Run‐off events were generally characterized by decreasing snowmelt and increasing glacier melt fractions from the beginning to the end of the summer 2012, while run‐off events in 2013 showed less variable snowmelt and lower glacier melt contributions than in 2012. The results provided essential insights into the complex dynamics of melt‐induced run‐off events and may be of further use in the context of water resource management in alpine catchments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号