首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
The concept of Tsallis entropy was applied to model the probability distribution functions for the shear stress magnitudes in circular channels (with filling ratios of 0.506, 0.666, 0.826), circular with flat bed (filling ratios of 0.333, 0.666), rectangular channel (1.34, 2, 3.94, 7.37 aspect ratios) and compound channel (with relative depths of 0.324, 0.46). The equation for the shear stress distribution was obtained according to the entropy maximization principle, and is able to estimate the shear stress distribution as much on the walls as the channel bed. The approach is also compared with the predictions obtained based on the Shannon entropy concept. By comparing the two prediction models, this study highlights the application of Tsallis entropy to estimate the shear stress distribution of open channels. Although the results of the two models are similar in the circular cross-section, the differences between them are more significant in circular with flat bed and rectangular channels. For a wide range of filling ratio values, experimental data are used to illustrate the accuracy and reliability of the proposed model.  相似文献   

2.
Turbulent flow in a meandering channel is computed with two Computational Fluid Dynamics (CFD) codes solving the Navier–Stokes equations by employing different turbulence closure approaches. The first CFD code solves the steady Reynolds-Averaged Navier–Stokes equations (RANS) using an isotropic turbulence closure. The second code is based on the concept of Large Eddy Simulation (LES). LES resolves the large-scale turbulence structures in the flow and is known to outperform RANS models in flows in which large-scale structures dominate the statistics. The results obtained from the two codes are compared with experimental data from a physical model study. Both, LES and RANS simulation, predict the primary helical flow pattern in the meander as well as the occurrence of an outer-bank secondary cell. Computed primary as well as secondary flow velocities are in reasonably good agreement with experimental data. Evidence is given that the outer-bank secondary cell in a meander bend is the residual of the main secondary cell of the previous bend. However, the RANS code, regardless of the turbulence model employed, overpredicts the size and strength of the outer-bank secondary cell. Furthermore, only LES is able to uphold the outer-bank second secondary cell beyond the bend apex until the exit of the bend as turbulence anisotropy contributes to its persistence. The presence of multiple secondary cells has important consequences for the distribution of shear stresses along the wetted perimeter of the channel, and thereby the sediment transport in meandering channels. Consequently, even though LES is expected to compute the bed-shear stresses along the wetted perimeter of the channel with a higher degree of accuracy than the RANS model, comparisons between LES and RANS computed wall shear stresses agree well. These findings are useful for practitioners who need to rely on RANS model predictions of the flow in meandering channels at field scale.  相似文献   

3.
Continuous monitoring of bed shear stress in large river systems may serve to better estimate alluvial sediment transport to the coastal ocean.Here we explore the possibility of using a horizontally deployed acoustic Doppler current profiler(ADCP) to monitor bed shear stress,applying a prescribed boundary layer model,previously used for discharge estimation.The model parameters include the local roughness length and a dip correction factor to account for sidewall effects.Both these parameters depend on river stage and on the position in the cross-section, and were estimated from shipborne ADCP data.We applied the calibrated boundary layer model to obtain bed shear stress estimates over the measuring range of the HADCP.To validate the results,co-located coupled ADCPs were used to infer bed shear stress,both from Reynolds stress profiles and from mean velocity profiles. From HADCP data collected over a period of 1.5 years,a time series of width profiles of bed shear stress was obtained for a tidal reach of the Mahakam River,East Kalimantan,Indonesia.A smaller dataset covering 25 hours was used for comparison with results from the coupled ADCPs.The bed shear stress estimates derived from Reynolds stress profiles appeared to be strongly affected by local effects causing upflow and downflow,which are not included in the boundary layer model used to derive bed shear stress with the horizontal ADCP.Bed shear stresses from the coupled ADCP are representative of a much more localized flow,while those derived with the horizontal ADCP resemble the net effect of the flow over larger scales.Bed shear stresses obtained from mean velocity profiles from the coupled ADCPs show a good agreement between the two methods,and highlight the robustness of the method to uncertainty in the estimates of the roughness length.  相似文献   

