首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
廖新浩 《天文学进展》2001,19(2):301-301
介绍了地球自动力学中的两个目前正在研究的问题,1.Chandler摆动的随机激发,在分析Chandler摆动各种激发的可能性后,认为随机运动是最可能的激发源,在此基础,提出了一个Chandler摆动激发的动力学模型,并从理论和数值模拟两方面对此模型做了统计分析研究,描述了今后对此问题的研究思路,2.地球内部动力学是目前国际地球动力学界的一个热点研究课题,介绍了它的现状和最近的发展动态以及准备在这方面开展研究工作的打算。  相似文献   

2.
The relativistic equations of motion are derived for N self-gravitating, rotating finite bodies. These equations are then applied to the near-Earth satellite orbit determination problem. The apparent change of the shape of the Earth from the Earth centered frame to the Solar System barycentric frame changes the value of the Newtonian potential term in the metric. This in turn leads to a simplification of the equations of motion in the barycentric frame.  相似文献   

3.
基于经典的弹性地球自转动力学理论,建立了极移和章动的联合动力学方程。由此给出了弹性地球各种几何轴和物理轴(Tisserand轴、自转轴、瞬时形状轴、角动量轴、CEP和CIP轴)的极移、岁差章动的动力学方程,明确了各种轴的定义及其之间的理论关系。理论研究表明,联合动力学方程要比经典动力学方程综合性强易于理解,可同时求解极移和章动,特别是在文[1]理论中出现的倾斜模(TOM),在此只是作为了一个特解而存在。  相似文献   

4.
Planetary dynamics of century-long Earth shape changes is studied based on the approximation of the physical Earth surface by a biaxial ellipsoid. Trends in century-long changes of Earthshape parameters were revealed from the analysis of the following data: modern GNSS measurements on permanent stations in the Northern and Southern hemispheres and paleoreconstruction models of continental and ocean surfaces.  相似文献   

5.
For numerical integration of the geocentric equations of motion of Earth satellites in the general relativity framework one may choose now between rather simple equations involving in their relativistic dynamical part only the Earth-induced terms and very complicated equations taking into account the relativistic third-body action. However, it is possible quite easily to take into account the relativistic indirect third-body perturbations and to neglect much lesser direct third-body perturbations. Such approach is based on the use of the Newtonian third-body perturbations in geocentric variables with expressing them in the relativistic manner in terms of the barycentric arguments. Together with it, to extend the known results for the spheroid model of the Earth, the Earth-induced terms are treated in great detail by including the non-spin part of the Earth vector-potential and the Earth triaxial non-sphericity.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

6.
Effects of an interaction between the mantle and the core of the Earth on its rotational motion are investigated. Assuming that the Earth consists of a rigid mantle and a rigid core with a frictional coupling and a kind of inertial coupling between them, the equations of motion are derived, and they are solved in a close approximation. The solution gives the expressions for the precession, the nutation, the secular changes in the obliquity and the rotational speed, the polar motion and so on as functions of the magnitudes of these forces. A numerical estimation shows that the effect of the friction on the amplitude and phase of the nutation is small for a reasonable intensity of the friction while inertial coupling force has a decisive influence on the amplitude, and an appropriately chosen value of the latter force gives a nutation which closely agrees with observations. It is also indicated that this torque remarkably lessens the rates of the secular changes in the obliquity and the rotational speed. The possibility of a periodical change in the amplitude of the polar motion is suggested as a result of the interaction between the two consituents.  相似文献   

7.
In this paper the tidal phenomena on the Earth are concisely specified, including solid tides, ocean tides and atmospheric tides due to the luni-solar tide-generating force, and the Earth pole tide due to the motion of the Earth's rotation axis (polar motion); as well as their effects on the Earth rotation. The outcomes of scientific researches of Chinese astronomers on these topics are described in some detail. These researches deal with the mechanisms responsible for tidal effects on the earth rotation, and on the measurements of the Earth rotation parameters. Finally, the effects discovered by Chinese researchers on the measurements of the period and change in period of pulsars are discussed. These effects are very small in magnitude but not negligible.  相似文献   

8.
One of the mechanisms of Alfven turbulence generation in the foreshock region is investigated by the example of the Earth bow shock. The effect of the temperature of high-velocity beams on characteristics of generated disturbances is examined. It is shown that the beam temperature has a significant impact on transverse scales of disturbances. The higher the temperature, the greater the limitations on transverse wavelengths. The development of instability in the propagation of reflected, intermediate, and diffusion proton beams in the foreshock region of the Earth bow shock is considered. Perturbation motion dynamics in foreshock region is analyzed.  相似文献   

9.

