首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal waters hosted by Menderes metamorphic rocks emerge along fault lineaments in the Simav geothermal area. Thermal springs and drilled wells are located in the Eynal, Çitgöl and Na a locations, which are part of the Simav geothermal field. Studies were carried out to obtain the main chemical and physical characteristics of thermal waters. These waters are used for heating of residences and greenhouses and for balneological purposes. Bottom temperatures of the drilled wells reach 163°C with total dissolved solids around 2225 mg/kg. Surface temperatures of thermal springs vary between 51°C and 90°C. All the thermal waters belong to Na–HCO3–SO4 facies. The cold groundwaters are Ca–Mg–HCO3 type. Dissolution of host rock and ion-exchange reactions in the reservoir of the geothermal system shift the Ca–Mg–HCO3 type cold groundwaters to the Na–HCO3–SO4 type thermal waters. Thermal waters are oversaturated at discharge temperatures for aragonite, calcite, quartz, chalcedony, magnesite and dolomite minerals giving rise to a carbonate-rich scale. Gypsum and anhydrite minerals are undersaturated with all of the thermal waters. Boiling during ascent of the thermal fluids produces steam and liquid waters resulting in an increase of the concentrations of the constituents in discharge waters. Steam fraction, y, of the thermal waters of which temperatures are above 100°C is between 0.075 and 0.119. Reservoir pH is much lower than pH measured in the liquid phase separated at atmospheric conditions, since the latter experienced heavy loss of acid gases, mainly CO2. Assessment of the various empirical chemical geothermometers and geochemical modelling suggest that reservoir temperatures vary between 175°C and 200°C.  相似文献   

2.
Results of a chemical study of the fluids from drill holes and hot springs of Puga and Chumatang areas in the northwestern part of the Himalaya are presented and discussed in this paper. The thermal waters of Puga and Chumatang are of Na-HCO3-Cl and Na-HCO3 types, respectively. A comparison between these waters, their chemical classification and activity studies suggest a flow path within a quartzitic-schistose basement, containing quartz, K-feldspar and illite, and in clayey terrains containing montmorillonite and illite.The chemistry of thermal waters also indicate their association with magmatic activity. The chemical geothermometers indicate the possible existence of a geothermal reservoir at Puga with temperature ≈250°C. The Chumatang area has a comparatively cooler reservoir with a temperature of 150–180°C.  相似文献   

3.
The Sierra La Primavera, a late Pleistocene rhyolitic caldera complex in Jalisco, México, contains fumaroles and large-discharge 65°C hot springs that are associated with faults related to caldera collapse and to later magma insurgence. The nearly-neutral, sodium bicarbonate, hot springs occur at low elevations at the margins of the complex, whereas the water-rich fumaroles are high and central.The Comisión Federal de Electricidad de México (CFE) has recently drilled two deep holes at the center of the Sierra (PR-1 and Pr-2) and one deep hole at the western margin. Temperatures as high as 285°C were encountered at 1160 m in PR-1, which produced fluids with 820 to 865 mg/kg chloride after flashing to one atmosphere. Nearby, PR-2 encountered temperatures to 307°C at 2000 m and yielded fluids with chloride contents fluctuating between 1100 and 1560 mg/kg after flashing. Neither of the high-temperature wells produced steam in commercial quantities. The well at the western margin of the Sierra produced fluids similar to those from the hot springs. The temperature reached a maximum of 100°C near the surface and decreased to 80°C at 2000 m.Various geothermometers (quartz conductive, Na/K, Na-K-Ca, δ18O(SO4-H2O) and D/H (steam-water) all yield temperatures of 170 ± 20°C when applied to the hot spring waters, suggesting that these spring waters flow from a large shallow reservoir at this temperature. Because the hot springs are much less saline than the fluids recovered in PR-1 and PR-2, the mixed fluid in the shallow reservoir can contain no more than 10–20% deep fluid. This requires that most of the heat is transferred by steam. There is probably a thin vapor-dominated zone in the central part of the Sierra, through which steam and gases are transferred to the overlying shallow reservoir. Fluids from this reservoir cool from 170°C to 65°C by conduction during the 5–7 km of lateral flow to the hot springs.  相似文献   

