首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed petrographic analysis of calcalkaline volcanic rocks of Shirouma-Oike volcano, Japan, reveals that the complex phenocryst assemblage (Ol+Cpx+Opx+Hb+Bt+Qz+Pl+Mt+Hm) in the younger group volcanic rocks can be divided into two groups, a high temperature group (Ol+Cpx±An-rich Pl) and a low temperature group (Op+Hb+Bt+Qz±Ab-rich Pl+Mt+Hm). Compositional zonation of the phenocrystic minerals, normal zoning in olivine and clinopyroxene, and reverse zoning in orthopyroxene and plagioclase, indicate that these two groups of phenocrysts precipitated from two different magmas which mixed before the eruption. The low temperature magma is a stagnant magma in a shallow magma chamber, to which high temperature basaltic magma is intermittently supplied. Magma mixing is also indicated in olivine-bearing two pyroxene andesite of the older group volcanic rocks, by the coexistence of normally zoned Mg-rich clinopyroxene phenocrysts and reversely zoned Fe-rich clinopyroxene phenocrysts, and by reverse zoning in orthopyroxene phenocrysts. It is concluded that magma mixing is an important process responsible for the generation of the disequilibrium features in calc-alkaline volcanic rocks.  相似文献   

2.
Chausudake Volcano is representative of the active volcanoes in northeastern Japan, and has a record of many historical eruptions. Because its 16-ky eruptive history is well documented, Chausudake is well-suited for examining the temporal change of magma chamber processes and for assessing potential hazards. The activity of the Chausudake Volcano can be divided into six magmatic units (CH1-CH6). Most of its products have similar characteristics, but those from unit CH1 show wider variation. Most rocks are andesite and have plagioclase, clinopyroxene, orthopyroxene, and Fe-Ti oxides as phenocrysts, with or without olivine or quartz. Mafic inclusions, which are observed in most products, are basaltic andesites that have various combinations of the same phenocryst species. Petrographic features observed in host rocks and mafic inclusions, such as disequilibrium phenocrysts and resorbed textures, suggest magma mixing/co-mingling. Whole rock compositions of both host rocks and mafic inclusions show linear trends in variation diagrams, which suggest that the rocks are derived from the mixing/co-mingling between mafic and felsic end members. Bulk silica content of the mafic end-member magma is estimated to be ca. 52%, and contains Mg-rich olivine and An-rich plagioclase. The temperature of this end member is estimated to have been higher than 1,100 °C. Bulk silica content of the felsic end-member magma is estimated to be ~66%, and contains Mg-poor pyroxenes, An-poor plagioclase, and quartz phenocrysts, with a temperature of between 800 and 900 °C. Trace element compositions show that the end members have different origins, but have changed little over the entire 16-ky of activity. The mafic end-member magmas might come from a lower-crustal homogeneous, large magma chamber, whereas the felsic end-member magmas may be partial melts of crustal materials produced by the heat of the mafic end member. Felsic end-member magma may have accumulated in the middle crust before CH1 activity. The mixing ratio of the felsic to mafic end members was 0.5:0.5 to 0.4:0.6 for the CH1 unit, and ca. 0.4:0.6 for the other units. Considering that ca. 75% of the total volume of the eruptive products form the first unit, its wider compositional variation is attributed to more heterogeneous mixing ratios.  相似文献   

3.
The six eruption episodes of the 10 ka Pahoka–Mangamate (PM) sequence (see companion paper) occurred over a ?200–400-year period from a 15-km-long zone of multiple vents within the Tongariro Volcanic Centre (TgVC), located at the southern end of the Taupo Volcanic Zone (TVZ). Most TgVC eruptives are plagioclase-dominant pyroxene andesites and dacites, with strongly porphyritic textures indicating their derivation from magmas that ascended slowly and stagnated at shallow depths. In contrast, the PM pyroclastic eruptives show petrographic features (presence of phenocrystic and groundmass hornblende, and the coexistence of olivine and augite without plagioclase during crystallisation of phenocrysts and microphenocrysts) which suggest that their crystallisation occurred at depth. Depths exceeding 8 km are indicated for the dacitic magmas, and >20 km for the andesitic and basaltic andesitic magmas. Other petrographic features (aphyric nature, lack of reaction rims around hornblende, and the common occurrence of skeletal microphenocrystic to groundmass olivine in the andesites and basaltic andesites) suggest the PM magmas ascended rapidly immediately prior to their eruption, without any significant stagnation at shallow depths in the crust. The PM eruptives show three distinct linear trends in many oxide–oxide diagrams, suggesting geochemical division of the six episodes into three chronologically-sequential groups, early, middle and late. Disequilibrium features on a variety of scales (banded pumice, heterogeneous glassy matrix and presence of reversely zoned phenocrysts) suggest that each group contains the mixing products of two end-member magmas. Both of these end-member magmas are clearly different in each of the three groups, showing that the PM magma system was completely renewed at least three times during the eruption sequence. Minor compositional diversity within the eruptives of each group also allows the PM magmas to be distinguished in terms of their source vents. Because petrography suggests that the PM magmas did not stagnate at shallow levels during their ascent, the minor diversity in magmas from different vents indicates that magmas ascended from depth through separate conduits/dikes to erupt at different vents either simultaneously or sequentially. These unique modes of magma transport and eruption support the inferred simultaneous or sequential tapping of small separate magma bodies by regional rifting in the southern Taupo Volcanic Zone during the PM eruption sequence (see companion paper).  相似文献   