The paper is focused on studying the motion of asteroid 3200 Phaethon which approached the Earth in December 2017. We consider the dynamics of asteroid 3200 Phaethon, reveal its encounters with planets, mean motion and secular resonances, and estimate the predictability time and the causes of chaoticity. A peculiar feature in the dynamics of the object is that it passes through the unstable orbital resonance 3/7 with Venus and exhibits a gamut of apsidal-nodal resonances with Mercury, Venus, Earth, Mars, and Jupiter, as well as a large number of close encounters with terrestrial planets. These properties result in a chaotic character of the motion beyond a time interval between the years 1780 and 2350.

  相似文献   

10.
At present two complementary approaches to calculations of flare-generated interplanetary disturbances are beeing developed. One of them is based on Parker's model with one end of every field line rooted at the Sun and the other end somewhere in outer space (Wu et al., 1983). Another approach is based on Morrison's closed-cloud hypothesis. In this paper the dynamics of flare-generated hydromagnetic oblate clouds in the solar corona and interplanetrary space is developed. Magnetic buoyancy, gravity, and momentum loss due to interactions with the interplanetary medium are taken into account. If the magnetic fields, number density, and velocity of the external plasma are known, the equations allow a simple solutions for variations of the velocity and characteristic lengths of the clouds during their motion between the Sun and the Earth. Two theoretical velocity profiles are calculated and compared with an experimental one.  相似文献   

11.
The quantification of geohazards and water resources in intraplate areas requires an integrated approach connecting monitoring, reconstruction and prediction of underlying processes. Intraplate rifts such as the Northwestern European rift system and coastal areas such as the Rhine–Meuse delta system are characterized by an interplay of climatic variations and neotectonics. The Netherlands Environmental Earth System Dynamics Initiative (NEESDI) addresses the interplay of lithosphere and surface processes through an integration of upper mantle and crustal scale studies with high-resolution analyses of the sedimentary record, geomorphology and hydrodynamic regime. Recent faulting imaged by seismic reflection data and trenching appears to exert a major control on uplift and subsidence patterns in the area, effecting coastal evolution and river dynamics in the Rhine–Meuse system.  相似文献   

12.
The equations describing the disturbed motion of an artificial Earth satellite in the atmosphere are integrated by using a new variable instead of the true anomaly. The atmospheric flattening and rotation, the linear variation of the density scale height with the altitude, the symmetrical diurnal effect and the variation of its amplitude with the heigth are taken into account. Approximate formulae for the perturbations in all the orbital elements over a revolution of the satellite are given.  相似文献   

13.
This paper describes the results of studies of dynamical chaos in the problem of the orbital dynamics of asteroids near the 3 : 1 mean-motion resonance with Jupiter. Maximum Lyapunov characteristic exponents (MLCEs) are used as an indicator and a measure of the chaoticity of motion. MLCE values are determined for trajectories calculated by the numerical integration of equations of motion in the planar elliptical restricted three-body problem. The dependence of the MLCE on the problem parameters and on the initial data is analyzed. The inference is made that the domain of chaos in the phase space of the problem considered consists of two components of different nature. The values of the MLCEs observed for one of the components (namely, for the component corresponding to low-eccentricity asteroidal orbits) are compared to the theoretical estimates obtained within the framework of model of the resonance as a perturbed nonlinear pendulum.  相似文献   

