首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The fault-controlled Nibao Carlin-type gold deposit,together with the strata-bound Shuiyindong deposit,comprise a significant amount of the disseminated gold deposits in southwestern Guizhou Province,China.Five main types and two sub-types of pyrite at the Nibao deposit(Py1a/Py1b,Py2,Py3,Py4,Py5)were distinguished based on detailed mineralogical work.Py1,Py2and Py3 are Au-poor,whereas Py4 and Py5 are Au-rich,corresponding to a sedimentary and hydrothermal origin,respectively.Through systematic in situ analyses of NanoSIMS sulfur isotopes,the framboid pyrite Py1a with negative δ^34S values(-53.3 to-14.9%)from the Nibao deposit were found to originate from bacterial sulfate reduction(BSR)processes in an open and sulfate-sufficient condition while the superheavy pyrite Py1b(73.7–114.8%)is probably due to the potential influence of closed-system Rayleigh fractionation or the lack of preservation of deepsea sediments.Data of Py2 and Py3 plot within the area of S isotope compositions from biogenic and abiogenic sulfate reduction.In view of few coeval magmatic rocks in the mining district,the near zero δ^34S values of the Au-rich pyrites(Py4 and Py5)may discount the potential involvement of magmatic but metamorphic or sedimentary origin.LA-ICP-MS and TEM work show that Au in ore-related pyrite is present as both nanoparticles and structurally bound.LA-ICP-MS analyses show that the Au-rich pyrite also contains higher As,Cu,Sb,Tl and S than other types of pyrite,which inferred a distal manifestation of deep hydrothermal mineralization systems.  相似文献   

2.
利用地下流体氦同位素比值估算大陆壳幔热流比例   总被引:12,自引:2,他引:10  
汪洋 《地球物理学报》2000,43(6):762-770
地下流体中的氦同位素 3He来自地幔的排气作用 ,4He则是铀、钍衰变的产物 .由于铀、钍元素在大陆地壳中富集 ,4He通量与地壳热流呈正相关关系 ;同时 3He通量与地幔热流之间呈正相关 .所以地下流体的氦同位素比值 (3He / 4 He)与大陆壳幔热流比值 (qc/qm)呈反相关关系 .根据欧亚大陆和加拿大地盾的地下流体氦同位素比值数据和相应的壳幔热流比值数据 ,统计出 qc/ qm 与 3He / 4 He之间的回归关系 :qc/ qm =0 81 5- 0 30 0ln(3He / 4 He) ;此处 3He/ 4 He的单位是RA(大气的 3He/ 4 He比值 ) .有了地表热流值和壳幔热流比值即可得到地壳热流和地幔热流 .利用该公式以及热流值估算了中国主要盆地的壳幔热流值 ;根据这些数值得出的热岩石圈厚度和地壳平均生热率结果与地震学研究成果一致 .氦同位素比值是区分大陆热流中地壳热流值和地幔热流值的有用参数 .  相似文献   

3.
根据白云鄂博赋矿白云石大理岩的岩石学特征及地质产状将其分为两类:粗粒和细粒白云石大理岩.它们的氧、碳和锶同位素及微量元素地球化学特征显然有别于分布在宽沟背斜以北典型的沉积石灰岩和白云岩,而和幢源火成碳酸岩十分相似.与矿床进行对比研究说明,成矿流体和矿质主要起源于碳酸岩浆的分异作用,其放射性成因同位素和微量元素保持了地但指纹,而氧和碳同位素组成却向壳源方向漂移,证实碳酸岩浆侵位过程中受大陆地壳的混染作用非常微弱,但是由碳酸岩浆活动所引起的成矿热液体系中却有一定的地表水混人认为白云鄂博REE-Nb-Fe超大型矿床的成因应归属于火成碳酸岩型矿床.  相似文献   