4.
Shirouma-Oike volcano, a Quaternary composite volcano in central Japan, consists mostly of calc-alkaline andesitic lavas and pyroclastic rocks. Products of the earlier stage of the volcano (older group) are augite-hypersthene andesite. Hornblende crystallized during the later stage of this older group, whereas biotite and quartz crystallized in the younger group.Assemblages of phenocrysts in disequilibrium, such as magnesian olivine(Fo30)/quartz, iron-rich hypersthene(En55)/iron-poor augite(Wo43.5, En42.5, Fs14.0), and two different types of zoning on the rim of clinopyroxene are found in a number of rocks. Detailed microprobe analyses of coexisting minerals reveal that phenocrysts belong to two distinctly different groups; one group includes magnesian olivine + augite which crystallized from a relatively high-temperature (above 1000°C) basaltic magma; the second group, which crystallized from relatively low temperature (about 800°C) dacitic to andesitic magma, includes hypersthene + hornblende + biotite + quartz + plagioclase + titanomagnetite ± ilmenite (in the younger group) and hypersthene + augite + plagioclase + titanomagnetite ± hornblende (in the older group). The temperature difference between the two magmas is clarified by Mg/Fe partition between clinopyroxene and olivine, and Fe-Ti oxides geothermometer. The compositional zoning of minerals, such as normal zoning of olivine and magnesian clinopyroxene, and reverse zoning of orthopyroxene, indicate that the basaltic and dacitic-andesitic magmas were probably mixed in a magma reservoir immediately before eruption. It is suggested that the basaltic magma was supplied intermittently from a deeper part to the shallower magma reservoir, in in which dacitic-andesitic magma had been fractionating.  相似文献   

5.
Nisyros island is a calc-alkaline volcano, built up during the last 100 ka. The first cycle of its subaerial history includes the cone-building activity with three phases, each characterized by a similar sequence: (1) effusive and explosive activity fed by basaltic andesitic and andesitic magmas; and (2) effusive andextrusive activity fed by dacitic and rhyolitic magmas. The second eruptive cycle includes the caldera-forming explosive activity with two phases, each consisting of the sequence: (1) rhyolitic phreatomagmatic eruptions triggering a central caldera collapse; and (2) extrusion of dacitic-rhyolitic domes and lava flows. The rocks of this cycle are characteized by the presence of mafic enclaves with different petrographic and chemical features which testify to mixing-mingling processes between variously evolved magmas. Jumps in the degree of evolution are present in the stratigraphic series, accompanied by changes in the porphyritic index. This index ranges from 60% to about 5% and correlates with several teochemical parameters, including a negative correlation with Sr isotope ratios (0.703384–0.705120). The latter increase from basaltic andesites to intermediate rocks, but then slightly decrease in the most evolved volcanic rocks. The petrographic, geochemical and isotopic characteristics can be largely explained by processes occurring in a convecting, crystallizing and assimilating magma chamber, where crystal sorting, retention, resorption and accumulation take place. A group of crystal-rich basaltic andesites with high Sr and compatible element contents and low incompatible elements and Sr isotope ratios probably resulted from the accumulation of plagioclase and pyroxene in an andesitic liquid. Re-entrainment of plagioclase crystals in the crystallizing magma may have been responsible for the lower 87Sr/86Sr in the most evolved rocks. The gaps in the degree of evolution with time are interpreted as due to liquid segregation from a crystal mush once critical crystallinity was reached. At that stage convection halted, and a less dense, less porphyritic, more evolved magma separated from a denser crystal-rich magma portion. The differences in incompatible element enrichment of pre-and post-caldera dacites and the chemical variation in the post-caldera dome sequence are the result of hybridization of post-caldera dome magmas with more mafic magmas, as represented by the enclave compositions. The occurrence of the quenched, more mafic magmas in the two post-caldera units suggests that renewed intrusion of mafic magma took place after each collapse event.  相似文献   