14.
Under perturbations from outer bodies, the Earth experiences changes of its angular momentum axis, figure axis and rotational axis. In the theory of the rigid Earth, in addition to the precession and nutation of the angular momentum axis given by the Poisson terms, both the figure axis and the rotational axis suffer forced deviation from the angular momentum axis. This deviation is expressed by the so-called Oppolzer terms describing separation of the averaged figure axis, called CIP (Celestial Intermediate Pole) or CEP (Celestial Ephemeris Pole), and the mathematically defined rotational axis, from the angular momentum axis. The CIP is the rotational axis in a frame subject to both precession and nutation, while the mathematical rotational axis is that in the inertial (non-rotating) frame. We investigate, kinematically, the origin of the separation between these two axes—both for the rigid Earth and an elastic Earth. In the case of an elastic Earth perturbed by the same outer bodies, there appear further deviations of the figure and rotational axes from the angular momentum axis. These deviations, though similar to the Oppolzer terms in the rigid Earth, are produced by quite a different physical mechanism. Analysing this mechanism, we derive an expression for the Oppolzer-like terms in an elastic Earth. From this expression we demonstrate that, under a certain approximation (in neglect of the motion of the perturbing outer bodies), the sum of the direct and convective perturbations of the spin axis coincides with the direct perturbation of the figure axis. This equality, which is approximate, gets violated when the motion of the outer bodies is taken into account.  相似文献   

15.
An analytical theory of the rotation of the rigid Earth is developed in a form compatible with the general planetary theory. Numerical estimates of the constants of integration of the Poisson equations, which are a particular case of the equations of the Earth’s rotation, are given.  相似文献   

16.
Theory of the motion of an artificial Earth satellite   总被引:1,自引:0,他引:1  
An improved analytical solution is obtained for the motion of an artificial Earth satellite under the combined influences of gravity and atmospheric drag. The gravitational model includes zonal harmonics throughJ 4, and the atmospheric model assumes a nonrotating spherical power density function. The differential equations are developed through second order under the assumption that the second zonal harmonic and the drag coefficient are both first-order terms, while the remaining zonal harmonics are of second order.Canonical transformations and the method of averaging are used to obtain transformations of variables which significantly simplify the transformed differential equations. A solution for these transformed equations is found; and this solution, in conjunction with the transformations cited above, gives equations for computing the six osculating orbital elements which describe the orbital motion of the satellite. The solution is valid for all eccentricities greater than 0 and less than 0.1 and all inclinations not near 0o or the critical inclination. Approximately ninety percent of the satellites currently in orbit satisfy all these restrictions.  相似文献   

17.
Calculations have been made to determine the effects of atmospheric drag and gravity on impact ejecta trajectories on Venus, Mars, and the Earth. The equations of motion were numerically integrated for a broad range of body sizes, initial velocities, and initial elevation angles. A dimensionless parameter was found from approximate analytic solutions which correlated the ejecta range, final impact angle, and final impact velocity for all three planets.  相似文献   

18.
We consider the non-canonical Hamiltonian dynamics of a gyrostat in Newtonian interaction with n spherical rigid bodies. Using the symmetries of the system we carry out two reductions. Then, working in the reduced problem, we obtain the equations of motion, a Casimir function of the system and the equations that determine the relative equilibria. Global conditions for existence of relative equilibria are given. Besides, we give the variational characterization of these equilibria and three invariant manifolds of the problem; being calculated the equations of motion in these manifolds, which are described by means of a canonical Hamiltonian system. We give some Eulerian and Lagrangian equilibria for the four body problem with a gyrostat. Finally, certain classical problems of Celestial Mechanics are generalized.  相似文献   

19.
20.
It is known since the seminal study of Laskar (1989) that the inner planetary system is chaotic with respect to its orbits and even escapes are not impossible, although in time scales of billions of years. The aim of this investigation is to locate the orbits of Venus and Earth in phase space, respectively, to see how close their orbits are to chaotic motion which would lead to unstable orbits for the inner planets on much shorter time scales. Therefore, we did numerical experiments in different dynamical models with different initial conditions—on one hand the couple Venus–Earth was set close to different mean motion resonances (MMR), and on the other hand Venus’ orbital eccentricity (or inclination) was set to values as large as e = 0.36 (i = 40°). The couple Venus–Earth is almost exactly in the 13:8 mean motion resonance. The stronger acting 8:5 MMR inside, and the 5:3 MMR outside the 13:8 resonance are within a small shift in the Earth’s semimajor axis (only 1.5 percent). Especially Mercury is strongly affected by relatively small changes in initial eccentricity and/or inclination of Venus, and even escapes for the innermost planet are possible which may happen quite rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号