4.
Analyses of fifty-one rock samples from three stratovolcanoes in Central Japan revealed that K and Rb contents vary in a saw-toothed fashion with the growth of these volcanoes. Peaks and valleys of the saw-toothed variation pattern of Rb (and also K) increase at first and then gradually converge on constant values. This variation trend is also shown by the Rb/Sr ratio. The convergent Rb/Sr ratio (0.23–0.24) at the peaks coincides with recent estimates of the average value for continental crust. These geochemical features are well explained by the batch fractionation model. In this model, the magma reservoir lying at the top of the mantle is periodically supplied with a batch of parental magma, while the magma in it undergoes continuous crystallization and the cumulate is continuously removed by the divergent movement of the mantle. This model, working under physical conditions in the crust-mantle structure of an island arc, not only accounts for the above geochemical features, but also gives insight into the genesis of the calc-alkaline rock series and of the continental crust.  相似文献   

5.
The paper presents oxygen and hydrogen isotopes of 284 precipitation event samples systematically collected in Irkutsk, in the Baikal region (southeast Siberia), between June 2011 and April 2017. This is the first high-resolution dataset of stable isotopes of precipitation from this poorly studied region of continental Asia, which has a high potential for isotope-based palaeoclimate research. The dataset revealed distinct seasonal variations: relatively high δ18O (up to −4‰) and δD (up to −40‰) values characterize summer air masses, and lighter isotope composition (−41‰ for δ18O and −322‰ for δD) is characteristic of winter precipitation. Our results show that air temperature mainly affects the isotope composition of precipitation, and no significant correlations were obtained for precipitation amount and relative humidity. A new temperature dependence was established for weighted mean monthly precipitation: +0.50‰/°C (r2 = 0.83; p <.01; n = 55) for δ18O and +3.8‰/°C (r2 = 0.83, p < 0.01; n = 55) for δD. Secondary fractionation processes (e.g., contribution of recycled moisture) were identified mainly in summer from low d excess. Backward trajectories assessed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicate that precipitation with the lowest mean δ18O and δD values reaches Irkutsk in winter related to moisture transport from the Arctic. Precipitation originating from the west/southwest with the heaviest mean isotope composition reaches Irkutsk in summer, thus representing moisture transport across Eurasia. Generally, moisture transport from the west, that is, the Atlantic Ocean predominates throughout the year. A comparison of our new isotope dataset with simulation results using the European Centre/Hamburg version 5 (ECHAM5)-wiso climate model reveals a good agreement of variations in δ18O (r2 = 0.87; p <.01; n = 55) and air temperature (r2 = 0.99; p <.01; n = 71). However, the ECHAM5-wiso model fails to capture observed variations in d excess (r2 = 0.14; p < 0.01; n = 55). This disagreement can be partly explained by a model deficit of capturing regional hydrological processes associated with secondary moisture supply in summer.  相似文献   

6.
Equilibrium isotope fractionation of thallium(Tl) includes the traditional mass-dependent isotope fractionation effect and the nuclear volume effect(NVE). The NVE dominates the overall isotope fractionation, especially at high temperatures. Heavy Tl isotopes tend to be enriched in oxidized Tl^3+-bearing species. Our NVE fractionation results of oxidizing Tl^+ to Tl^3+ can explain the positive enrichments observed in ferromanganese sediments. Experimental results indicate that there could be0.2–0.3 e-unit fractionation between sulfides and silicates at 1650 ℃. It is consistent with our calculation results,which are in the range of 0.17–0.38 e-unit. Importantly,Tl’s concentration in the bulk silicate Earth(BSE) can be used to constrain the amount of materials delivered to Earth during the late veneer accretion stage. Because the Tl concentration in BSE is very low and its Tl isotope composition is similar with that of chondrites, suggesting either no Tl isotope fractionation occurred during numerous evaporation events, or the Tl in current BSE was totally delivered by late veneer. If it is the latter, the Tl-contentbased estimation could challenge the magnitude of late veneer which had been constrained by the amount of highly siderophile elements in BSE. Our results show that the lateaccreted mass is at least five-times larger than the previously suggested magnitude, i.e., 0.5 wt% of current Earth’s mass. The slightly lighter 205 Tl composition of BSE relative to chondrites is probable a sign of occurrence of Tlbearing sulfides, which probably were removed from the mantle in the last accretion stage of the Earth.  相似文献   

