首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The runoff in Songhuajiang River catchment has experienced a decreasing trend during the second half of the 20th century. Serially complete daily rainfall data of 42 rainfall stations from 1959 to 2002 and daily runoff data of five meteorological stations from 1953 to 2005 were obtained. The Mann–Kendall trend test and the sequential version of Mann–Kendall test were employed in this study to test the monthly and annual trends for both rainfall and runoff, to determine the start point of abrupt runoff declining, and to identify the main driving factors of runoff decline. The results showed an insignificant increasing trend in rainfall but a significant decreasing trend in runoff in the catchment. For the five meteorological stations, abrupt runoff decline occurred during 1957–1963 and the middle 1990s. Through Mann–Kendall comparisons for the area‐rainfall and runoff for the two decreasing periods, human activity, rather than climatic change, is identified as the main driving factor of runoff decline. Analysis of land use/cover shows that farmland is most related with runoff decline among all the land use/cover change in Nenjiang catchment. From 1986 to 1995, the area of farmland increased rapidly from 6.99 to 7.61 million hm2. Hydraulic engineering has a significant influence on the runoff decline in the second Songhuajiang catchment. Many large‐scale reservoirs and hydropower stations have been built in the upstream of the Second Songhuajiang and lead to the runoff decline. Nenjiang and the Second Songhuajiang are the two sources of mainstream of Songhuajiang. Decreased runoff in these two sub‐catchments then results in runoff decrease in mainstream of Songhuajiang catchment. It is, therefore, concluded that high percent agricultural land and hydraulic engineering are the most probable driving factors of runoff decline in Songhuajiang River catchment, China.  相似文献   

2.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This study explored the hydrological impacts of urbanization, rainfall pattern and magnitude in a developing catchment. The Stormwater Management Model was parameterized, calibrated and validated in three development phases, which had the same catchment area (12.3 ha) but different land use intensities. The model calibration and validation by using sub‐hourly hydro‐meteorological data demonstrated a good performance of the model in predicting stormwater runoff in the different development phases. Based on the results, a threshold between minor and major rainfall events was identified and conservatively determined to be about 17.5 mm in depth. Direct runoff for minor storm events has a linear relationship with rainfall; however, events with a rainfall depth greater than the threshold yield a rainfall–runoff regression line with a clearly steeper slope. The difference in urban runoff generation between minor and major rainfall events diminishes with the increase of imperviousness. Urbanization leads to an increase in the production of stormwater runoff, but during infrequent major storms, the runoff contribution from pervious surfaces reduces the runoff changes owing to urbanization. Rainfall pattern exerts an important effect on urban runoff, which is reflected in pervious runoff. With the same magnitude, prolonged rainfall events with unvarying low intensity yield the smallest peak flow and the smallest total runoff, yet rainfall events with high peak intensity produce the largest runoff volume. These results demonstrate the different roles of impervious and pervious surfaces in runoff generation, and how runoff responds to rainstorms in urban catchments depends on hyetograph and event magnitude. Furthermore, the study provides a scientific basis of the design guideline sustainable urban drainage systems, which are still arbitrary in many countries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

This study investigates changes in seasonal runoff and low flows related to changes in snow and climate variables in mountainous catchments in Central Europe. The period 1966–2012 was used to assess trends in climate and streamflow characteristics using a modified Mann–Kendall test. Droughts were classified into nine classes according to key snow and climate drivers. The results showed an increase in air temperature, decrease in snowfall fraction and snow depth, and changes in precipitation. This resulted in increased winter runoff and decreased late spring runoff due to earlier snowmelt, especially at elevations from 1000 to 1500 m a.s.l. Most of the hydrological droughts were connected to either low air temperatures and precipitation during winter or high winter air temperatures which caused below-average snow storages. Our findings show that, besides precipitation and air temperature, snow plays an important role in summer streamflow and drought occurrence in selected mountainous catchments.  相似文献   