4.
The deep well MV5A, drilled in the western part of the Larderello geothermal field, crossed a 20-cm-thick hydraulic fracture breccia unit at a depth of 1090 m below ground level (b.g.l.). This breccia occurs in a fine-grained Triassic metasandstone and consists of angular to subangular clasts of up to some centimeters in size. Pervasive alteration has affected the breccia clasts and wall rock around the breccia, with the formation of Mg–Fe chlorite. After such alteration, hydrothermal circulation caused the precipitation of two generations of calcite cement. Then, ankerite partially replaced these two calcite generations. Ankerite also precipitated in late veinlets with chlorite. Late hydrothermal activity led to the crystallization of albite, quartz and finally, anhydrite. The calcite contains vapor-rich inclusions and two populations of liquid-rich (L1 and L2) inclusions. L1 inclusions are characterized by homogenization temperatures between 304 and 361°C and salinities from 7.4 to 11.6 wt.% NaCl equivalent; L2 inclusions revealed homogenization temperatures in the range of 189–245°C and salinities from 2.6 to 6.3 wt.% NaCl equivalent. The fluids contained in L2 inclusions were probably trapped coevally with some vapor-rich inclusions under boiling conditions after the L1 inclusions formed. Some of the abundant vapor-rich inclusions in calcite may also represent early, low-temperature inclusions affected by decrepitation and/or stretching and/or leaking during L1 trapping. The liquid-rich (L) inclusions trapped at later stages in ankerite, albite and anhydrite display, respectively, homogenization temperature ranges of 189–198°C, 132–145°C, and 139–171°C, and salinities ranging from 1.6 to 1.7 wt.% NaCl equivalent, 1.4 to 2.1 wt.% NaCl equivalent and 3.7 to 6.2 wt.% NaCl equivalent. The inclusions studied record the evolution, over time, of the fluids flowing in the breccia level: L1 inclusions capture high-temperature fluid (about 300 to 350°C) of high salinity (around 10 wt.% NaCl equivalent) at above-hydrostatic pressures (up to about 150 bar). The L2 inclusions in calcite and liquid-rich inclusions in ankerite and albite represent subsequent hydrothermal fluid evolution toward lower temperatures (about 250 to 130°C), pressures (45 to a few bar) and salinities (6.3 to 1.4 wt.% NaCl equivalent). During this stage, boiling processes and infiltration of meteoric waters probably occurred. Finally, moderately saline fluids (around 5 wt.% NaCl equivalent) at a temperature (about 160°C) close to that of present-day in-hole measurements was trapped in the anhydrite inclusions. The liquids trapped in liquid-rich inclusions circulated at 41,000 years (maximum age of calcite) or later. This age represents an upper limit for the development of vapor-dominated condition, in this part of the geothermal system. The fluids circulating at the breccia level were probably meteoric and/or connate waters. These fluids may have interacted with the anhydrite and carbonate bearing formations present in the Larderello area. The occurrence of the hot and saline fluids, trapped in L1 inclusions at above-hydrostatic pressure, suggests that similar fluids but with higher pressure (≥167 bar) and temperature (≥360°C) may have been responsible for rock fracturing.  相似文献   

5.
Contents of H2O, CO2 and Cl in well discharges from six explored geothermal systems of the Taupo Volcanic Zone, New Zealand, point to the existence of two distinct source fluids. The fluid present in discharges from systems along the eastern boundary is characterised by high CO2 contents, 1.6 ± 0.5 , at mole ratios of 3.9 ± 1.5. High (0.06) and (12) weight ratios in these waters suggest that all four constituents are derived from associated andesitic rock. Geothermal discharges in the western parts of the TVZ, dominated by rhyolitic magmatism, are characterised by low CO2 contents, 0.12 ± 0.05 , and low (0.14 ± 0.1) ratios. Again, relative Cl, B, Li and Cs contents agree with those of this potential source rock. High and ratios in the east are typical of fluids affected by the addition of volatiles released from subducted marine sediments. For the western systems, these ratios resemble more closely those expected for mantle-derived volatiles. The isotopic compositions of all deep waters point to the presence of variable amounts of a magmatic component, some 14 ± 5% in the eastern and 6 ± 2% in the western systems. The observed variations are explained in terms of interaction of volatiles released from the subducted sediments with material of the mantle wedge to form a volatile-charged, high-alumina basalt. Its convective rise, in a direction opposite to that of the down-going slab, leads to high enrichment in volatiles of the magmas generated beneath the eastern parts of the TVZ and increases their ability to intrude the continental crust. Further fractional crystallisation and assimilation leads to the formation of volatile-rich andesitic melts, partly extruded to form the volcanoes of the andesitic arc, partly intruded to act as source rocks for the high-gas geothermal systems. Batches of high-alumina basalt, depleted in subducted volatiles, travel farther west to pond beneath a zone of crustal extension. Following extensive fractionation, highly siliceous melts, carrying predominantly mantle-type volatiles, rise beneath the western part of the TVZ to supply both heat and volatiles to the geothermal systems there.  相似文献   