4.
In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.  相似文献   

5.
Non-uniform sediment deposited in a confined, steep mountain channel can alter the bed surface composition. This study evaluates the contribution of geometric and resistance parameters to bed sta-bilization and the reduction in sediment transport. Flume experiments were done under various hydraulic conditions with non-uniform bed material and no sediment supply from upstream. Results indicate that flume channels respond in a sequence of coarsening and with the formation of bedform-roughness features such as rapids, cascades, and steps. A bedform development coefficient is introduced and is shown to increase (i.e. vertical sinuosity develops) in response to increasing shear stress during the organization process. The bedform development coefficient also is positively correlated with the critical Shields number and Manning's roughness coefficient, suggesting the evolution of flow resistance with increasing bedform development. The sediment transport rate decreases with increasing bed shear stress and bedform development, further illustrating the effect of bed stabilization. An empirical sedi-ment transport model for an equilibrium condition is proposed that uses the bedform development coefficient, relative particle submergence (i.e. the ratio of mean water depth and maximum sediment diameter), modified bed slope, and discharge. The model suggests bedform development can play a primary role in reducing sediment transport (increasing bed stabilization). The model is an extension of Lane's (1955) relation specifically adapted for mountain streams. These results explain the significance of bedform development in heightening flow resistance, stabilizing the bed, and reducing sediment transport in coarse, steep channels.  相似文献   

6.

In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.

  相似文献   

7.
Entrainment of sediment particles from channel beds into the channel flow is influenced by the characteristics of the flow turbulence which produces stochastic shear stress fluctuations at the bed. Recent studies of the structure of turbulent flow has recognized the importance of bursting processes as important mechanisms for the transfer of momentum into the laminar boundary layer. Of these processes, the sweep event has been recognized as the most important bursting event for entrainment of sediment particles as it imposes forces in the direction of the flow resulting in movement of particles by rolling, sliding and occasionally saltating. Similarly, the ejection event has been recognized as important for sediment transport since these events maintain the sediment particles in suspension. In this study, the characteristics of bursting processes and, in particular, the sweep event were investigated in a flume with a rough bed. The instantaneous velocity fluctuations of the flow were measured in two-dimensions using a small electromagnetic velocity meter and the turbulent shear stresses were determined from these velocity fluctuations. It was found that the shear stress applied to the sediment particles on the bed resulting from sweep events depends on the magnitude of the turbulent shear stress and its probability distribution. A statistical analysis of the experimental data was undertaken and it was found necessary to apply a Box-Cox transformation to transform the data into a normally distributed sample. This enabled determination of the mean shear stress, angle of action and standard error of estimate for sweep and ejection events. These instantaneous shear stresses were found to be greater than the mean flow shear stress and for the sweep event to be approximately 40 percent greater near the channel bed. Results from this analysis suggest that the critical shear stress determined from Shield's diagram is not sufficient to predict the initiation of motion due to its use of the temporal mean shear stress. It is suggested that initiation of particle motion, but not continuous motion, can occur earlier than suggested by Shield's diagram due to the higher shear stresses imposed on the particles by the stochastic shear stresses resulting from turbulence within the flow.  相似文献   

8.
The presence of vegetation modifies flow and sediment transport in alluvial channels and hence the morphological evolution of river systems. Plants increase the local roughness, modify flow patterns and provide additional drag, decreasing the bed‐shear stress and enhancing local sediment deposition. For this, it is important to take into account the presence of vegetation in morphodynamic modelling. Models describing the effects of vegetation on water flow and sediment transport already exist, but comparative analyses and validations on extensive datasets are still lacking. In order to provide practical information for modelling purposes, we analysed the performance of a large number of models on flow resistance, vegetation drag, vertical velocity profiles and bed‐shear stresses in vegetated channels. Their assessments and applicability ranges are derived by comparing their predictions with measured values from a large dataset for different types of submerged and emergent vegetation gathered from the literature. The work includes assessing the performance of the sediment transport capacity formulae of Engelund and Hansen and van Rijn in the case of vegetated beds, as well as the value of the drag coefficient to be used for different types of vegetation and hydraulic conditions. The results provide a unique comparative overview of existing models for the assessment of the effects of vegetation on morphodynamics, highlighting their performances and applicability ranges. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The Reynolds stress and bed shear stress are important parameters in fluvial hydraulics. Steady-nonuniform flow in open channels with streamwise sloping beds having upward seepage through loose beds is theoretically analyzed to estimate the Reynolds stress and bed shear stress. Equations of the Reynolds stress and bed shear stress are developed, assuming a modified logarithmic velocity distribution law due to upward seepage, and using the Reynolds and continuity equations of two-dimensional flow in open channels.  相似文献   