6.
Knowledge of the effective impervious area (EIA) or the degree to which impervious surfaces are hydraulically connected to the drainage system is useful for improving hydrological and environmental models and assessing the effectiveness of green stormwater infrastructure in urban watersheds. The goal of this research is to develop a method to estimate EIA fraction in urban watersheds using readily available data. Since EIA is dependent on rainfall–runoff response and cannot be solely determined based on the physical characteristics of a watershed, the EIA is linked with the asymptotic curve number (CN), a watershed index that represents runoff characteristics. In order for the method to be applicable to ungauged watersheds, the asymptotic CN is predicted using land cover and soil data from 35 urban catchments in Minnesota and Texas, USA. Similar data from 11 other urban catchments in Wisconsin and Texas, USA, are used to validate the results. A set of runoff depth versus EIA fraction curves is also developed to assess the impact of EIA reduction on discharge from an urban watershed in land-use planning studies.  相似文献   

7.
Estimates of changes in design rainfall values for Canada   总被引:1,自引:0,他引:1  
Annual maximum rainfall data from 51 stations in Canada were analyzed for trends and changes by using the Mann–Kendall trend test and a bootstrap resampling approach, respectively. Rainfall data were analyzed for nine durations ranging from 5 min to 24 h. The data analyzed are typically used in the development of intensity‐duration‐frequency (IDF) curves, which are used for estimating design rainfall values that form an input for the design of critical water infrastructure. The results reveal more increasing than decreasing trends and changes in the data with more increasing changes and larger changes, noted for the longer rainfall durations. The results also indicate that a traditional trend test may not be sufficient when the interest is in identifying changes in design rainfall quantiles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In recent years, the Xitiaoxi river basin in China has experienced intensified human activity, including city expansion and increased water demand. Climate change also has influenced streamflow. Assessing the impact of climate variability and human activity on hydrological processes is important for water resources planning and management and for the sustainable development of eco‐environmental systems. The non‐parametric Mann–Kendall test was employed to detect the trends of climatic and hydrological variables. The Mann–Kendall–Sneyers test and the moving t‐test were used to locate any abrupt change of annual streamflow. A runoff model, driven by precipitation and potential evapotranspiration, was employed to assess the impact of climate change on streamflow. A significant downward trend was detected for annual streamflow from 1975 to 2009, and an abrupt change occurred in 1999, which was consistent with the change detected by the double mass curve test between streamflow and precipitation. The annual precipitation decreased slightly, but upward trends of annual mean temperature and potential evapotranspiration were significant. The annual streamflow during the period 1999–2009 decreased by 26.19% compared with the reference stage, 1975–1998. Climate change was estimated to be responsible for 42.8% of the total reduction in annual streamflow, and human activity accounted for 57.2%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Suburban areas undergo rapid land‐use changes due to urban growth. Consequently, the mitigation of hydrological impacts is a major issue in the field of flood and water pollution management. Nevertheless, suburban catchments have seldom been studied. This paper presents a method for analyzing the hydrological behaviour of suburban catchments; the particular method is tested on the Chézine catchment, located in a suburban area of Nantes (western France). Chézine provides a typical example of a suburban catchment, yet features the unique behaviour of a response time ranging from 1 to 6 h. It is proposed herein to classify rainfall‐runoff events in homogeneous groups according to their flow coefficient. A group of events is characterized by its mean flow coefficient and by its transfer function, which are considered as the signatures of the hydrological behaviour of these similar events. The transfer function is identified from the available series of rainfall and outflow data. The identified transfer functions serve to estimate the localization of contributing zones over the basin by estimating the basin transfer function from flowpaths. The consistency of these assumptions is then verified by comparing the estimated transfer function with the identified one. The application of this method to the Chézine catchment demonstrates that it is possible to distinguish various types of hydrological behaviour regimes associated with significantly different transfer functions. The joint analysis of the flow coefficient and transfer function of each group confirms that the Chézine catchment reacts like an urban basin with just the urban zones contributing to runoff under dry conditions. Otherwise, the wetter the initial state, the greater the tendency of this basin to react like a natural basin, as reflected by the different transfer function shapes. These results confirm the validity of the proposed method to analyse the various behaviour regimes of suburban catchments. In addition, this method helps define the specifications of hydrological models suited to suburban catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The impacts of land use intensity, here defined as the degree of imperviousness, on stormwater volumes, runoff rates and their temporal occurrence were studied at three urban catchments in a cold region in southern Finland. The catchments with ‘High’ and ‘Intermediate’ land use intensity, located around the city centre, were characterized by 89% and 62% impervious surfaces, respectively. The ‘Low’ catchment was situated in a residential area of 19% imperviousness. During a 2‐year study period with divergent weather conditions, the generation of stormwater correlated positively with catchment imperviousness: The largest annual stormwater volumes and the highest runoff coefficients and number of stormwater runoff events occurred in the High catchment. Land use intensity also altered the seasonality of stormwater runoff: Most stormwater in the High catchment was generated during the warm period of the year, whereas the largest contribution to annual stormwater generation in the Low catchment took place during the cold period. In the two most urbanized catchments, spring snow melt occurred a few weeks earlier than in the Low catchment. The rate of stormwater runoff in the High and Intermediate catchments was higher in summer than during spring snow melt, and summer runoff rates in these more urbanized catchments were several times higher than in the Low catchment. Our study suggests that the effects of land use intensity on stormwater runoff are season dependent in cold climates and that cold seasons diminish the differences between land use intensities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Due to scarcity of local data on stormwater pollution levels and rainfall-runoff generation process, very few attempts have been made towards the management of stormwater in sub-tropical rural catchments. An attempt has been made in the present study to characterize and predict the stormwater runoff characteristics using regression modeling from five rural catchments in north-west India. Stormwater samples and flow data were collected from 75 storm events. Samples were analyzed for pH, total suspended solids (TSS), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total kjeldhal nitrogen (TKN), total phosphorous (TP), nitrate-nitrogen (NO 3 - –N), total coliform count (TC), fecal coliform count (FC), Zn, Cu and Fe. It was found that size of the catchment and the land use practices influenced the stormwater quality even in predominantly rural areas, otherwise thought to be homogeneous. The results obtained were related with the antecedent dry days (ADD) and average rainfall. ADD was found to be positively correlated with pollutant loads whereas average rainfall showed negative correlation. The study highlights the importance of ADD in causing greater mean pollutant concentrations except for TKN, TP and NO 3 - –N. Regression models were developed for the studied catchments to estimate mean pollutant concentrations as a function of rainfall variables. Results revealed that measured pollutant concentrations demonstrated high variability with ADD and average rainfall in small rural catchments, whereas in large catchments, factors like land use, extent of imperviousness etc. resulted in low predictability of measured parameters.  相似文献   

