首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We present submillimetre observations of the   J = 3 → 2  rotational transition of 12CO, 13CO and C18O across over 600 arcmin2 of the Perseus molecular cloud, undertaken with the Heterodyne Array Receiver Programme (HARP), a new array spectrograph on the James Clerk Maxwell Telescope. The data encompass four regions of the cloud, containing the largest clusters of dust continuum condensations: NGC 1333, IC348, L1448 and L1455. A new procedure to remove striping artefacts from the raw HARP data is introduced. We compare the maps to those of the dust continuum emission mapped with the Submillimetre Common-User Bolometer Array (SCUBA; Hatchell et al.) and the positions of starless and protostellar cores (Hatchell et al.). No straightforward correlation is found between the masses of each region derived from the HARP CO and SCUBA data, underlining the care that must be exercised when comparing masses of the same object derived from different tracers. From the 13CO/C18O line ratio the relative abundance of the two species  ([13CO]/[C18O]∼ 7)  and their opacities (typically τ is 0.02–0.22 and 0.15–1.52 for the C18O and 13CO gas, respectively) are calculated. C18O is optically thin nearly everywhere, increasing in opacity towards star-forming cores but not beyond  τ18∼ 0.9  . Assuming the 12CO gas is optically thick, we compute its excitation temperature, T ex (around 8–30 K), which has little correlation with estimates of the dust temperature.  相似文献   

2.
Maps are presented of 3 P 13 P 0[C  i ] and J =2→1 C18O line emission from the interstellar molecular cloud G35.2−0.74N. The maps are interpreted with reference to a previous model for the structure of the cloud in which opposing jets from a central object, embedded in a rotating interstellar disc, precess and drive a bipolar molecular outflow. The C18O emission traces the rotating interstellar disc, but the [C  i ] emission shows several features. An unresolved component is observed which probably results from dissociation of CO in the centre of the disc by UV radiation from the central source. Background [C  i ] emission is also observed which shares the rotation of the disc on larger scales. The C  i /CO ratio in these components is typically a few per cent. High-velocity [C  i ] emission, where C  i /CO is high (>0.1–0.4), is observed between the CO molecular outflow and the cavity exacavated by the jet. This material has probably been accelerated by the jet but dissociated by far-UV radiation propagating through the cavity. The C  i /CO ratio falls as the shocked outflow later sweeps up CO.  相似文献   

3.
The Gould Belt Legacy Survey will survey nearby star-forming regions (within 500 pc), using Heterodyne Array Receiver Programme (HARP), Submillimetre Common-User Bolometer Array 2 and Polarimeter 2 on the James Clerk Maxwell Telescope. This paper describes the initial data obtained using HARP to observe 12CO, 13CO and C18O   J = 3 → 2  towards two regions in Orion B, NGC 2024 and NGC 2071. We describe the physical characteristics of the two clouds, calculating temperatures and opacities utilizing all the three isotopologues. We find good agreement between temperatures calculated from CO and from dust emission in the dense, energetic regions. We determine the mass and energetics of the clouds, and of the high-velocity material seen in 12CO emission, and compare the relative energetics of the high- and low-velocity material in the two clouds. We present a clumpfind analysis of the 13CO condensations. The slope of the condensation mass functions, at the high-mass ends, is similar to the slope of the initial mass function.  相似文献   

4.
Determining temperatures in molecular clouds from ratios of CO rotational lines or from ratios of continuum emission in different wavelength bands suffers from reduced temperature sensitivity in the high-temperature limit. In theory, the ratio of far-infrared (FIR), submillimetre or millimetre continuum to that of a 13CO (or C18O) rotational line can place reliable upper limits on the temperature of the dust and molecular gas. Consequently, FIR continuum data from the COBE /Diffuse Infrared Background Experiment (DIRBE) instrument and Nagoya 4-m  13CO  J = 1 → 0  spectral line data were used to plot  240 μm/13CO  J = 1 → 0  intensity ratios against 140/240 μm dust colour temperatures, allowing us to constrain the multiparsec-scale physical conditions in the Orion A and B molecular clouds.
The best-fitting models to the Orion clouds consist of two components: a component near the surface of the clouds that is heated primarily by a very large scale (i.e. ∼1 kpc) interstellar radiation field and a component deeper within the clouds. The former has a fixed temperature and the latter has a range of temperatures that vary from one sightline to another. The models require a dust–gas temperature difference of 0 ± 2 K and suggest that 40–50 per cent of the Orion clouds are in the form of dust and gas with temperatures between 3 and 10 K. The implications are discussed in detail in later papers and include stronger dust–gas thermal coupling and higher Galactic-scale molecular gas temperatures than are usually accepted, and an improved explanation for the N (H2)/ I (CO) conversion factor. It is emphasized that these results are preliminary and require confirmation by independent observations and methods.  相似文献   

