首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluoride contamination in groundwater resources of Alleppey,southern India   总被引:1,自引:0,他引:1  
Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India.Groundwater is the main source of drinking water for the 240,991 people living in this region.The groundwater is being extracted from a multi-layer aquifer system of unconsolidated to semi-consolidated sedimentary formations,which range in age from Recent to Tertiary.The public water distribution system uses dug and tube wells.Though there were reports on fluoride contamination,this study reports for the first time excess fluoride and excess salinity in the drinking water of the region.The quality parameters,like Electrical Conductivity(EC) ranges from 266 to 3900 μs/cm,the fluoride content ranges from 0.68 to2.88 mg/L,and the chloride ranges between the 5.7 to 1253 mg/L.The main water types are Na-HC03,NaCO_3 and Na-Cl.The aqueous concentrations of F~- and CO_3~(2-) show positive correlation whereas F~- and Ca~(2+) show negative correlation.The source of fluoride in the groundwater could be from dissolution of fluorapatite,which is a common mineral in the Tertiary sediments of the area.Long residence time,sediment-groundwater interaction and facies changes(Ca-HCO_3 to Na-HCO_3) during groundwater flow regime are the major factors responsible for the high fluoride content in the groundwater of the area.High strontium content and high EC in some of the wells indicate saline water intrusion that could be due to the excess pumping from the deeper aquifers of the area.The water quality index computation has revealed that 62%of groundwater belongs to poor quality and is not suitable for domestic purposes as per BIS and WHO standards.Since the groundwater is the only source of drinking water in the area,proper treatment strategies and regulating the groundwater extraction are required as the quality deterioration poses serious threat to human health.  相似文献   

2.
正Ground ruptures (fractures,earth fissures and reactivation of pre-existing surface faults) caused by extraction of fluids from the subsurface have been observed in hundreds of sedimentary basins worldwide,mainly in semiarid to arid areas of the USA,Mexico,China,India,Libya,Iran,and Saudi Arabia.Unexpected fissure generation and fault activation associated with  相似文献   

3.
At present,due to shortage of water resources,especially in arid and semiarid areas of the world such as Iran,exploitation of groundwater resources with suitable quality for drinking is of high importance.In this regard,contamination of groundwater resources to heavy metals,especially arsenic,is one of the most important hazards that threaten human health.The present study aims to develop an approach for presenting the groundwater quality of Sirjan city in Kerman Province,based on modern tools of spatial zoning in the GIS environment and a fuzzy approach of evaluating drinking water in accordance with the standards of world health organization(WHO).For this purpose,qualitative data related to 22 exploitation wells recorded during 2002 to 2017 were used.In addition,fuzzy aggregate maps were prepared in two scenarios by neglecting and considering arsenic presence in groundwater resources.The results showed a decrease in groundwater quality over time.More specifically,neglecting the presence of arsenic,in 2002,all drinking wells in the area were located in an excellent zone,while in 2017 a number of operation wells were located in the good and medium zone.Also,the final map,considering the presence of arsenic as a limiting factor of drinking water,indicated that parts of the southern regions of the plain would be the best place to dig wells for drinking water.Therefore,the use of new methods can contribute significantly to the usage of groundwater aquifers and provide a good view of the aquifer water quality.  相似文献   

4.
Background: Fluorine is an important element to human health. Overloading of fluorine may cause dental and/or skeletal fluorosis, while in fluorine deficiency distracts, fluoride drinking water supply or other methods of fluoridation may greatly reduce the ratio of dental caries of local residents. The benefit of drinking water fluoridation has been widely accepted as a public sanitation measure in most western countries, but in China it faces big challenges. Method: Investigation of oral health and fluorine level in drinking water, main food and urine in some big cities of China. Result and conclusion: (1) Fluorine content in drinking water in 70% of the whole research cities is lower than 0.3 mg/L, and in 90% of the research cities, it is lower than 0.5 mg/L. (2) Fluorine concentrations in main foodstuff of respective cities in China were low and did not have too much difference. (3) Drinking water was the main source of fluorine intake for Chinese residents. (4) With the data of the epidemiological research by NCOH in 1995, in the range of fluorine content in drinking water below 1.0 mg/L, the ratio of dental caries and DMFT decreases with the increase of fluorine concentration. The relation between fluorine concentration in drinking water and dental index did not have a good linear relationship.  相似文献   