12.
Haiyun Shi  Guangqian Wang 《水文研究》2015,29(14):3236-3246
Due to climate change and its aggravation by human activities (e.g. hydraulic structures) over the past several decades, the hydrological conditions in the middle Yellow River have markedly changed, leading to a sharp decrease in runoff and sediment discharge. This paper focused on the impacts of climate change and hydraulic structures on runoff and sediment discharge, and the study area was located in the 3246 km2 Huangfuchuan (HFC) River basin. Changes in annual runoff and sediment discharge were initially analysed by using the Mann–Kendall trend test and Pettitt change point test methods. Subsequently, periods of natural and disturbed states were defined. The results showed that both the annual runoff and sediment discharge presented statistically significant decreasing trends. However, compared with the less remarkable decline in annual rainfall, it was inferred that hydraulic structures might be another important cause for the sharp decrease in runoff and sediment discharge in this region. Consequently, sediment‐trapping dams (STDs, a type of large‐sized check dam used to prevent sediment from entering the Yellow River main stem) were considered in this study. Through evaluating the impacts of the variation in rainfall patterns (i.e. amount and intensity) and the STD construction, a positive correlation between rainfall intensity and current STD construction was found. This paper revealed that future soil and water conservation measures should focus on areas with higher average annual rainfall and more rainstorm hours. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Hydrological processes change from the impacts of climate variability and human activities. Runoff in the upper reaches of the Hun‐Taizi River basin, which is mainly covered by forests in northeast China, decreased from 1960 to 2006. The data used in this study were based on runoff records from six hydrological stations in the upper reaches of the Hun‐Taizi River basin. Nonparametric Mann–Kendall statistic was used to identify change trends and abrupt change points and consequently analyze the change characteristics in hydrological processes. The abrupt change in the annual runoff in most subcatchments appeared after 1975. Finally, the effects of climate change and land cover change on water resources were identified using regression analysis and a hydrology model. Results of the regression analysis suggest that the correlation coefficients between precipitation and runoff prior to the abrupt change were higher compared with those after the abrupt change. Moreover, using hydrology model analysis, the water yield was found to increase because of the decrease in forest land. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Since stormwater wash-off of pollutants in urban areas is largely affected by environmental variability, it is very difficult to predict the amount of pollutants transported by stormwater runoff during and after individual rainfall events. We investigated the addition of a random component into an exponential wash-off equation of total suspended solids (TSS) and total nitrogen (TN) to model the variability of runoff pollutant concentrations. The model can be analytically solved to describe the probability distributions of TSS and TN concentrations as a function of increasing runoff depths. TSS data from six Australian catchments and TN data from three of these catchments were used to calibrate the model and evaluate its applicability. Using the results of the model, its potential use to determine the appropriate size of stormwater treatment systems is discussed, stressing how probabilistic considerations should be included in the design of such systems. Specifically, stormwater depths retained by a treatment system should result from a compromise between the recurrence of specific runoff depths and the probability to discharge a target pollutant concentration when such a runoff depth is exceeded.  相似文献   