7.
The Sr isotopic systematics in the weathering profiles of biotite granite and granite porphyry in southern Jiangxi Province were investigated. The results showed that during the chemical weathering of granites, remarked fractionation occurred between Rb and Sr. During the early stages of chemical weathering of granites, the released Sr/Si and Sr/Ca ratios are larger than those of the parent rocks, and the leaching rate of Sr is higher than those of Si, Ca, K, Rb, etc. Dynamic variations in relative weathering rates of the main Sr-contributing minerals led to fluctuation with time in 87Sr/86Sr ratios of inherent and released Sr in the weathering crust of granite. Successive weathering of biotite, plagioclase and K-feldspar made 87Sr/86Sr ratios in the weathering residues show such a fluctuation trend as to decrease first, increase, and then decrease again till they maintain stable. This work further indicates that when Sr isotopes are used to trace biogeochemical processes on both the catchment and global scales, one must seriously take account of the prefer-ential release of Sr from dissolving solid phase and the fluctuation of 87Sr/86Sr ratios caused by the variations of relative weathering rates of Sr-contributing minerals.  相似文献   

8.
Stable isotope variability and fractionation associated with transformation of precipitation/accumulation to firn to glacial river water is critical in a variety of climatic, hydrological and paleoenvironmental studies. This paper documents the modification of stable isotopes in water from precipitation to glacier runoff in an alpine catchment located in the central Tibetan Plateau. Isotopic changes are observed by sampling firnpack profiles, glacier surface snow/ice, meltwater on the glacier surface and catchment river water at different times during a melt season. Results show the isotopic fractionation effects associated with glacier melt processes. The slope of the δD‐δ18O regression line and the deuterium excess values decreased from the initial precipitation to the melt‐impacted firnpack (slope from 9.3 to 8.5 and average d‐excess from 13.4‰ to 7.4‰). The slope of the δD‐δ18O line further decreased to 7.6 for the glacier runoff water. The glacier surface snow/ice from different locations, which produces the main runoff, had the same δD‐δ18O line slope but lower deuterium excess (by 3.9‰) compared to values observed in the firnpack profile during the melt season. The δD‐δ18O regression line for the river water exhibited a lower slope compared to the surface snow/ice samples, although they were closely located on the δD‐δ18O plot. Isotope values for the river and glacier surface meltwater showed little scatter around the δD‐δ18O regression line, although the samples were from different glaciers and were collected on different days. Results indicate a high consistency of isotopic fractionation in the δD‐δ18O relationships, as well as a general consistency and temporal covariation of meltwater isotope values at the catchment scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
We report a survey of natural mass-dependent cadmium isotope fractionation measured by thermal ionization mass spectrometry using a double-spike technique (DS-TIMS). Over sixty samples of natural terrestrial Cd from diverse environments, including MORB, OIB, continental loess, hydrogenic and hydrothermal ferromanganese deposits, and sphalerites (both oceanic and from major continental ore deposits) were analysed. Our results are expressed in terms of ε112/110Cd, which are deviations in 112Cd/110Cd from our in-house JMC Cd standard in parts per 104. The total ε112/110Cd variation is relatively small, with a range of only 5 ε-units, and is one-to-two orders of magnitude smaller than that previously found in meteorites.The MORB, OIB and loess ε112/110Cd values are similar and provide a good estimate for the bulk silicate Earth (BSE) value which is ? 0.95 ± 0.12 relative to our Cd standard (ε112/110Cd = + 0.16 relative to Münster JMC Cd). Taken together, these data suggest little Cd isotope fractionation takes place during crust–mantle segregation. Cd isotopic compositions of continental sphalerite (ZnS) deposits worldwide and high-temperature oceanic hydrothermal sulphides show remarkably similar ε112/110Cd values, consistent with our estimate for the BSE. In contrast, mid-temperature oceanic sulphides from a single extinct hydrothermal chimney display over 4 ε-units variation — along with the most negative values. These variations are most probably caused by precipitation/redissolution of sulphide phases en route within the hydrothermal system.The ε112/110Cd variability found in worldwide marine Fe–Mn deposits reflects the seawater Cd isotope signal upon precipitation from ambient seawater. A decrease in ε112/110Cd is observed in passing from shallow-water Fe–Mn deposits to those from deeper waters (> 2000 m depth). This shift is explained by biological fractionation related to the uptake of dissolved seawater Cd by phytoplankton in the upper water column. The relatively uniform ε112/110Cd values close to zero at great depths are consistent with regeneration and remineralization of Cd at depth. Our data suggest that Cd isotopes – much like the Cd/Ca ratio in foraminifera – could potentially serve as a proxy for past changes in biological productivity. The temporal Cd isotope record in a Fe–Mn crust archive at 2000 m depth from the NE Atlantic suggests no gross long-term changes in Cd cycling took place over the past 8 Ma.  相似文献   