5.
The aim of the present study is to locate and decipher the groundwater quality,types,and hydrogeochemical reactions,which are responsible for elevated concentration of fluoride in the Chhindwara district in Madhya Pradesh,India.Groundwater samples,quality data and other ancillary information were collected for 26 villages in the Chhindwara District,M.P.India during May 2006.The saturation index was computed for the selected samples in the region,which suggest that generally most of the minerals are saturated with respect to water.The concentration of fluoride in the region varies from 0.6 to 4.74 mg/l,which is much higher as per the national and international water quality standards.The study also reveals that the fluoride bearing rock formations are the main source of the higher concentration of fluoride in groundwater along with the conjuncture of land use change.Moreover,the area is a hard rock terrain and consists of fractured granites and amygdaloidal and highly jointed compact basalt acting as good aquifer,which is probably enriching the high content of fluoride in groundwater.High concentration of fluoride is found in deeper level of groundwater and it is possible due to rock-water interaction,which requires further detailed investigation.The highly alkaline conditions indicate fluorite dissolution,which works as a major process for higher concentration of fluoride in the study area.The results of this study will ultimately help in the identification of risk areas and taking measures to mitigate negative impacts related to fluoride pollution and toxicity.  相似文献   

6.
The arid area is one of the most concerned areas among the water resources researchers and economists. Northwest China will be an important developing region of China in the 21st century. Yaoba is a well-irrigation oasis within this arid area, which is located in the Alxa area west of the Helan Mountains and next to the Tengger desert in the east. It has contributed greatly to the local stock raising and agriculture since its development in 1970. However, the groundwater which the oasis depends on to survive has been getting salinized gradually and more serious in recent years.A comprehensive study was carried out using the methods of groundwater environment isotope analysis, lithofaci-es and palaeogeography, calculations of water-rock interaction and the existing form of chemical components in groundwater etc. It has been found that the salinization of groundwater is mainly caused by reinfiltration water solving the salt in soil which is deposited simultaneously with the sediments and accumulated in th  相似文献   

7.
An appropriate concentration of fluoride in drinking water is required to prevent dental cavities, but long-term ingestion of water that contains more than a suitable level of fluoride can cause bone disease and mottling of the teeth. Fluoride ions can be found in wastewater from the fluoride chemical industry, as well as the semiconductor, metal processing, fertilizer, and glass-manufacturing industries. The discharge standard for fluoride in industrial wastewater in China is 10 mg/L. Efficient treatment of fluoride-containing wastewater is therefore of major concern in China, following the rapid development of the fluoride chemical industry. Several methods have been used to remove fluoride from water, such as adsorption, chemical precipitation, electrodialysis, ion exchange and electrochemical processes. Layered double hydroxides (LDHs) are anionic clays with high anion exchange capacities which are effective adsorbents for removal of a variety of anionic pollutants. LDHs have been studied as potential adsorbents for removing toxic anionic species such as CrO4^2-, TcO4^-, SeO3^2-, pesticides, and anionic surfactants from aqueous systems. One of the main attractions of using LDHs for fluoride removal, is that unlike other chemical treatment methods, no chemical sludge should be produced. In the present study, an attempt was made to investigate the mechanism of fluoride removal by LDHs under different conditions using batch methods. In addition, the release of fluoride adsorbed on LDHs by treatment with an aqueous solution of Na2CO3 was studied. The residual fluoride was found to be 10 mg/L in a solution with an initial concentration of 1000 mg/L, which meets the discharge standard for fluoride in industrial wastewater in China.  相似文献   