15.
Seth Rose 《水文研究》2009,23(8):1105-1118
An extensive dataset (230 precipitation gauges and 79 stream gauges) was used to analyse rainfall–runoff relationships in 10 subregions of a 482000 km2 area in the south‐eastern USA (Maryland, Virginia, North Carolina, South Carolina and Georgia). The average annual rainfall and runoff for this study area between 1938 and 2005 were 1201 and 439 mm, respectively. Average runoff/rainfall ratios during this period varied between 0·24 in the southernmost Coastal Plain subregion to 0·64 in the Blue Ridge Province. Watershed elevation and relief are the principal determinants governing the conversion of rainfall to runoff. Temporal rainfall variation throughout the south‐eastern USA ranges from ~40% above and below normal while the variation for runoff is higher, from ? 75% to + 100%. In any given year there can exist a ± 25–50% error in predicted runoff deviation using the annual rainfall–runoff regression. Fast Fourier Transform and autoregressive spectral analysis revealed dominant cyclicities for rainfall and runoff between 14 and 17 years. Secondary periodicities were typically between 6–7 and 10–12 years. The inferred cyclicity may be related to ENSO and/or Central North Pacific atmospheric phenomena. Mann–Kendall analyses indicate that there were no consistent statistically significant temporal trends with respect to south‐eastern US rainfall and runoff during the study period. The results of U‐tests similarly indicated that rainfall between 1996 and 2005 was not statistically higher or lower than during earlier in the study period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (Østlandet) Norway by applying the Mann–Kendall test and Theil–Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983–2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. Østlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in Østlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration.  相似文献   