10.
Stable isotope tracers of δ18O and δ2H are increasingly being applied in the study of water cycling in regional-scale watersheds in which human activities, like river regulation, are important influences. In 2015, δ18O and δ2H were integrated into a water quality survey in the Muskoka River Watershed with the aim to provide new regional-scale characterization of isotope hydrology in the 5,100-km2 watershed located on the Canadian Shield in central Ontario, Canada. The forest dominated region includes ~78,000 ha of lakes, 42 water control structures, and 11 generating stations, categorized as “run of river.” Within the watershed, stable isotope tracers have long been integrated into hydrologic process studies of both headwater catchments and lakes. Here, monthly surveys of δ18O and δ2H in river flow were conducted in the watershed between April 2015 and November 2016 (173 surface water samples from 10 river stations). Temporal patterns of stable isotopes in river water reflect seasonal influences of snowmelt and summer-time evaporative fractionation. Spatial patterns, including differences observed during extreme flood levels experienced in the spring of 2016, reflect variation in source contributions to river flow (e.g., snowmelt or groundwater versus evaporatively enriched lake storage), suggesting more local influences (e.g., glacial outwash deposits). Evidence of combined influences of source mixing and evaporative fractionation could, in future, support application of tracer-enabled hydrological modelling, estimation of mean transit times and, as such, contribute to studies of water quality and water resources in the region.  相似文献   

11.
D/H fractionation factors between serpentine (clinochrysotile) and water were experimentally determined to be: 1000 In αser-w = 2.75 × 10 7/T2 ? 7.69 × 104/T + 40.8 in the temperature range from 100 to 500°C. The present results do not support the semi-empirical fractionation factors employed by Wenner and Taylor [1] for the interpretation of δD values of natural serpentines. About 100 serpentines from the Japanese Islands have δD values from ?110 to ?40‰ SMOW, with antigorite being from ?40 to ?60‰. The results are in accord with the two conclusions by Wenner and Taylor [1,2], that is, the presence of a latitude ?δD correlation and the more uniform and higher δD values of antigorite than chrysotile and lizardite.According to the present fractionation factors, almost none of the continental lizardite-chrysotile serpentines could have formed at a temperature below 500°C under equilibrium with fluids of δD values similar to the present-day local meteoric waters. The fluid responsible for oceanic serpentinization could be either a mixture of oceanic and magmatic water or oceanic water alone. However, full interpretation of the δD values of natural serpentines should wait until kinetic behaviors of hydrogen isotopes in serpentinization are better understood.  相似文献   

12.
Plate subduction is the most magnificent process in the Earth. Subduction zones are important sites for proceeding matter- and energy- transports between the Earth's surface and the interior, continental crust growth, and crust-mantle interactions. Besides, a number of geological processes in subduction zones are closely related to human beings' daily life, such as volcanic eruptions and earthquakes, formation of mineral deposits. Subduction process thus has long been the centric topic of Earth sciences. The finding in 1980 s that continental crust could be subducted to mantle depths is a revolutionary progress in plate tectonic theory. Compared to oceanic crust, continental crust is colder, drier, lighter, and much more geochemically/isotopically heterogeneous. Hence, continental subduction process would affect the structure, compositions and evolutions of the overlying mantle wedge even more. During continental subduction and subsequent exhumation, fluids and melts can be generated in the(de)hydration process and partial melting process, respectively. These melts/fluids play important roles in crust-mantle interactions, elemental migrations, isotopic fractionations, and mantle metasomatism. By summarizing recent research works on subduction zones in this paper, we present a review on the types, physicochemical conditions and compositions of fluids/melts, as well as the migration behaviors of fluid-related characteristic elements(Nb-Ta-V) and the fractionation behaviors of non-traditional stable isotopes(Li-Mg) in subduction zones. The aim of this paper is to provide the readers an update comprehensive overview of the melt/fluid activities in subduction zones and of Li-Mg isotope systematics in subduction-related rocks and minerals.  相似文献   