8.
Ground water from Mt. Fuji, located on the border of Yamanashi and Shizuoka prefectures, has relatively high concentrations of trace element vanadium. The concentration is about 50 μg/L around the mountain, and about 1 μg/L in other areas. The vanadium comes from the lava of the mountain. The water is utilized as a source of tap water around the mountain, and habitants are drinking and using the water for cooking. Recent reports by some researchers suggest health beneficial effects of drinking the water; drinking such water can lower blood glucose level in diabetic patients, and improve insulin-resistant status in healthy women. However, the concentration of vanadium in the ground water is too low as compared with the apparently effective concentration (100000 μg/L) in preceding reports. Furthermore, the effects of vanadium in the water on public health are not elucidated. In the present study the regional concentrations of vanadium in ground waters were investigated in Yamanashi prefecture, and standardized mortality rates (SMR) are compared preliminary with vanadium data in order to investigate the effect epidemiologically. SMR data were provided by Health, Labor and Welfare Ministry. We used the summarized SMR from 1998 to 2002. The data contain SMRs from total causes; total malignant neoplasm; stomach cancer; colorectal cancer; liver and intrahepatic bile duct cancer; trachea bronchus and lung cancer; all heart diseases; acute myocardial infarction; and cerebrovascular disease. There are eight secondary medical districts in Yamanashi prefecture, and one of them, Fuji-hokuroku (No.7), corresponds to high-vanadium area. No SMIL except SMR from cerebrovascular disease in female, was lower in the district No.7 than other eight districts. On the other hand, SMRs from all heart diseases and from acute myocardial infarction of both male and female in the district No.7 were highest among the districts. SMR from all causes in male of No.7 was also highest among the districts.  相似文献   

9.
Heavy water eoutcnts were determined for brines from Some salt lakes, and for water samples from rivers, springs and oil field by temperature-float method. Because the salt lakes studied are situated in cold, arid region of high altitude, the heavy water content in concentrated brines is much higher than that in rivers and springs due to vigorons evaporation, with a maximum value of 5.9 γ higher than that in running water of Peking. Discussion is also given to the dependence of heavy water variation upon season, depth of lake water, density, the degree of brine metamorphism,and crystallization of minerals containing crystalline water.  相似文献   

10.
Fluoride anomalies (up to 11 mg/L) have been detected in the porous confined Santa Maria Aquifer (Guarany Aquifer System) in the central region of Rio Grande do Sul State, southern Brazil, leading to endemic fluorosis. Two hypotheses are investigated concerning the fluoride origin: contamination by long-term phosphate-fertilizer application due to extensive tobacco plantation or lithogeochemical affiliation from regional rocks. The results are discussed based on statistical and geochemical modeling and stable isotope data of water, nitrate and sulfate. Field monitoring of phreatic and confined aquifer during two years and laboratory leaching and retention experiments were performed. Regional statistical analysis (factorial and cluster analysis) on the basis of 350 wells discriminates four different hydrochemical groups in the confined aquifer, considering magnesium, calcium bicarbonate, sodium chlorinate and sodium bicarbonate as specific parameters. The last two groups reach higher fluoride contents and represent deeper aquifer levels where geochemical modeling shows carbonates (calcite and dolomite) are of super-saturation. The laboratory experiments confirmed that local soils with high CTC and aluminum contents (Udults) represent an efficient geochemical barrier, preserving the aquifer from fluoride contamination and supporting remediation strategies for fluoride removal. δ^18O and δD groundwater data and the local meteoric water line (LMWL) indicate that local precipitation is the main groundwater recharge source in the area.  相似文献   

11.
Groundwater is one of the important water resources in northern China's plain areas. Many severe geological hazards have occurred in these areas due to ground subsidence which is caused by over exploitation of groundwater. This paper introduces and analyses the ground subsidence caused by groundwater exploitation and its mechanism in the northern China's plains. A ground subsidence prediction model has been developed based on the consolidation theory. The authors have tested this model in a case study of Fuyang City, Anhui Province, where ground subsidence is a severe environmental problem. In the case study, the model results match very well with those of the actual measurement. Two schemes of groundwater exploitation are assessed. The conclusion from the study could be used in the long-term water and economical management planning. The strategies for the control of ground subsidence are discussed.  相似文献   