6.
The complexity of igneous processes in the Aleutian calc-alkaline magma series can be inferred from study of xenolithic fragments. Composite xenoliths and cognate inclusions provide direct evidence for magma—magma and wall-rock—magma mixing processes. Using distributions of Cr in clinopyroxene, compositional endmembers involved in mixing are identified within the xenoliths. The basaltic mixing endmember is more mafic than calc-alkaline lavas in the arc. Magma mixing and wall-rock assimilation within calc-alkaline basaltic to andesitic magmas is identified in phenocrystic assemblages as well as in xenoliths, and appears to be a widespread phenomenon in Aleutian calc-alkaline magmas.  相似文献   

7.
Cinder cones at Crater Lake are composed of high-alumina basaltic to andesitic scoria and lavas. The Williams Crater Complex, a basaltic cinder cone with andesitic to dacitic lava flows, stands on the western edge of the caldera, against an andesite flow from Mount Mazama. Bombs erupted from Williams Crater contain cores of banded andesite and dacite, similar to those erupted during the climatic eruption of Mount Mazama.Major- and trace-element variations exhibit an increase in incompatible elements and a decrease in compatible elements, consistent with crystal fractionation of olivine, plagioclase, clinopyroxene, orthopyroxene, and magnetite. LREE patterns in the rocks are irregular; each successive basalt is enriched in LREE relative to the preceding andesite.Compositional variations in the magmas of the cinder cones suggest that three magmatic processes were involved, partial melting, fractional crystallization, and magma mixing. Partial melting of more than one source produced primary basaltic magma(s). Subsequent mixing and fractional crystallization produced the more differentiated basaltic to andesitic magmas.  相似文献   

8.
Magma plumbing system of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:0,他引:1  
During the 2000 eruption at Miyakejima Volcano, two magmas with different compositions erupted successively from different craters. Magma erupted as spatter from the submarine craters on 27 June is aphyric basaltic andesite (<5 vol% phenocrysts, 51.4–52.2 wt% SiO2), whereas magma issued as volcanic bombs from the summit caldera on 18 August is plagioclase-phyric basalt (20 vol% phenocrysts, 50.8–51.3 wt% SiO2). The submarine spatter contains two types of crystal-clots, A-type and A-type (andesitic type). The phenocryst assemblages (plagioclase, pyroxenes and magnetite) and compositions of clinopyroxene in these clots are nearly the same, but only A-type clots contain Ca-poor plagioclase (An < 70). We consider that the A-type clots could have crystallized from a more differentiated andesitic magma than the A-type clots, because FeO*/MgO is not strongly influenced during shallow andesitic differentiation. The summit bombs contain only B-type (basaltic type) crystal-clots of Ca-rich plagioclase, olivine and clinopyroxene. The A-type and B-type clots have often coexisted in Miyakejima lavas of the period 1469–1983, suggesting that the magma storage system consists of independent batches of andesitic and basaltic magmas. According to the temporal variations of mineral compositions in crystal-clots, the andesitic magma became less evolved, and the basaltic magma more evolved, over the past 500 years. We conclude that gradually differentiating basaltic magma has been repeatedly injected into the shallower andesitic magma over this period, causing the andesitic magma to become less evolved with time. The mineral chemistries in crystal-clots of the submarine spatter and 18 August summit bombs of the 2000 eruption fall on the evolution trends of the A-type and B-type clots respectively, suggesting that the shallow andesitic and deeper basaltic magmas existing since 1469 had successively erupted from different craters. The 2000 summit collapse occurred due to drainage of the andesitic magma from the shallower chamber; as the collapse occurred, it may have caused disruption of crustal cumulates which then contaminated the ascending, deeper basalt. Thus, porphyritic basaltic magma could erupt alone without mixing with the andesitic magma from the summit caldera. The historical magma plumbing system of Miyakejima was probably destroyed during the 2000 eruption, and a new one may now form.Editorial responsibility: S Nakada, T Druitt  相似文献   