6.
The chemical compositions of a total of 120 thermal water samples from four different tectonically distinct regions (Central, North, East and West Anatolia) of Turkey are presented and assessed in terms of geothermal energy potential of each region through the use of chemical geothermometers. Na–Ca–HCO3 type waters are the dominant water types in all the regions except that Na–Cl type waters are typical for the coastal areas of West Anatolia and for a few inland areas of West and Central Anatolia where deep water circulation exists. The discharge temperature of the springs ranges up to 100°C, and the bottom-hole temperatures in drilled wells up to 232°C. Geothermometry applications yield reservoir temperatures of about 125°C for Central Anatolia, 110°C for North Anatolia, 136°C for East Anatolia and 251°C for West Anatolia, the latter agreeing with some of the bottom hole temperatures measured in drilled wells. The results reveal that the highest geothermal energy potential in Turkey is associated with the West Anatolian extensional tectonics which provides a regional, deep-seated heat source and a widespread graben system allowing deep circulation of waters. The North Anatolian region, bounded to the south by the dextral North Anatolian Fault along which most of the geothermal sites are located, has the lowest energy potential, probably due to the restriction of the heat source to local magmatic activities confined to pull-apart basins. The East Anatolian region (undergoing contemporary compression) and the Central Anatolian region (where the compressional regime in the east is converted to the extensional regime in the west) have moderate energy potential. Although the recently active volcanoes suggest the presence, at depth, of still cooling magma chambers that are potential heat sources, the lack of well-developed fault systems is probably responsible for the comparatively low energy potential of these regions. Almost all the thermal waters of Turkey are saturated with respect to calcite and, hence, have a significant calcite scaling potential which is particularly high for West Anatolian waters.  相似文献   

7.
The Campi Flegrei (Naples, Campanian Plain, southern Italy) geothermal system is hosted by Quaternary volcanic rocks erupted before, during and after the formation of the caldera that represents one of the major structural features in the Neapolitan area. The volcanic products rest on a Mesozoic carbonate basement, cropping out north, east and south of the area. Chemical (major, minor and trace elements) and stable isotope (C, H, O) analyses were conducted on drill-core samples recovered from geothermal wells MF-1, MF-5, SV-1 and SV-3, at depths of ˜ 1100 to 2900 m. The study was complemented by petrographic and SEM examination of thin sections. The water which feeds the system is both marine and meteoric in origin. Mineral zonation typical of a high-temperature geothermal system exists in all the geothermal wells; measured temperatures in wells are as high as ˜ 400 °C. The chemical composition of the waters suggests the existence of two reservoirs: a shallow reservoir (depth < 2000 m) fed by seawater that boiled at 320 °C and became progressively diluted by steam-heated local meteoric water during its ascent; and a deeper reservoir (depth > 2000 m) of hypersaline water. The drill-cores are mainly hydrothermally altered volcanics of trachy-latitic affinity, but some altered pelites and limestones are also present. Published Na, Mg and K concentrations of selected geothermal waters indicate that the hydrothermal fluids are in equilibrium with their host rocks, with respect to K-feldspar, albite, sericite and chlorite. The measured δ18O(SMOW) values of rocks range from +4.3 to + 16.5%. The measured δD(SMOW) values range from − 79 to − 46%. The calculated isotopic composition of the fluids at equilibrium with the samples vary from + 1 to + 8.3%. δ18O and from − 52 to + 1%. δD. The estimated isotopic composition of the waters at equilibrium with the studied samples confirmed the existence of two distinct fluid types circulating in the geothermal system. The shallower has a marine water signature, while the deeper water has a signature consistent both with magmatic and meteoric origins. In the latter case, the recharge of this aquifer likely occurs at the outcrop of the Mesozoic Limestones surrounding the Campanian Plain; after infiltration, the water percolates through evaporitic layers, becoming hypersaline and D-depleted.  相似文献   