12.
To study arsenic(As) content and distribution patterns as well as the genesis of different kinds of water, especially the different sources of drinking water in Guanzhong Basin, Shaanxi province, China, 139 water samples were collected at 62 sampling points from wells of different depths, from hot springs, and rivers. The As content of these samples was measured by the intermittent flowhydride generation atomic fluorescence spectrometry method(HG-AFS). The As concentrations in the drinking water in Guanzhong Basin vary greatly(0.00–68.08 μg/L), and the As concentration of groundwater in southern Guanzhong Basin is different from that in the northern Guanzhong Basin. Even within the same location in southern Guanzhong Basin, the As concentrations at different depths vary greatly. As concentration of groundwater from the shallow wells(50 m deep, 0.56–3.87 μg/L) is much lower than from deep wells(110–360 m deep, 19.34–62.91 μg/L), whereas As concentration in water of any depth in northern Guanzhong Basin is 10 μg/L. Southern Guanzhong Basin is a newly discovered high-As groundwater area in China. The high-As groundwater is mainly distributed in areas between the Qinling Mountains and Weihe River; it has only been found at depths ranging from 110 to 360 m in confined aquifers, which store water in the Lishi and Wucheng Loess(Lower and Middle Pleistocene) in the southern Guanzhong Basin. As concentration of hot spring water is 6.47–11.94 μg/L; that of geothermal water between 1000 and 1500 m deep is 43.68–68.08 μg/L. The high-As well water at depths from 110 to 360 m in southern Guanzhong Basin has a very low fluorine(F) value, which is generally 0.10 mg/L. Otherwise, the hot springs of Lintong and Tangyu and the geothermal water in southern Guanzhong Basin have very high F values(8.07–14.96 mg/L). The results indicate that highAs groundwater in depths from 110 to 360 m is unlikely to have a direct relationship with the geothermal water in the same area. As concentration of all reservoirs and rivers(both contaminated and uncontaminated) in the Guanzhong Basin is 10 μg/L. This shows that pollution in the surface water is not the source of the high-As in the southern Guanzhong Basin. The partition boundaries of the high- and low-As groundwater area corresponds to the partition boundaries of the tectonic units in the Guanzhong Basin. This probably indicates that the high-As groundwater areas can be correlated to their geological underpinning and structural framework. In southern Guanzhong Basin, the main sources of drinking water for villages and small towns today are wells between 110–360 m deep. All of their As contents exceed the limit of the Chinese National Standard and the International Standard(10 μg/L) and so local residents should use other sources of clean water that are 50 m deep, instead of deep groundwater(110 to 360 m) for their drinking water supply.  相似文献   

13.
The water system in a rural area of Lanmuchang in Southwest Guizhou is facing a risk of thallium (Tl) contamination due to Tl mineralization around the area. The major trace elements and Tl in the water system are studied to understand the hydrogeochemical processes of Tl constrained by Tl mineralization. The results showed that the dispersion pattern of Tl follows a descending order in concentration from mine groundwater (deep groundwater) →stream water→shallow groundwater→background water, reflecting the impact of Tl mineralization on the hydrogeochemical composition. Tl concentrations in stream water in both regimes are remarkably higher (2-30 fold) downstream than up- and mid-streams, probably caused by the unidentified discharge of deep groundwater. Low Tl levels are detected in the current drinking water, however, the highly elevated Tl in stream water and ground water may pose a potential environmental risk through daily washing and agricultural irrigation. This study suggests that human activities, such as agricultural irrigation, could intensify the environmental risk of Tl.  相似文献   

14.
The Tahe Oilfield is a complex petroleum reservoir of Ordovician carbonate formation and made up of spatially overlapping fracture-cavity units. The oilfield is controlled by a cave system resulting from structure-karst cyclic sedimentation. Due to significant heterogeneity of the reservoir, the distribution of oil and water is complicated. Horizontally, a fresh water zone due to meteoric water can be found in the north part of the Akekule uplift. A marginal freshening zone caused by water released from mudstone compaction is found at the bottom of the southern slope. Located in a crossformational flow discharge zone caused by centripetal and the centrifugal flows, the main part of the Tahe Oilfield, featuring high salinity and concentrations of CI^- and K^++Na^+, is favorable for accumulation of hydrocarbon. Three types of formation water in the Tahe Ordovician reservoir are identified: (1) residual water at the bottom of the cave after oil and gas displacement, (2) residual water in fractures/pores around the cave after oil and gas displacement, and (3) interlayer water below reservoirs. The cave system is the main reservoir space, which consists of the main cave, branch caves and depressions between caves. Taking Cave System S48 in the Ordovician reservoir as an example, the paper analyzes the fluid distribution and exploitation performance in the cave system. Owing to evaporation of groundwater during cross-formational flow, the central part of the main cave, where oil layers are thick and there is a high degree of displacement, is characterized by high salinity and Br^- concentration. With high potential and a long stable production period, most wells in the central part of the main cave have a long water-free oil production period. Even after water breakthrough, the water content has a slow or stepwise increase and the hydrochemistral characteristics of the produced water in the central part of the main cave are uniform. From the center to the edge of the main cave, displacement and enri  相似文献   