10.
Experimental investigation on fluvial hydraulics needs a correct and accurate estimation of bed shear stress, which governs the hydrodynamics of the sediment transport. Present work compares bed shear stress estimated from the reach-averaged bed shear stress, Log profile, Quadratic stress law, Prandtl’s seventh power law, Reynolds shear stress, turbulent kinetic energy and graphical method approaches by doing experimentation on plane bed and curvilinear bed channel. On plane bed condition, the bed shear estimated from Reynolds stresses and Graphical methods are comparable to the reach-averaged bed shear stress (the difference is within 10%). However, all approaches estimate approximately less than 10% from reach-averaged bed shear stress in curvilinear bed channel.  相似文献   

11.
This paper addresses the spatial and temporal patterns of drivers for sediment dynamics in coastal areas. The basic assumption is that local processes are dominating. The focus is put on the bed shear stress in the southern part of North Sea giving the basic control for deposition–sedimentation and resuspension–erosion. The wave-induced bed shear stress is formulated using a model based on the concept that the turbulent kinetic energy associated with surface waves is a function of orbital velocity, the latter depending on the wave height and period, as well as on the water depth. Parameters of surface waves are taken from simulations with the wave spectrum model WAM (wave model). Bed shear stress associated with currents is simulated with a 3D primitive equation model, Hamburg Shelf Ocean Model. Significant wave height, bed shear stress due to waves and currents, is subjected to empirical orthogonal functions (EOF) analysis. It has been found that the EOF-1 of significant wave height represents the decrease of significant wave height over the shallows and, due to fetch limitation, along the coastlines. Higher order modes are seesaw-like and, in combination, display a basin-scale rotational pattern centred approximately in the middle of the basin. Similar types of variability is also observed in the second and third EOF of bed shear stress. Surface concentrations of suspended matter derived from MERIS satellite data are analysed and compared against statistical characteristics of bed shear stress. The results show convincingly that the horizontal distribution of sediment can, to a larger extent, be explained by the local shear stress. However, availability of resuspendable sediments on the bottom is quite important in some areas like the Dogger Bank.  相似文献   

12.
《国际泥沙研究》2020,35(2):193-202
The current work focuses on locally resolving velocities,turbulence,and shear stresses over a rough bed with locally non-uniform character.A nonporous subsurface layer and fixed interfacial sublayer of gravel and sand were water-worked to a nature-like bed form and additionally sealed in a hydraulic flume.Two-dimensional Particle Image Velocimetry(2 D-PIV) was applied in the vertical plane of the experimental flume axis.Runs with clear water and weak sediment transport were done under slightly supercritical flow to ensure sediment transport conditions without formation of considerable sediment deposits or dunes.The study design included analyzing the double-averaged flow parameters of the entire measurement domain and investigating the flow development at 14 consecutive vertical subsections.Local geometrical variabilities as well the presence of sediment were mainly reflected in the vertical velocity component.Whereas the vertical velocity decreased over the entire depth in presence of sediment transport,the streamwise velocity profile was reduced only within the interfacial sublayer.In the region with decelerating flow conditions,however,the streamwise velocity profile systematically increased along the entire depth extent.The increase in the main velocity(reduction of flow resistance)correlated with a decrease of the turbulent shear and main normal stresses.Therefore,effects of rough bed smoothening and drag force reduction were experimentally documented within the interfacial sublayer due to mobile sediment.Moreover,the current study leads to the conclusion that in nonuniform flows the maximum Reynolds stress values are a better predictor for the bed shear stress than the linearly extrapolated Reynolds stress profile.This is an important finding because,in natural flows,uniform conditions are rare.  相似文献   