8.
Thermal springs associated with normal faults in Utah have been analyzed for major cations and anions, and oxygen and hydrogen isotopes. Springs with measured temperatures averaging greater than 40°C are characterized by Na + K- and SO4 + Cl-rich waters containing 103 to 104 mg/l of dissolved solids. Lower temperature springs, averaging less than 40°C, are more enriched in Ca + Mg relative to Na + K. Chemical variations monitored through time in selected thermal springs are probably produced by mixing with non-thermal waters. During the summer months at times of maximum flow, selected hot springs exhibit their highest temperatures and maximum enrichments in most chemical constituents.Cation ratios and silica concentrations remain relatively constant through time for selected Utah thermal springs assuring the applicability of the geothermometer calculations regardless of the time of year. Geothermometer calculations utilizing either the quartz (no steam loss), chalcedony or Mg-corrected Na/K/Ca methods indicate that most thermal springs in Utah associated with normal faults have subsurface temperatures in the range of 25 to less than 120°C. This temperature range suggests fluid circulation is restricted to depths less than about three kilometers assuming an average thermal gradient of about 40°C/km.Thermodynamic calculations suggest that most thermal springs are oversaturated with respect to calcite, quartz, pyrophyllite, (Fe, Mg)-montmorillonite, microcline and hematite, and undersaturated with respect to anhydrite, gypsum, fluorite and anorthite. Chalcedony and cristobalite appear to be the only phases consistently at or near saturation in most waters. Theoretical evaluation of mixing on mineral saturation trends indicates that anhydrite and calcite become increasingly more undersaturated as cold, dilute groundwater mixes with a hot (150°C), NaCl-rich fluid. The evolution of these thermal waters issuing from faults appears to be one involving the dissolution of silicates such as feldspars and micas by CO2-enriched groundwaters that become more reactive with increasing temperature and/or time. Solution compositions plotted on mineral equilibrium diagrams trend from product phases such as kaolinite or montmorillonite toward reactant phases dominated by alkali feldspars.Isotopic compositions indicate that these springs are of local surface origin, either meteoric (low TDS, < 5000 mg/l) or connate ground water (high TDS, > 5000 mg/l). Deviations from the meteoric water line are the result of rock-water isotopic exchange, mixing or evaporation. Fluid source regions and residence times of selected thermal spring systems (Red Hill, Thermo) have been evaluated through the use of a σ D-contour map of central and western Utah. Ages for waters in these areas range from about 13 years to over 500 years. These estimates are comparable to those made for low-temperature hydrothermal systems in Iceland.  相似文献   

9.
The Platanares geothermal area, Departamento de Copán, Honduras, is located within a graben that is complexly faulted. The graben is bounded on the north by a highland composed of Paleozoic (?) metamorphic rocks in contact with Cretaceous - Tertiary redbeds of unknown thickness. These are unconformably overlain by Tertiary andesitic lavas, rhyolitic ignimbrites, and associated sedimentary rocks. The volcanic rocks are mostly older than 14 Ma, and thus are too old to represent the surface expression of an active crustal magma body. Thermal fluids that discharge in the area are heated during deep circulation of meteoric water along faults in a region of somewhat elevated heat flow. Geothermometry based upon the chemical composition of thermal fluids from hot springs and from geothermal gradient coreholes suggests that the reservoir equilibrated at temperatures as high as 225 to 240°C, within the Cretaceous redbed sequence. Three continuously cored geothermal gradient holes have been drilled; fluids of about 165°C have been produced from two drilled along a NW-trending fault zone, from depths of 250 to 680 m. A conductive thermal gradient of 139°C/km, at a depth of 400 m, was determined from the third well, drilled 0.6 km west of that fault zone. These data indicate that the Platanares geothermal area holds considerable promise for electrical generation by moderate- to hightemperature geothermal fluids.  相似文献   