5.
We report the discovery of high-velocity dense gas from a bipolar outflow source near NGC 2068 in the L1630 giant molecular cloud. CO and HCO+ J =3→2 line wings have a bipolar distribution in the vicinity of LBS 17-H with the flow orientated roughly east–west and perpendicular to the elongation of the submillimetre dust continuum emission. The flow is compact (total extent ∼0.2 pc) and contains of the order of 0.1 M of swept-up gas. The high-velocity HCO+ emission is distributed over a somewhat smaller area <0.1 pc in extent.
A map of C18O J =2→1 emission traces the LBS 17 core and follows the ambient HCO+ emission reasonably well, with the exception of the direction towards LBS 17-H where there is a significant anticorrelation between the C18O and HCO+. A comparison of beam-matched C18O and dust-derived H2 column densities suggests that CO is depleted by up to a factor of ∼50 at this position if the temperature is as low as 9 K, although the difference is substantially reduced if the temperature is as high as 20 K. Chemical models of collapsing clouds can account for this discrepancy in terms of different rates of depletion on to dust grains for CO and HCO+.
LBS 17-H has a previously known water maser coincident with it but there are no known near-infrared, IRAS or radio continuum sources associated with this object, leading to the conclusion that it is probably very young. A greybody fit to the continuum data gives a luminosity of only 1.7 L and a submillimetre-to-bolometric luminosity ratio of 0.1, comfortably satisfying the criteria for classification as a class 0 protostar candidate.  相似文献   

6.
C18O J  = 2–1, C17O J  = 2–1 and [C  I ] 3P13P0 emission from the dense cold cloud B335 has been observed and modelled in order to determine the C/CO ratio. The observed ratio is compared with a prediction by Tarafdar who assumes a mechanism in which the CO dissociation is caused by photons of energy ∼ 13.8 eV. These were postulated by Sciama to result from the decay of dark matter neutrinos. Our value for the C/CO ratio sets an upper limit to the strength of the neutrino decay dissociation process, thus providing a significant datum for interstellar chemistry theory.  相似文献   

7.
A multitransition 3-mm molecular line single pointing and mapping survey was carried out towards 29 massive star-forming cores in order to search for the signature of inward motions. Up to seven different transitions, optically thick lines HCO+(1-0), CS(2-1), HNC(1-0), HCN(1-0) and 12CO(1-0), and optically thin lines C18O(1-0) and 13CO(1-0) were observed towards each source. The normalized velocity differences (     ) between the peak velocities of optically thick lines and optically thin line C18O(1-0) for each source were derived. Prominent inward motions are probably present in either HCO+(1-0) or CS(2-1) or HNC(1-0) observations in most sources. Our observations show that there is a significant difference in the incidence of blueshifted asymmetric line profiles between CS(2-1) and HCO+(1-0). The HCO+(1-0) shows the highest occurrence of obvious asymmetric features, perhaps owing to different optical depth between CS(2-1) and HCO+(1-0). HCO+(1-0) appears to be the best inward motion tracer. The mapping observations of multiple line transitions enable us to identify six strong infall candidates: G123.07-6.31, W75(OH), S235N, CEP-A, W3(OH) and NGC 7538. The infall signature is extended up to a linear scale  >0.2 pc  .  相似文献   