9.
The origin of Arenal basaltic andesite can be explained in terms of fractional crystallization of a parental high-alumina basalt (HAB), which assimilates crustal rocks during its storage, ascent and evolution. Contamination of this melt by Tertiary calc-alkalic intrusives (quartz–diorite and granite, with 87Sr/86Sr ratios ranging 0.70381–0.70397, nearly identical with those of the Arenal lavas) occurs at upper crustal levels, following the interaction of ascending basaltic magma masses with gabbroic–anorthositic layers. Fragments of these layers are found as inclusions within Arenal lavas and tephra and may show reaction rims (1–5 mm thick, consisting of augite, hypersthene, bytownitic–anorthitic plagioclase, and granular titanomagnetite) at the gabbro–lava interface. These reaction rims indicate that complete `assimilation' was prevented since the temperature of the host basaltic magma was not high enough to melt the gabbroic materials (whose mineral phases are nearly identical to the early formed liquidus phases in the differentiating HAB). Olivine gabbros crystallized at pressure of about 5–6 kbar and equilibrated with the parental HAB at pressures of 3–6 kbar (both under anhydrous and hydrous conditions), and temperatures ranging 1000–1100°C. In particular, `deeper' interactions between the mafic inclusions and the hydrous basaltic melt (i.e., with about 3.5 wt.% H2O) are likely to occur at 5.4 (±0.4) kbar and temperatures approaching 1100°C. The olivine gabbros are thus interpreted as cumulates which represent crystallized portions of earlier Arenal-type basalts. Some of the gabbros have been `mildly' tectonized and recrystallized to give mafic granulites that may exhibit a distinct foliation. Below Arenal volcano a zoned magma chamber evolved prior the last eruptive cycle: three distinct andesitic magma layers were produced by simple AFC of a high-alumina basalt (HAB) with assimilation of Tertiary quartz–dioritic and granitic rocks. Early erupted 1968 tephra and 1969 lavas (which represent the first two layers of the upper part of a zoned magma chamber) were produced by simple AFC, with fractionation of plagioclase, pyroxene and magnetite and concomitant assimilation of quartz–dioritic rocks. Assimilation rates were constant (r1=0.33) for a relative mass of magma remaining of 0.77–0.80, respectively. Lavas erupted around 1974 are less differentiated and represent the `primitive andesitic magma type' residing within the middle–lower part of the chamber. These lavas were also produced by simple AFC: assimilation rates and the relative mass of magma remaining increased of about 10%, respectively (r1=0.36, and F=0.89). Ba enrichment of the above lavas is related to selective assimilation of Ba from Tertiary granitic rocks. Lava eruption occurred as a dynamic response to the intrusion of a new magma into the old reservoir. This process caused the instability of the zoned magma column inducing syneruptive mixing between portions of two contiguous magma layers (both within the column itself and at lower levels where the new basalt was intruded into the reservoir). Syneruptive mixing (mingling) within the middle–upper part of the chamber involved fractions of earlier gabbroic cumulitic materials (lavas erupted around 1970). On the contrary, within the lower part of the chamber, mixing between the intruded HAB and the residing andesitic melt was followed by simple fractional crystallization (FC) of the hybrid magma layer (lavas erupted in 1978–1980). By that time the original magma chamber was completely evacuated. Lavas erupted in 1982/1984 were thus modelled by means of `open system' AFCRE (i.e., AFC with continuous recharge of a fractionating magma batch during eruption): in this case assimilation rates were r1=0.33 and F=0.86. Recharge rates are slightly higher than extrusion rates and may reflect differences in density (between extruded and injected magmas), together with dynamic fluctuations of these parameters during eruption. Ba and LREE (La, Ce) enrichments of these lavas can be related to selective assimilation of Tertiary granitic and quartz–dioritic rocks. Calculated contents for Zr, Y and other REE are in acceptable agreement with the observed values. It is concluded that simple AFC occurs between two distinct eruption cycles and is typical of a period of repose or mild and decreasing volcanic activity. On the contrary, magma mixing, eventually followed by fractional crystallization (FC) of the hybrid magma layer, occurs during an ongoing eruption. Open-system AFCRE is only operative when the original magma chamber has been totally replenished by the new basaltic magma, and seems a prelude to the progressive ceasing of a major eruptive cycle.  相似文献   