10.
Samples from Kawah Ijen crater lake, spring and fumarole discharges were collected between 1990 and 1996 for chemical and isotopic analysis. An extremely low pH (<0.3) lake contains SO4–Cl waters produced during absorption of magmatic volatiles into shallow ground water. The acidic waters dissolve the rock isochemically to produce “immature” solutions. The strong D and 18O enrichment of the lake is mainly due to enhanced evaporation at elevated temperature, but involvement of a magmatic component with heavy isotopic ratios also modifies the lake D and 18O content. The large ΔSO4–S0 (23.8–26.4‰) measured in the lake suggest that dissolved SO4 forms during disproportionation of magmatic SO2 in the hydrothermal conduit at temperatures of 250280°C. The lake δ18OSO4 and δ18OH2O values may reflect equilibration during subsurface circulation of the water at temperatures near 150°C. Significant variations in the lake's bulk composition from 1990 to 1996 were not detected. However, we interpret a change in the distribution and concentration of polythionate species in 1996 as a result of increased SO2-rich gas input to the lake system.Thermal springs at Kawah Ijen consist of acidic SO4–Cl waters on the lakeshore and neutral pH HCO3–SO4–Cl–Na waters in Blawan village, 17 km from the crater. The cation contents of these discharges are diluted compared to the crater lake but still do not represent equilibrium with the rock. The SO4/Cl ratios and water and sulfur isotopic compositions support the idea that these springs are mixtures of summit acidic SO4–Cl water and ground water.The lakeshore fumarole discharges (T=170245°C) have both a magmatic and a hydrothermal component and are supersaturated with respect to elemental sulfur. The apparent equilibrium temperature of the gas is 260°C. The proportions of the oxidized, SO2-dominated magmatic vapor and of the reduced, H2S-dominated hydrothermal vapor in the fumaroles varied between 1979 and 1996. This may be the result of interaction of SO2-bearing magmatic vapors with the summit acidic hydrothermal reservoir. This idea is supported by the lower H2S/SO2 ratio deduced for the gas producing the SO4–Cl reservoir feeding the lake compared with that observed in the subaerial gas discharges. The condensing gas may have equilibrated in a liquid–vapor zone at about 350°C.Elemental sulfur occurs in the crater lake environment as banded sediments exposed on the lakeshore and as a subaqueous molten body on the crater floor. The sediments were precipitated in the past during inorganic oxidation of H2S in the lake water. This process was not continuous, but was interrupted by periods of massive silica (poorly crystallized) precipitation, similar to the present-day lake conditions. We suggest that the factor controlling the type of deposition is related to whether H2S- or silica-rich volcanic discharges enter the lake. This could depend on the efficiency with which the lake water circulates in the hydrothermal cell beneath the crater. Quenched liquid sulfur products show δ34S values similar to those found in the banded deposits, suggesting that the subaqueous molten body simply consists of melted sediments previously accumulated at the lake bottom.  相似文献   

11.
Thermal waters of the Ömer–Gecek geothermal field, Turkey, with temperatures ranging from 32 to 92°C vary in chemical composition and TDS contents. They are generally enriched in Na–Cl–HCO3 and suggest deep water circulation. Silica and cation geothermometers applied to the Ömer–Gecek thermal waters yield reservoir temperatures of 75–155°C. The enthalpy–chloride mixing model, which approximates a reservoir temperature of 125°C for the Ömer–Gecek field, accounts for the diversity in the chemical composition and temperature of the waters by a combination of processes including boiling and conductive cooling of deep thermal water and mixing of the deep thermal water with cold water. It is also determined that the solubility of silica in most of the waters is controlled by the chalcedony phase. Equilibrium states of the Ömer–Gecek thermal waters studied by means of the Na–K–Mg triangular diagram, Na–K–Mg–Ca diagram, K–Mg–Ca geoindicator diagram, activity diagrams in the systems composed of Na2O–CaO–K2O–Al2O3–SiO2–CO2–H2O phases, log SI diagrams, and finally the alteration mineralogy indicate that most of the spring and low-temperature well waters in the area can be classified as shallow or mixed waters which are likely to be equilibrated with calcite, chalcedony and kaolinite at predicted temperature ranges similar to those calculated from the chemical geothermometers. It was also observed that mineral equilibrium in the Ömer–Gecek waters is largely controlled by CO2 concentrations.  相似文献   