8.
We present a fully sampled C18O (1–0) map towards the southern giant molecular cloud (GMC) associated with the H  ii region RCW 106, and use it in combination with previous 13CO (1–0) mapping to estimate the gas column density as a function of position and velocity. We find localized regions of significant 13CO optical depth in the northern part of the cloud, with several of the high-opacity clouds in this region likely associated with a limb-brightened shell around the H  ii region G333.6−0.2. Optical depth corrections broaden the distribution of column densities in the cloud, yielding a lognormal distribution as predicted by simulations of turbulence. Decomposing the 13CO and C18O data cubes into clumps, we find relatively weak correlations between size and linewidth, and a more sensitive dependence of luminosity on size than would be predicted by a constant average column density. The clump mass spectrum has a slope near −1.7, consistent with previous studies. The most massive clumps appear to have gravitational binding energies well in excess of virial equilibrium; we discuss possible explanations, which include magnetic support and neglect of time-varying surface terms in the virial theorem. Unlike molecular clouds as a whole, the clumps within the RCW 106 GMC, while elongated, appear to show random orientations with respect to the Galactic plane.  相似文献   

9.
We present  12CO ( J = 1–0)  and  12CO ( J = 2–1)  observations of eight early-type galaxies, forming part of a sample of interacting galaxies, each consisting of one late- and one early-type system. All of the early-type galaxies observed are undetected in CO to low levels, allowing us to place tight constraints on their molecular gas content. Additionally, we present H  i absorption data for one system. The implications for possible gas transfer from the late- to the early-type galaxy during the interaction are discussed.  相似文献   

10.
The observations made by the Goddard High Resolution Spectrograph (GHRS) aboard the Hubble Space Telescope ( HST ) of molecular CO in absorbing gas towards X Persei are reported. The two-component statistical equilibrium model incorporating radiative excitation of CO by line emission at the same velocity that originates in nearby molecular clouds has been used to reproduce high-resolution GHRS spectra. Earlier analysis indicates that the cloud has a complex structure and at least a two-component model should be used to obtain accurate results. The spectra obtained from the International Ultraviolet Explorer ( IUE ) were used to complement GHRS data and constrain the space of possible solutions. The new oscillator strengths recommended by Eidelsberg et al. for A–X bands have been used. The results show that one of the components may be attributed to the Perseus OB2 molecular cloud, and the other component to an extension of the Taurus dark cloud. The total CO column density N (CO)=(1.0±0.2)×1016 cm−2 has been determined. According to the results about 85 per cent of the observed CO belongs to an extension of the Taurus dark cloud. The CO radiation that originates in nearby molecular clouds may be the dominant excitation mechanism of the observed CO. The early results of 13CO line analysis indicate a 13CO/12CO ratio of about 40.  相似文献   

11.
Our new 21-arcsec resolution CO J  = 2 → 1 map of the L 43 dark cloud shows a poorly collimated molecular outflow, with little evidence for wings at velocities 10 km s−1. The outflow appears not to be currently driven by a jet: its structure can instead be modelled as a slowly expanding shell. The shell may be compressed either by a wide-angled wind catching up with an existing shell (as in the case of planetary nebulæ), or by the thermal pressure of a hot low-emissivity medium interior to the shell. The outflow is most probably in a late stage of evolution, and appears to be in the process of blowing away its molecular cloud. We also present a 45-arcsec resolution CO J  = 1 → 0 map of the whole molecular cloud, showing that the outflow structure is clearly visible even in the integrated intensity of this low excitation line, and suggesting that rapid mapping may prove useful as a way of finding regions of outflow activity. We also examine the immediate surroundings of the driving source with 450 μm imaging: this confirms that the outflow has already evacuated a bay in the vicinity of the young stellar object.  相似文献   

12.
Whether or not supernovae contribute significantly to the overall dust budget is a controversial subject. Submillimetre (sub-mm) observations, sensitive to cold dust, have shown an excess at 450 and 850 μm in young remnants Cassiopeia A (Cas A) and Kepler. Some of the sub-mm emission from Cas A has been shown to be contaminated by unrelated material along the line of sight. In this paper, we explore the emission from material towards Kepler using sub-mm continuum imaging and spectroscopic observations of atomic and molecular gas, via H  i , 12CO( J = 2–1) and 13CO( J = 2–1). We detect weak CO emission (peak   T *A  = 0.2–1 K, 1–2 km s−1 full width at half-maximum) from diffuse, optically thin gas at the locations of some of the sub-mm clumps. The contribution to the sub-mm emission from foreground molecular and atomic clouds is negligible. The revised dust mass for Kepler's remnant is  0.1–1.2 M  , about half of the quoted values in the original study by Morgan et al., but still sufficient to explain the origin of dust at high redshifts.  相似文献   