13.
The combined use of Lu–Hf and Sm–Nd isotope systems potentially offers a unique perspective for investigating continental erosion, but little is known about whether, and to what extent, the Hf–Nd isotope composition of sediments is related to silicate weathering intensity. In this study, Hf and Nd elemental and isotope data are reported for marine muds, leached Fe-oxide fractions and zircon-rich turbidite sands collected off the Congo River mouth, and from other parts of the SE Atlantic Ocean. All studied samples from the Congo fan (muds, Fe-hydroxides, sands) exhibit indistinguishable Nd isotopic composition (εNd ~ ? 16), indicating that Fe-hydroxides leached from these sediments correspond to continental oxides precipitated within the Congo basin. In marked contrast, Hf isotope compositions for the same samples exhibit significant variations. Leached Fe-hydroxide fractions are characterized by εHf values (from ? 1.1 to + 1.3) far more radiogenic than associated sediments (from ? 7.1 to ? 12.0) and turbidite sands (from ? 27.2 to ? 31.6). εHf values for Congo fan sediments correlate very well with Al/K (i.e. a well-known index for the intensity of chemical weathering in Central Africa). Taken together, these results indicate that (1) silicate weathering on continents leads to erosion products having very distinctive Hf isotope signatures, and (2) a direct relationship exists between εHf of secondary clay minerals and chemical weathering intensity.These results combined with data from the literature have global implications for understanding the Hf–Nd isotope variability in marine precipitates and sediments. Leached Fe-hydroxides from Congo fan sediments plot remarkably well on an extension of the ‘seawater array’ (i.e. the correlation defined by deep-sea Fe–Mn precipitates), providing additional support to the suggestion that the ocean Hf budget is dominated by continental inputs. Fine-grained sediments define a diffuse trend, between that for igneous rocks and the ‘seawater array’, which we refer to as the ‘zircon-free sediment array’ (εHf = 0.91 εNd + 3.10). Finally, we show that the Hf–Nd arrays for seawater, unweathered igneous rocks, zircon-free and zircon-bearing sediments (εHf = 1.80 εNd + 2.35) can all be reconciled, using Monte Carlo simulations, with a simple weathering model of the continental crust.  相似文献   

14.
This paper reports Re-Os and Nd isotopes of black shales at the bottom of Lower Cambrian from the northern Tarim Basin and traces source materials of the black shales through isotopes. The average Re/Os, 187Re/188Os, and 187Os/188Os ratios of the black shales at the bottom of Lower Cambrian from the Tarim Basin are 7.18, 5.6438, and 1.9616, respectively. These isotopic ratios suggest the crustal sources of the black shales. The εNd(0) value is -13.17, the εNd(540 Ma) value is -7.32 and the Nd model ages are 1.535 Ga. These parameters in the black shales are quite consistent with those from the basement rocks. Based on the Re-Os and Nd isotopic characteristics of the black shales, we conclude that the continental crust mainly composed of basement rocks is the source material of the black shales. Through comparison of these isotopic parameters with those from the Yangtze Platform, it is clear that the Re-Os isotopic characteristics in the black shales from the Tarim and Yangtze platforms are quite different, which maybe indicates the differences in depositional settings between two platforms. These Re-Os isotopic data provide us with constraints to analyze the genetic relation between the two platforms.  相似文献   