12.
Studies of the geology, geochemistry of thermal waters, and of one exploratory geothermal well show that two related hot spring systems discharge in Canõn de San Diego at Soda Dam (48°C) and Jemez Springs (72°C). The hot springs discharge from separate strands of the Jemez fault zone which trends northeastward towards the center of Valles Caldera. Exploration drilling to Precambrian basement beneath Jemez Springs encountered a hot aquifer (68°C) at the top of Paleozoic limestone of appropriate temperature and composition to be the local source of the fluids in the surface hot springs at Jemez Springs. Comparisons of the soluble elements Na, Li, Cl, and B, arguments based on isotopic evidence, and chemical geothermometry indicate that the hot spring fluids are derivatives of the deep geothermal fluid within Valles Caldera. No hot aquifer was discovered in or on top of Precambrian basement. It appears that low- to moderate-temperature geothermal reservoirs (< 100°C) of small volume are localized along the Jemez fault zone between Jemez Springs and the margin of Valles Caldera.  相似文献   

13.
The Ischia geothermal system is hosted by silicic rocks of the Quaternary Potassic Roman Province, in southern Italy. Exploration drilling down to 1156 m depth in the mid-1950s provided information on boiling profiles (up to 250°C) and on the depth and permeability of the potential reservoirs. Discharge fluid samples were collected and analyzed to define the inflow of surrounding seawater (C1 ranges from 2.5 to 20 g/kg) into the system.Analyses of samples from surface manifestations and shallow wells collected during 1983 and 1988 point to the existence of three distinct mixing regimes, involving three water components. A dishomogeneous body of diluted water (Cl less than 2.5 g/kg), that occurs at depths > 700 m and reequilibrates at 240°C at least, is overlain by an aquifer of groundwater variably mixed with variably seawater (Cl from 4 to 10 g/kg), which tends to reequilibrate at 160°C. Steam-heated waters locally develop and act as dilutants of the rising geothermal fluids.Dilution, mixing, and evaporation of the ascending chloride fluids are supported by oxygen and hydrogen isotopic data the thermal waters being enriched in 18O and D with respect to local meteoric water by up to 7 and 30‰, respectively. The relative composition of the major cations in thermal solutions was used to discriminate the two main groups of thermal waters, the reservoir temperatures of which are estimated from the Na/K-gethermometer. K-Mg geothermometer indicates reequilibration in near-surface conditions.The isotopic composition of the fumarolic steam varies from −7 to −12‰ in ∂8O and from − 35 to − 70‰ in ∂D, in agreement with a deep mixed fluid that boils adiabatically from 240 to 80°C. The deuterium content of the H2O-H2 pair gives enrichment factor of about 830‰, corresponding to equilibrium temperature conditions slightly higher than the surface boiling temperatures. The ∂13C of CO2is almost constant at −4.5‰ (1δ=0.4), suggesting an important magmatic contribution, and the ∂18O values of CO2appears to in equilibrium with accompanying steam at the measured temperatures.The CO2/Ar and H2/Ar chemical ratios have been used to derive aquifer temperatures, the values obtained being consistent with those of solute geothermometers.  相似文献   

14.
Surface partial pressure of CO2 (pCO2), temperature, salinity, nutrients, and chlorophyll a were measured in the East China Sea (ECS; 31°30′–34°00′N to 124°00′–127°30′E) in August 2003 (summer), May 2004 (spring), October 2004 (early fall), and November 2005 (fall). The warm and saline Tsushima Warm Current was observed in the eastern part of the survey area during four cruises, and relatively low salinity waters due to outflow from the Changjiang (Yangtze River) were observed over the western part of the survey area. Surface pCO2 ranged from 236 to 445 μatm in spring and summer, and from 326 to 517 μatm in fall. Large pCO2 (values >400 μatm) occurred in the western part of the study area in spring and fall, and in the eastern part in summer. A positive linear correlation existed between surface pCO2 and temperature in the eastern part of the study area, where the Tsushima Warm Current dominates; this correlation suggests that temperature is the major factor controlling surface pCO2 distribution in that area. In the western part of the study area, however, the main controlling factor is different and seasonally complex. There is large transport in this region of Changjiang Diluted Water in summer, causing low salinity and low pCO2 values. The relationship between surface pCO2 and water stability suggests that the amount of mixing and/or upwelling of CO2-rich water might be the important process controlling surface pCO2 levels during spring and fall in this shallow region. Sea–air CO2 flux, based on the application of a Wanninkhof [1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373–7382] formula for gas transfer velocity and a set of monthly averaged satellite wind data, were −5.04±1.59, −2.52±1.81, 1.71±2.87, and 0.39±0.18 mmol m−2 d−1 in spring, summer, early fall, and fall, respectively, in the northern ECS. The ocean in this study area is therefore a carbon sink in spring and summer, but a weak source or in equilibrium with the atmosphere in fall. If the winter flux value is assumed to have been the mean of autumnal and vernal values, then the northern ECS absorbs about 0.013 Pg C annually. That result suggests that the northern ECS is a net sink for atmospheric CO2, a result consistent with previous studies.  相似文献   