15.
Groundwater accounts for about half of the water use for irrigation in India.The fluctuation pattern of the groundwater level is examined by observing rainfall replenishment and monitoring wells.The southern part of Rajasthan has experienced abrupt changes in rainfall and has been highly dependent on groundwater over decades.This study presents the impact of over-dependence on groundwater usage for irrigation and other purposes,spatially and temporally.Hence,the objective of this study is to examine the groundwater level trend by using statistical analysis and geospatial technique.Rainfall factor was also studied in groundwater level fluctuation during 2009-2019.To analyze the influence of each well during recharge or withdrawal of groundwater,thiessien polygonswere generated from them.In the Jakham River basin,75 wells have been identified for water level trend study using the Mann-Kendall statistical test.The statistics of trend analysis show that 15%wells are experiencing water level decline in pre-monsoon,while very low percentage of wells have such trend during post-monsoon season.The average rate of water level decline is 0.245 m/a in pre-monsoon and 0.05 m/a in post-monsoon.The aquifer recharge potential is also decreasing by year.it is expected that such type of studies will help the policy makers to adopt advanced management practices to ensure sustainable groundwater resource management.  相似文献   

16.
The Panzhihua iron mine, a famous V-Ti magnetite mine in our country, is composed of the Jianshan, Lanjiahuoshan and Zhujiabaobao ore areas. It has caused many ecological problems in the Panzhihua iron mine after nearly 40 years of mining, which has severe impact on safe mining and has brought huge economic losses. This paper begins with the environmental geological problems caused by unloading (mining) and loading (mine dump) that is then resulted from mining activities. The paper then analyses and studies the cause and development of every environmental geological problem as well as the formation of geological disasters (landslip, coast and landslide) from two aspects: geological disasters and environmental geological problems caused by mining activities. Meanwhile, the paper puts forward suggestions about prevention and management of mine. It is found that material unloading in the Panzhihua iron mine has made the originally stable geological body be less stable, and has formed much disastrous slope. The resulted geological disasters include landslip, landslip, etc. Material loading, i.e. mine dump, has caused a huge artificial loose stack piled up in valleys. The steep slopes can easily result in geological disasters, such as landslip, landslide, debris flow, etc. Till now, there have been over10 times geological disasters caused by material unloading, and over 20 times caused by material loading. The economic loss has been over 0.1 billion yuan RMB. It is also found that the major impact of mining on environment is the pollution of soil and water caused by heavy metals. Besides this, powder is also another source of pollution.  相似文献   

17.
Drinking water-type fluorosis is the most harmful endemic disease in China with the largest number of sufferers. Although the implementation of the policy to alter water sources to lower fluoride level has effectively controlled the spread of this kind of endemic disease, its prevalence could not thoroughly be stopped because the high-fluoride environmental background in these endemically diseased areas could still do harm to human health through food chain. Therefore, it is necessary to conduct a more deep-going study on the drinking water-type fluorosis. To investigate the effect of high fluorine environmental background on crops and human health in the hot spring-type fluorosis-diseased areas, local water, paddy soil, rice, whole vegetables and soils around their roots were sampled for analysis. The results were compared with those of the control groups in fluorosis-free areas which are similar to the fluorosis-diseased areas both in natural background and in social background. It is indicated that rice and vegetables can accumulate water-soluble fluorine either in soils or in irrigating water, and different crops have different abilities of fixing fluorine. The contents of fluorine in different parts of vegetables in the fluorosis-diseased and fluorosis-free areas were statistically categorized. The results showed that the fluorine contents of roots, tubers, leaves and flowers of vegetables in the fluorosis-diseased areas are 3.56, 1.17, 3.07 and 3.23 mg/kg, respectively. However, comparisons showed that in the fluorosis-free areas, the fluorine contents are 2.17, 0.70, 1.91 and 2.52 mg/kg, respectively. Moreover, different parts of a crop also show significantly different fluorine fixation abilities. It is demonstrated that the fluorine contents of the strongly metabolic parts are relatively high. For example, the fluofine contents of roots, leaves and flowers of vegetables are much higher than those of stems. The fluorine fixation ability of seeds is very weak. In order to reduce the risk of human body's  相似文献   