13.
Vertical velocity profiles measured over various bed configurations (plane beds, ripples, and dunes) in. the meandering River South Esk, Glen Clova, Scotland are presented on semilogarithmic paper. Local bed shear stress and roughness height are calculated from the lowermost parts of the profiles using the Karman-Prandtl law of the wall; these parameters, and the geometrical properties of the profiles, are related to the various bed configurations. A graphical model is used to identify profiles developed on specific regions of dune geometry, in order to discriminate those profiles that define bed shear effective in transporting sediment over dunes. An assessment is made of the errors involved in estimating local mean velocity from extrapolating the law of the wall to the water surface. A Darcy-Weisbach friction coefficient is related to bed configuration and local stream power.  相似文献   

14.
This work is inspired by the sudden resurgence of the submersed aquatic vegetation (SAV) bed in the Chesapeake Bay (USA). Because the SAV bed occurs at the mouth of the Bay's main tributary (Susquehanna River), it plays a significant role in modulating sediment and nutrient inputs from the Susquehanna to the Bay. Previous model studies on the impact of submersed aquatic vegetation on the development of river mouth bars lacked a complete mechanistic understanding. This study takes advantage of new advances in 3D computational models that include explicit physical-sedimentological feedbacks to obtain this understanding. Specifically, we used Delft3D, a state-of-the-art hydrodynamic model that provides fine-scale computations of three-dimensional flow velocity and bed shear stress, which can be linked to sediment deposition and erosion. Vegetation is modeled using a parameterization of hydraulic roughness that depends on vegetation height, stem density, diameter, and drag coefficient. We evaluate the hydrodynamics, bed shear stresses, and sediment dynamics for different vegetation scenarios under conditions of low and high river discharge. Model runs vary the vegetation height, density, river discharge, and suspended-sediment concentration. Numerical results from the idealized model show that dense SAV on river mouth bars substantially diverts river discharge into adjacent channels and promotes sediment deposition at ridge margins, as well as upstream bar migration. Increasing vegetation height and density forms sandier bars closer to the river mouth and alteration of the bar shape. Thus, this study highlights the important role of SAV in shaping estuarine geomorphology, which is especially relevant for coastal management. © 2019 John Wiley & Sons, Ltd.  相似文献   