15.
Philippine geothermal systems occur in the vicinity of large Holocene calc-alkaline volcanic complexes. Wells drilled in these areas encountered multiple intrusions; the latest dikes are the subsurface manifestations of the youngest heat source. Commonly, at least two hydrothermal regimes are juxtaposed in a single area, with the latest being in equilibrium with the present temperature and chemical regime.Alteration by neutral-pH water is pervasive and abundant. A contact-metamorphic aureole also occurs near intrusives. Alteration due to acid-sulfate fluids is generally confined to permeable structures. Neutral-pH alteration is divided into four zones on the basis of key clay minerals, and two subzones are defined by calc-silicates. These are the smectite (ambient to 180°C), transition (180–230°C), illite (230–320°C) and biotite (270–340°C) zones. Subzones are defined by epidote (250–340°C) and amphibole (280–340°C). The four main zones of acid alteration are: kaolinite (ambient to 120°C), dickite ± kaolinite (120–200°C), dickite ± pyrophyllite (200–250°C), and pyrophyllite ± illite (230–320°C). Where relict high-temperature alteration reaches the surface, the area being drilled is usually the outflow zone of the present system.These hydrothermal mineral assemblages are used: (1) as geothermometers; (2) to assist in determining the depth at which the production casing will be set during drilling; (3) to estimate fluid pH and other chemical parameters; (4) to predict possible corrosion and scaling tendencies of the fluids; (5) as a measure of permeability and possible cold water influx into wells; (6) as a guide to field hydrology; and (7) to estimate roughly the thickness of the eroded overburden.  相似文献   

16.
To test the possible effect of different fluid compositions on some standard geothermometry techniques, experiments were conducted in which a rhyolite from the Presidio Bolson area of West Texas was interacted with fluids of two different compositions (0.1 M NaCl and 0.01 M NaHCO3). The temperature range was 100–500°C, pressure was 1000 bars, water/rock mass ratios were 6:1 and 5:1, and the duration of the experiments ranged from 12 to 130 days.Results showed that the quartz geothermometer worked well in the experimental system up to temperatures of 400°C. The results were not affected by differences in the major anionic species.The Na-K geothermometer gave temperatures an average of 76°C lower than the experimental temperatures, regardless of fluid type. The experimental data from this study agree well with previous experimental work in feldsparquartz systems.The Na-K-Ca geothermometer did not work well for experiments using 0.01 M NaHCO3 but did work well for experiments using 0.1 M NaCl. Benjamin et al. (1983) concluded that the Na-K-Ca geothermometer is based on alteration reactions rather than feldspar exchange; however, no evidence for alteration reactions was observed in this study.  相似文献   

17.
Shallow submarine hydrothermal activity has been observed in the Bahía Concepción bay, located at the Gulf coast of the Baja California Peninsula, along faults probably related to the extensional tectonics of the Gulf of California region. Diffuse and focused venting of hydrothermal water and gas occurs in the intertidal and shallow subtidal areas down to 15 m along a NW–SE-trending onshore–offshore fault. Temperatures in the fluid discharge area vary from 50 °C at the sea bottom up to 87 °C at a depth of 10 cm in the sediments.Chemical analyses revealed that thermal water is enriched in Ca, As, Hg, Mn, Ba, HCO3, Li, Sr, B, I, Cs, Fe and Si, and it has lower concentrations of Cl, Na, SO4 and Br than seawater. The chemical characteristics of the water samples indicate the occurrence of mixing between seawater and a thermal end-member. Stable isotopic oxygen and hydrogen composition of thermal samples plot close to the Local Meteoric Water Line on a mixing trend between a thermal end-member and seawater. The composition of the thermal end-member was calculated from the chemistry of the submarine samples data by assuming a negligible amount of Mg for the thermal end-member. The results of the mixing model based on the chemical and isotopic composition indicate a maximum of 40% of the thermal end-member in the submarine vent fluid.Chemical geothermometers (Na/Li, Na–K–Ca and Si) were applied to the thermal end-member concentration and indicate a reservoir temperature of approximately 200 °C. The application of K–Mg and Na/Li geothermometers for vent fluids points to a shallow equilibrium temperature of about 120 °C.Results were integrated in a hydrogeological conceptual model that describes formation of thermal fluids by infiltration and subsequent heating of meteoric water. Vent fluid is generated by further mixing with seawater.  相似文献   