15.
The Sr isotopic systematics in the weathering profiles of biotite granite and granite porphyry in southern Jiangxi Province were investigated. The results showed that during the chemical weathering of granites, remarked fractionation occurred between Rb and Sr. During the early stages of chemical weathering of granites, the released Sr/Si and Sr/Ca ratios are larger than those of the parent rocks, and the leaching rate of Sr is higher than those of Si, Ca, K, Rb, etc. Dynamic variations in relative weathering rates of the main Sr-contributing minerals led to fluctuation with time in87Sr/86Sr ratios of inherent and released Sr in the weathering crust of granite. Successive weathering of biotite, plagioclase and K-feldspar made87Sr/86Sr ratios in the weathering residues show such a fluctuation trend as to decrease first, increase, and then decrease again till they maintain stable. This work further indicates that when Sr isotopes are used to trace biogeochemical processes on both the catchment and global scales, one must seriously take account of the preferential release of Sr from dissolving solid phase and the fluctuation of87Sr/86Sr ratios caused by the variations of relative weathering rates of Sr-contributing minerals.  相似文献   

16.
Andesites from the Peruvian Andes and the Banda arc of Indonesia are characterized by unusually high and variable 87Sr/86Sr ratios. The Banda arc samples, including two cordierite-bearing lavas from Ambon, show a clear positive correlation between 87Sr/86Sr and δ18O. The andesitic rocks have δ18O values that range from 5.6 to 9.2‰. Over that range in δ18O, 87Sr/86Sr increases from 0.7044 to 0.7095. The cordierite-bearing lavas have δ18O values of approximately 15‰ and 87Sr/86Sr ratios of approximately 0.717. The similarity between δ18O values and 87Sr/86Sr ratios in total rocks and separated plagioclase phenocrysts of the Banda arc samples indicates that the measured isotope ratios are primary and have not been affected by secondary, low-temperature post-eruptive alteration. The observed variation between O and Sr isotopic ratios can be modeled by two-component mixing in which one component is of mantle isotopic composition. As the crust beneath the Banda arc is probably oceanic, contamination of the manle component may have resulted from the subduction of either continentally-derived sediments or continental crust. Mixing calculations indicate that the contaminant could have an isotopic composition similar to that observed in the cordierite-bearing lavas.The Andean samples, despite petrographic evidence of freshness, exhibit whole-rock δ18O values significantly higher than those of corresponding plagioclase phenocryst separates, indicating extensive low-temperature post-eruptive alteration. The plagioclase mineral separates show a range of δ18O values between 6.9 and 7.9‰. The 87Sr/86Sr ratios of these same samples are, in most instances, not significantly different from those measured for the whole rock, thus signifying that the phenocrysts and groundmass were in isotopic equilibrium at the time of eruption. Unlike the lavas of the Banda arc, the Andean lavas show no strong positive correlation between 87Sr/86Sr ratios and δ18O values, but instead lower 87Sr/86Sr ratios appear to be associated with higher δ18O values. The δ18O and 87Sr/86Sr values of the Peruvian samples are both slightly higher than those of “normal” island arc volcanics.The small proportions of contaminant implied by the O isotope results seem to preclude continental crustal contamination as a primary cause of high 87Sr/86Sr ratios. The most plausible process that can explain both O and Sr isotope results is one in which sediments of continental origin are partially melted in the subduction zone. These melts rise into overlying mantle material and subsequently participate in the formation of calc-alkaline magmas.If the involvement of a sialic component in the genesis of andesitic magma occurs in the subduction zone, melting of that sialic material signifies temperatures of at least 750–800°C at the top of the subducted lithospheric slab at depths of approximately 150 km. The fact that contamination has apparently occurred in the Banda arc samples without producing any simple widespread correlations between Sr and O isotopic compositions on the one hand and major or trace element abundances on the other, shows that isotopic correlations, possibly including pseudo-isochrons, can be produced by mixing without producing trace element mixing correlations. Because O versus Sr isotope correlations are little affected by processes of partial melting of differentiation, they provide a direct means of testing whether Sr isotopic variations in volcanic rocks are of mantle origin or are due instead to mixing with sialic material.  相似文献   