18.
Factures caused by deformation and destruction of bedrocks over coal seams can easily lead to water flooding(inrush)in mines,a threat to safety production.Fractures with high hydraulic conductivity are good watercourses as well as passages for inrush in mines and tunnels.An accurate height prediction of water flowing fractured zones is a key issue in today's mine water prevention and control.The theory of leveraging BP artificial neural network in height prediction of water flowing fractured zones is analysed and applied in Qianjiaying Mine as an example in this paper.Per the comparison with traditional calculation results,the BP artificial neural network better reflects the geological conditions of the research mine areas and produces more objective,accurate and reasonable results,which can be applied to predict the height of water flowing fractured zones.  相似文献   

19.
Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sources for water supply.A clear understanding of the groundwater hydrogeochemical characteristics and the groundwater quality and its seasonal cycle is invaluable and indispensable for groundwater protection and management.In this study,self-organizing maps were used in combination with the quantization and topographic errors and K-means clustering method to investigate groundwater chemistry datasets.The Piper and Gibbs diagrams and saturation index were systematically applied to investigate the hydrogeochemical characteristics of groundwater from both rainy and dry seasons.Further,the entropy-weighted theory was used to characterize groundwater quality and assess its seasonal variability and suitability for drinking purposes.Our hydrochemical groundwater dataset,consisting of 10 parameters measured during both dry and rainy seasons,was classified into 6 clusters,and the Piper diagram revealed three hydrochemical facies:Cl-Na type(clusters 1,2 and 3),mixed type(clusters 4 and 5),and HCO3-Ca type(cluster 6).The Gibbs diagram and saturation index suggested thatweathering of rock-forming mineralswere the primary process controlling groundwater chemical composition and validated the credibility and practicality of the clustering results.Two-thirds of 45 groundwater samples were categorized as excellent-or good-quality and were suitable as drinking water.Cluster changes within the same and different clusters from the dry season to the rainy season were detected in approximately 78%of the collected samples.The main factors affecting the groundwater quality were hydrogeochemical characteristics,and dry season groundwater quality was better than rainy season groundwater quality.Based on this work,such results can be used to investigate the seasonal variation of hydrogeochemical characteristics and assess water quality accurately in the others similar area.  相似文献   

20.
The River Nura in central Kazakhstan has been heavily contaminated by mercury (Hg) from an acetaldehyde plant located in the industrial city of Temirtau. The plant released Hg-containing wastewater into the river from the 1950s until the mid 1990s and strongly contaminated the bed sediments up to 25 km downstream. In addition, a local power station released an estimated 6 million tonnes of fly-ash into the water which has adsorbed much of the Hg and has become mixed with the natural sediments. River water,fish and agricultural land in the floodplain are also contaminated by Hg. Humans are exposed to Hg primarily via the consumption of contaminated fish from the river. A survey was undertaken in June/July 2005 to investigate Hg concentrations in river water, drinking water, sediments and fish. To estimate the risk posed to the local population, approximately 300 hair samples were collected from people living in villages near the most contaminated section of the river, at a distance of between 5 and 30 km downstream of the acetaldehyde plant, and their dietary habits were recorded. Mercury concentrations in river water ranged from 2-3 ng/L upstream of the source of the pollution to 348 ng/L downstream of the factory outfall pipe. Some drinking water wells close to the river were contaminated, but deeper wells had Hg concentrations below the detection limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号