18.
Detailed geochemistry supported by geologic mapping has been used to investigate Sulphur Springs, an acid-sulfate hot spring system that issues from the western flank of the resurgent dome inside Valles Caldera. The most intense activity occurs at the intersection of faults offsetting caldera-fill deposits and post-caldera rhyolites. Three geothermal wells in the area have encountered pressures <1 MPa and temperatures of 200°C at depths of 600 to 1000 m. Hot spring and fumarole fluids may discharge at boiling temperatures with pH 1.0 and SO4 8000 mg/l. These conditions cause argillic alterations throughout a large area.Non-condensible gases consist of roughly 99% CO2 with minor amounts of H2S, H2, and CH4. Empirical gas geothermometry suggests a deep reservoir temperature of 215 to 280°C. Comparison of 13C and 18O between CaCO3 from well cuttings and CO2 from fumarole steam indicates a fractionation temperature between 200 and 300°C by decarbonation of hydrothermally altered Paleozoic limestone and vein calcite in the reservoir rocks. Tritium concentrations obtained from steam condensed in a mudpot and deep reservoir fluids (Baca #13, 278°C) are 2.1 and 1.0 T.U. respectively, suggesting the steam originates from a reservoir whose water is mostly >50 yrs old. Deuterium contents of fumarole steam, deep reservoir fluid, and local meteoric water are practically identical even though 18O contents range through 4‰, thus, precipitation on the resurgent dome of the caldera could recharge the hydrothermal system by slow percolation. From analysis of D and 18O values between fumarol steam and deep reservoir fluid, steam reaches the surface either (1) by vaporizing relatively shallow groundwater at 200°C or (2) by means of a two-stage boiling process through an intermediate level reservoir at roughly 200°C.Although many characteristics of known vapor-dominated geothermal systems are found at Sulphur Springs, fundamental differences exist in temperature and pressure of our postulated vapor-zone. We propose that the reservoir beneath Sulphur Springs is too small or too poorly confined to sustain a “true” vapor-dominated system and that the Sulphur Springs system may be a “dying” vapor-dominated system that has practically boiled itself dry.  相似文献   

19.
Results are presented on scubadiving investigations carried out on thermal manifestations in the area of Panarea (Aeolian Islands). The area investigated falls inside a caldera which extends from the main island to the group of islets located to the northeast. The distribution of the gaseous manifestations is regulated by the NE-SW, NW-SE and N-S regional tectonic directrices, through which the more recent basic magma intruded, giving rise to dikes and pillow lavas. fO2-temperature relation of the gases sampled in the investigated area was calculated to be: logfO2 = 11−24,593/T which indicates that a buffering mechanism acted on the gases as they cooled down during their ascent. The high 3He/4He ratio (6 × 10−6) and the δ13C = −3.2%. (PDB), suggest the presence of a magmatic component in the gas feeding the investigated manifestations. The above relations and the almost constant high He/N2 ratio suggest that all the fumaroles are fed by the same deep hot fluids. On the basis of both the chemical characters of the fluids and the geothermo-barometric data, a deep geothermal body, having a temperature of about 240°C, is recognized. Two other shallower thermal aquifers, with a temperature of 170–210°C, are identified. A circulation pattern of the geothermal fluids is also proposed. On the basis of calculations regarding the convective energy released by the geothermal system of Panarea, and the magmatic mass responsible for the positive gravimetric anomaly of the area, it was estimated that the last volcanic activity took place less then 10,000 years ago.  相似文献   

20.
Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8°C in early summer and from 15 to 17°C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area.Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953–1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号