17.
There are different sulfur forms in the black shales from the Early Cambrian of the Yangtze platform. With its emphasis on pyrite and organosulfur, this paper discusses their distribution and formation. The research shows that sulfur phases take regular variations laterally as well as vertically in the research areas. In western researched profile with high terrigenous supply at the time it formed, there exists a larger amount of pyrite and less organosulfur, and pyrite amount declines while organosulfur content increases upwards along the profile. This black shale profile is characterized by relatively light sulfur isotope composition with evolution trend of becoming heavier both for pyrite and organosulfur from bottom to top along the profile. Opposite situation occurs in eastern profiles which were located farther away from terrigenous land. Here pyrite amount obviously decreases and organic matter has combined more sulfur, although these two kinds of sulfur species take similar trend in content variation along profiles to that for western profile. At the same time more34S is accumulated in sulfur species of black shale samples from eastern profile, and sulfur isotope composition gradually turns lighter from bottom to top. In combination with other information of iron, organic carbon contents and petrographic features, it can be established that sea-level change, supply of terrigenous matters, tectonic background and natures of paleoceanic chemistry have exerted great influence on the distribution of sulfur species in these black shales.  相似文献   

18.
青藏高原羌塘东部治多县左支——失多莫卜辉长岩带形成于晚二叠世,由单一辉长岩组成。岩石富碱,Na2O〉K2O为钙碱性系列。微量元素特征表现为大离子亲石元素(LILE)富集,高场强元素分异,显示板内玄武岩特征。轻稀土元素高度富集,δEu不显亏损,为弱负异常到正异常。(87Sr/85Sr)i较低,变化于0.70419~0.70471之间,εNd(t)值较高,变化于4.3~4.9之间,显示了略亏损的地幔源区特征。该辉长岩带应形成于板内伸展扩张构造环境。  相似文献   

19.
Rainwater, groundwater and soil-water samples were analysed to assess groundwater geochemistry and the origin of salinity in the Ochi-Narkwa basin of the Central Region of Ghana. The samples were measured for major ions and stable isotopes (δ18O, δ2H and δ13C). The Cl? content in rainwater decreased with distance from the coast. The major hydrochemical facies were Na-Cl for the shallow groundwaters and Ca-Mg-HCO3, Na-Cl and Ca-Mg-Cl-SO4 for the deep groundwaters. Groundwater salinization is caused largely by halite dissolution and to a minor extent by silicate weathering and seawater intrusion. Stable isotope composition of the groundwaters followed a slope of 3.44, suggesting a mixing line. Chloride profiles in the soil zone revealed the existence of salt crusts, which support halite dissolution in the study area. A conceptual flow model developed to explain the mechanism of salinization showed principal groundwater flow in the NW–SE direction.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR K. Heal  相似文献   

20.
Questions persist about interpreting isotope ratios of bound and mobile soil water pools, particularly relative to clay content and extraction conditions. Interactions between pools and resulting extracted water isotope composition are presumably related to soil texture, yet few studies have manipulated the bound pool to understand its influence on soil water processes. Using a series of drying and spiking experiments, we effectively labelled bound and mobile water pools in soils with varying clay content. Soils were first vacuum dried to remove residual water, which was then replaced with heavy isotope-enriched water prior to oven drying and spiking with heavy isotope-depleted water. Water was extracted via centrifugation or cryogenic vacuum distillation (at four temperatures) and analysed for oxygen and hydrogen isotope ratios via isotope ratio mass spectrometry. Water from centrifuged samples fell along a mixing line between the two added waters but was more enriched in heavy isotopes than the depleted label, demonstrating that despite oven drying, a residual pool remains and mixes with the mobile water. Soils with higher clay + silt content appeared to have a larger bound pool. Water from vacuum distillation samples have a significant temperature effect, with high temperature extractions yielding progressively more heavy isotope-enriched values, suggesting that Rayleigh fractionation occurred at low temperatures in the vacuum line. By distinctly labelling bound and mobile soil water pools, we detected interactions between the two that were dependent on soil texture. Although neither extraction method appeared to completely extract the combined bound and mobile (total water) pool, centrifugation and high temperature cryogenic vacuum distillations were comparable for both δ2H and δ18O of soil water isotope ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号