13.
The MSX infrared dark cloud G79.2+0.38 has been observed over a 11′×′ region simultaneously in the J=1-0 rotational transition lines of the 12CO and its isotopic molecules 13CO and 18CO. The dense molecular cores defined by the C18O line are found to be associated with the two high-extinction patches shown in the MSX A-band image. The two dense cores have the column density N (H2) (5 – 12) × 1022 cm−2 and the mean number density n (3 ± 1) × 104 cm−3. Their sizes are 1.7 and 1.2 pc in 13CO(1-0) line, 1.2 and 0.6 pc in C18O(1-0) line, respectively. The masses of these cloud cores are estimated to be in the range from 2 × 102 to 2 × 103 M. The profile of radial mean density of the cloud core can be described by the exponential function ¯n(p) p−0.34±0.02. Compared with the cases of typical optical dark clouds, the abundances of the CO isotopic molecules 13CO and C18O in this MSX infrared dark cloud appear to be depleted by a factor of 4–11, but at present there is no evidence for any obvious variation of the relative abundance ratio X13/18 between 13CO and C18O with the column density.  相似文献   

14.
The central arcminute of the Perseus cooling flow galaxy, NGC 1275, has been mapped with the JCMT in 12CO(2–1) at 21-arcsec resolution, with detections out to at least 36 arcsec (12 kpc). Within the limits of the resolution and coverage, the distribution of gas appears to be roughly east–west, consistent with previous observations of CO, X-ray, Hα and dust emission. The total detected molecular hydrogen mass is ∼ 1.6 × 1010 M, using a Galactic conversion factor. The inner central rotating disc is apparent in the data, but the overall distribution is not one of rotation. Rather, the line profiles are bluewards-asymmetric, consistent with previous observations in H  i and [O  iii ]. We suggest that the blueshift may be due to an acquired mean velocity of ∼ 150 km s−1 imparted by the radio jet in the advancing direction. Within the uncertainties of the analysis, the available radio energy appears to be sufficient, and the interpretation is consistent with that of Bo¨hringer et al. for displaced X-ray emission. We have also made the first observations of 13CO(2–1) and 12CO(3–2) emission from the central 21-arcsec region of NGC 1275 and combined these data with IRAM data supplied by Reuter et al. to form line ratios over equivalent, well-sampled regions. An LVG radiative transfer analysis indicates that the line ratios are not well reproduced by single values of kinetic temperature, molecular hydrogen density and abundance per unit velocity gradient. At least two temperatures are suggested by a simple two-component LVG model, possibly reflecting a temperature gradient in this region.  相似文献   

15.
The 'Carina Flare' supershell, GSH 287+04−17, is a molecular supershell originally discovered in  12CO( J = 1–0)  with the NANTEN 4 m telescope. We present the first study of the shell's atomic ISM, using H  i 21-cm line data from the Parkes 64-m telescope Southern Galactic Plane Survey. The data reveal a gently expanding,  ∼230 × 360  pc H  i supershell that shows strong evidence of Galactic Plane blowout, with a break in its main body at   z ∼ 280  pc and a capped high-latitude extension reaching   z ∼ 450  pc. The molecular clouds form comoving parts of the atomic shell, and the morphology of the two phases reflects the supershell's influence on the structure of the ISM. We also report the first discovery of an ionized component of the supershell, in the form of delicate, streamer-like filaments aligned with the proposed direction of blowout. The distance estimate to the shell is re-examined, and we find strong evidence to support the original suggestion that it is located in the Carina Arm at a distance of  2.6 ± 0.4 kpc  . Associated H  i and H2 masses are estimated as   M H I≈ 7 ± 3 × 105 M  and     , and the kinetic energy of the expanding shell as   E K ∼ 1 × 1051  erg. We examine the results of analytical and numerical models to estimate a required formation energy of several 1051 to  ∼1052  erg, and an age of  ∼107 yr  . This age is compatible with molecular cloud formation time-scales, and we briefly consider the viability of a supershell-triggered origin for the molecular component.  相似文献   