15.
Experimental results of the mean flow field and turbulence characteristics for flow in a model channel bend with a mobile sand bed are presented. Acoustic Doppler velocimeters (ADVs) were used to measure the three components of instantaneous velocities at multiple cross sections in a 135° channel bend for two separate experiments at different stages of clear water scour conditions. With measurements at multiple cross sections through the bend it was possible to map the changes in both the spatial distribution of the mean velocity field and the three Reynolds shear stresses. Turbulent stresses are known to contribute to sediment transport and the three‐dimensionality inherent to flow in open channel bends presents a useful case for determining specific relations between three‐dimensional turbulence and sediment entrainment and transport. These measurements will also provide the necessary data for validating numerical simulations of turbulent flow and sediment transport. The results show that the magnitude and distribution of three‐dimensional Reynolds stresses increase through the bend, with streamwise‐cross stream and cross stream‐vertical components exceeding the maximum principal Reynolds stress through the bend. The most intriguing observation is that near‐bed maximum positive streamwise‐cross stream Reynolds stress coincides with the leading edge of the outer bank scour hole (or thalweg), while maximum cross stream‐vertical Reynolds stress (in combination with high negative streamwise‐cross stream Reynolds stress near the bend apex) coincides with the leading edge of the inner bank bar. Maximum Reynolds stress and average turbulent kinetic energy appear to be greater and more localized over the scour hole before final equilibrium scour is reached. This suggests that the turbulent energy in the flow is higher while the channel bed is developing, and both lower turbulent energy and a broader distribution of turbulent stresses near the bed are required for cessation of particle mobilization and transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Subglacial water flow drives the excavation of a variety of bedrock channels including tunnel valleys and inner gorges. Subglacial floods of various magnitudes – events occurring once per year or less frequently with discharges larger than a few hundred cubic metres per second – are often invoked to explain the erosive power of subglacial water flow. In this study we examine whether subglacial floods are necessary to carve bedrock channels, or if more frequent melt season events (e.g. daily production of meltwater) can explain the formation of substantial bedrock channels over a glacial cycle. We use a one‐dimensional numerical model of bedrock erosion by subglacial meltwater, where water flows through interacting distributed and channelized drainage systems. The shear stresses produced drive bedrock erosion by bed‐ and suspended‐load abrasion. We show that seasonal meltwater discharge can incise an incipient bedrock channel a few tens of centimetres deep and several metres wide, assuming abrasion is the only mechanism of erosion, a particle size of D=256 mm and a prescribed sediment supply per unit width. Using the same sediment characteristics, flood flows yield wider but significantly shallower bedrock channels than seasonal meltwater flows. Furthermore, the smaller the shear stresses produced by a flood, the deeper the bedrock channel. Shear stresses produced by seasonal meltwater are sufficient to readily transport boulders as bedload. Larger flows produce greater shear stresses and the sediment is carried in suspension, which produces fewer contacts with the bed and less erosion. We demonstrate that seasonal meltwater discharge can excavate bedrock volumes commensurate with channels several tens of metres to a few hundred metres wide and several tens of metres deep over several thousand years. Such simulated channels are commensurate with published observations of tunnel valleys and inner gorges. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

17.
Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear model of critical shear stress and eroded mass is proposed to simulate small-depth erosion, assuming that the applied and critical shear stresses quickly reach equilibrium.  相似文献   

18.
19.
Riffle–pool sequences are maintained through the preferential entrainment of sediment grains from pools rather than riffles. This preferential entrainment has been attributed to a reversal in the magnitude of velocity and shear stress under high flows; however the Differential Sediment Entrainment Hypothesis (DSEH) postulates that differential entrainment can instead result from spatial sedimentological contrasts. Here we use a novel suite of in situ grain‐scale field measurements from a riffle–pool sequence to parameterize a physically‐based model of grain entrainment. Field measurements include pivoting angles, lift forces and high resolution digital elevation models (DEMs) acquired using terrestrial laser scanning, from which particle exposure, protrusion and surface roughness were derived. The entrainment model results show that grains in pools have a lower critical entrainment shear stress than grains in either pool exits or riffles. This is because pool grains have looser packing, hence greater exposure and lower pivoting angles. Conversely, riffle and pool exit grains have denser packing, lower exposure and higher pivoting angles. A cohesive matrix further stabilizes pool exit grains. The resulting predictions of critical entrainment shear stress for grains in different subunits are compared with spatial patterns of bed shear stress derived from a two‐dimensional computational fluid dynamics (CFD) model of the reach. The CFD model predicts that, under bankfull conditions, pools experience lower shear stresses than riffles and pool exits. However, the difference in sediment entrainment shear stress is sufficiently large that sediment in pools is still more likely to be entrained than sediment in pool exits or riffles, resulting in differential entrainment under bankfull flows. Significantly, this differential entrainment does not require a reversal in flow velocities or shear stress, suggesting that sedimentological contrasts alone may be sufficient for the maintenance of riffle–pool sequences. This finding has implications for the prediction of sediment transport and the morphological evolution of gravel‐bed rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
1 INTRODUCTIONWhen water flows over a fluvial bed, hydro-dynandc force induced by the flow is acting on thesediment particles lying on the bed. A further increase in flow velocity results in an increase in themagnitude of this fOrce; and sediment particles begin to move if a situation is eventu8lly reached whenthe hydro-dynandc force exceeds a certain critical value. This initial movement of sediment pallicles istermed inciPient motion. The erosion and sedimentation of nuvial beds can be…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号