17.
Trend analysis in Turkish precipitation data   总被引:9,自引:0,他引:9  
This study aims to determine trends in the long‐term annual mean and monthly total precipitation series using non‐parametric methods (i.e. the Mann–Kendall and Sen's T tests). The change per unit time in a time series having a linear trend was estimated by applying a simple non‐parametric procedure, namely Sen's estimator of slope. Serial correlation structure in the data was accounted for determining the significance level of the results of the Mann–Kendall test. The data network used in this study, which is assumed to reflect regional hydroclimatic conditions, consists of 96 precipitation stations across Turkey. Monthly totals and annual means of the monthly totals are formed for each individual station, spanning from 1929 to 1993. In this case, a total of 13 precipitation variables at each station are subjected to trend detection analysis. In addition, regional average precipitation series are established for the same analysis purpose. The application of a trend detection framework resulted in the identification of some significant trends, especially in January, February, and September precipitations and in the annual means. A noticeable decrease in the annual mean precipitation was observed mostly in western and southern Turkey, as well as along the coasts of the Black Sea. Regional average series also displayed trends similar to those for individual stations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Huai River Basin, as the sixth largest river basin in China, has a high‐regulated river system and has been facing severe water problems. In this article, the changing patterns of runoff and precipitation at 10 hydrological stations from 1956 to 2000 on the highly regulated river (Shaying River) and less‐regulated river (Huai River) in the basin are evaluated at the monthly, seasonal and annual scales using the Mann–Kendall test and simple linear regression model. The results showed that: (1) No statistically significant trends of precipitation in the upper and middle Huai River Basins were detected at the annual scale, but the trend of annual runoff at Baiguishan, Zhoukou and Fuyang stations in Shaying River decreased significantly, whereas the others were not. Moreover, the decreasing trends of runoff for most months were significant in Shaying River, although the trend of monthly precipitation decreased significantly only in April in the whole research area and the number of months in the dry season having significantly decreasing trends in runoff was more than that in the wet season. (2) The rainfall–runoff relationship was significant in both highly regulated river and less‐regulated river. In regulated river, the reservoirs have larger regulation capacity than the floodgates and thus have the smaller correlation coefficient and t‐value. In Huai River, the correlation coefficients decreased from upper stream to downstream. (3) The regulation of dams and floodgates for flood control and water supply was the principal reason for the decreasing runoff in Huai River Basin, although the decreasing precipitation in April in this basin was statistically significant. The findings are useful for recognizing hydrology variation and will provide scientific foundation to integrated water resources management in Huai River Basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
《水文科学杂志》2013,58(3):618-628
Abstract

Seven catchments of diverse size in Mediterranean Europe were investigated in order to understand the main aspects of their hydrological functioning. The methods included the analysis of daily and monthly precipitation, monthly potential evapotranspiration rates, flow duration curves, rainfall—runoff relationships and catchment internal data for the smaller and more instrumented catchments. The results showed that the catchments were less “dry” than initially considered. Only one of them was really semi-arid throughout the year. All the remaining catchments showed wet seasons when precipitation exceeded potential evapotrans-piration, allowing aquifer recharge, “wet” runoff generation mechanisms and relevant baseflow contribution. Nevertheless, local infiltration excess (Hortonian) overland flow was inferred during summer storms in some catchments and urban overland flow in some others. The roles of karstic groundwater, human disturbance and low winter temperatures were identified as having an important impact on the hydrological regime in some of the catchments.  相似文献   

20.
Rainfall is the key climatic variable that governs the regional hydrologic cycle and availability of water resources. Recent studies have analysed the changes in rainfall patterns at global as well as regional scales in Australia. Recent studies have also suggested that any analysis of hydroclimatic variables should be performed at the local scale rather than at a large or global scale because the trends and their effects may be different from one location to the other. Because no studies were found specific to the Yarra River catchment, which is an important catchment in Victoria, Australia, this study performs a spatiotemporal trend analysis on long‐term rainfall records at 15 measuring stations within the catchment. The Mann–Kendall test was used to detect trends, and Sen's slope estimator was used to calculate the slopes in both monthly and annual rainfall. Moreover, a cumulative summation technique was used to identify the trend beginning year, and prewhitening criteria were tested to check for autocorrelation in the data. The results showed that the monthly rainfall has generally decreasing trends except in January and June. Significant decreasing rainfall trends were observed in May (among the autumn months of March, April and May) at most stations and also in some other months at several stations. A decreasing trend was also observed in the annual rainfall at all stations. This study indicates that there has been a consistent reduction in rainfall over the catchment, both spatially and temporally over the past 50 years, which will have important implications for the future management of water resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号