16.
We report the first detection of CO in the bulge of M31. The 12CO (1–0) and (2–1) lines are both detected in the dust complex D395A/393/384, at 1.3 arcmin (∼0.35 kpc) from the centre. From these data and from visual extinction data, we derive a CO luminosity to reddening ratio (and a CO luminosity to H2 column density ratio) quite similar to that observed in the local Galactic clouds. The (2–1) to (1–0) line intensity ratio points to a CO rotational temperature and a gas kinetic temperature of >10 K. The molecular mass of the complex, inside a 25-arcsec (100 pc) region, is 1.5×104 M.  相似文献   

17.
A reliable estimate of the molecular gas content in galaxies plays a crucial role in determining their dynamical and star-forming properties. However, H2, the dominant molecular species, is difficult to observe directly, particularly in the regions where most molecular gas is thought to reside. Its mass is therefore commonly inferred by assuming a direct proportionality with the integrated intensity of the  12CO( J = 1 → 0)  emission line, using a CO-to-H2 conversion factor, X . Although a canonical value for X is used extensively in such estimates, there is increasing evidence, both theoretical and observational, that the conversion factor may vary by over an order of magnitude under conditions different from those of the local neighbourhood. In an effort to understand the influence of changing environmental conditions on the conversion factor, we derive theoretical estimates of X for a wide range of physical parameters using a photon-dominated region (PDR) time-dependent chemical model, benchmarking key results against those of an independent PDR code to ensure reliability. Based on these results, the sensitivity of the X factor to change in each physical parameter is interpreted in terms of the chemistry and physical processes within the cloud. In addition to confirming previous observationally derived trends, we find that the time-dependence of the chemistry, often neglected in such models, has a considerable influence on the value of the conversion factor.  相似文献   

18.
We present the first results of a submillimetre continuum survey of Lynds dark clouds. Submillimetre surveys of star-forming regions are an important tool with which to obtain representative samples of the very first phases of star formation. Maps of 24 small clouds were obtained with SCUBA, the bolometer array receiver at the James Clerk Maxwell Telescope, and 19 clouds were detected. The total dark cloud area surveyed was ∼130 arcmin2, and a total gas mass of 90 M was detected. The dust emission is in general in good agreement with the extinction of optical starlight. The observed clouds contain a newly discovered protostar in L944, and a previously known protostar IRAS 23228+4320 in L1246. Another eight starless cores, either gravitationally unbound or pre-stellar in nature, were also detected. All starless cores and protostars were detected in only seven clouds, and the remaining 17 clouds seem quiescent and do not show any signs of recent star formation activity. The 850-μm images of all detected clouds are presented, as well as 450-μm images of L328, L944, L1014 and L1262. The outflows of the protostars in L944 and L1246 were also discovered and were mapped in 12CO J =2→1. The detection of the young protostar in L944, which is not present in the IRAS Point Source Catalog, shows the capacity of submillimetre surveys to detect unknown protostars.  相似文献   

19.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

20.
Near-infrared images in H2 line emission and submillimetre maps in CO J  = 3–2 emission illustrate the remarkable association between a molecular bow shock and the redshifted molecular outflow lobe in W75N. The flow lobe fits perfectly into the wake of the bow, as one would expect if the lobe represented swept-up gas. Indeed, these observations strongly support the 'bow shock' entrainment scenario for molecular outflows driven by young stars.   The characteristics of the bow shock and CO outflow lobe are compared with those of numerical simulations of jet-driven flows. These models successfully reproduce the bulge and limb-brightening in the CO outflow, although the model H2 bow exhibits more structure extending back along the flow axis. We also find that the size of the flow, the high mass fraction in the flow at low outflow velocities (low γ values) and the high CO/H2 luminosity ratio indicate that the system is evolved. We also predict a correlation, in evolved systems, between outflow age and the CO/H2 luminosity ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号