10.
The extinct Pleistocene volcano Muriah, situated behind the main Pleistocene—Recent Sunda magmatic arc in north-central Java, has erupted at least two contrasted groups of lavas. One group forms a well-defined compositional series (Anhydrous Series) from leucite basanite to tephritic phonolite, with olivine and tschermakitic clinopyroxene the main phenocrysts. The other group, the “Hydrous Series”, includes compositionally variable tephrites and high-K andesites with common plagioclase, biotite and amphibole. Lavas of the Anhydrous Series are much richer in LIL trace elements than the most potassic lavas of neighbouring active volcanoes, but relative HFS element enrichment is less pronounced. REE patterns have almost constant slopes from La (250–600 times chondrites) to Yb (5–10 times chondrites), while those of lavas of active centres are less light-enriched, and show flattening in the heavy REE. Anhydrous Series initial 87Sr/86Sr ratios (0.7043–0.7046) are lower than those of active centres (0.7047–0.7053). Hydrous Series lavas are intermediate in all these geochemical characteristics.The most mafic A-series leucite basanite, with Mg/(Mg + Fe2+) 0.69, 140 ppm Ni and 620 ppm Cr was probably derived from the primary magma for the series by fractionation of only 5 wt.% olivine. Its REE pattern suggests derivation from a garnet-bearing source. Experiments on this basanite, with up to 10% olivine and 20% orthopyroxene added, and in the presence of H2O and H2O/CO2 mixtures, have shown that for all but very high magma water contents, the olivine and garnet liquidus fields are widely separated by fields of phlogopite and clinopyroxene. There is no liquidus field of orthopyroxene. Hence, if magma production involved an equilibrium melting process alone, the most probable sources are of garnet-bearing phlogopite clinopyroxenite type. Alternatively, this magma may represent the end-product of interaction between a low-K basanite magma from a garnet lherzolite source in the asthenosphere and a phlogopite-bearing lherzolite zone in the lower lithosphere. Its production was probably related to crustal doming and extension superimposed on the dominant subduction regime. Hydrous Series magmas may have resulted from mixing between Anhydrous Series magmas and high-K calc-alkaline basaltic to andesitic magmas more directly related to subduction processes.  相似文献   

11.
 The Cerro Chascon-Runtu Jarita Complex is a group of ten Late Pleistocene (∼85 ka) lava domes located in the Andean Central Volcanic Zone of Bolivia. These domes display considerable macroscopic and microscopic evidence of magma mixing. Two groups of domes are defined chemically and geographically. A northern group, the Chascon, consists of four lava bodies of dominantly rhyodacite composition. These bodies contain 43–48% phenocrysts of plagioclase, quartz, sanidine, biotite, and amphibole in a microlite-poor, rhyolitic glass. Rare mafic enclaves and selvages are present. Mineral equilibria yield temperatures from 640 to 750  °C and log ƒO2 of –16. Geochemical data indicate that the pre-eruption magma chamber was zoned from a dominant volume of 68% to minor amounts of 76% SiO2. This zonation is best explained by fractional crystallization and some mixing between rhyodacite and more evolved compositions. The mafic enclaves represent magma that intruded but did not chemically interact much with the evolved magmas. A southern group, the Runtu Jarita, is a linear chain of six small domes (<1 km3 total volume) that probably is the surface expression of a dike. The five most northerly domes are composites of dacitic and rhyolitic compositions. The southernmost dome is dominantly rhyolite with rare mafic enclaves. The composite domes have lower flanks of porphyritic dacite with ∼35 vol.% phenocrysts of plagioclase, orthopyroxene, and hornblende in a microlite-rich, rhyodacitic glass. Sieve-textured plagioclase, mixed populations of disequilibrium plagioclase compositions, xenocrystic quartz, and sanidine with ternary composition reaction rims indicate that the dacite is a hybrid. The central cores of the composite domes are rhyolitic and contain up to 48 vol.% phenocrysts of plagioclase, quartz, sanidine, biotite, and amphibole. This is separated from the dacitic flanks by a banded zone of mingled lava. Macroscopic, microscopic, and petrologic evidence suggest scavenging of phenocrysts from the silicic lava. Mineral equilibria yield temperatures of 625–727  °C and log ƒO2 of –16 for the rhyolite and 926–1000  °C and log ƒO2 of –9.5 for the dacite. The rhyolite is zoned from 73 to 76% SiO2, and fractionation within the rhyolite composition produced this variation. Most of the 63–73% SiO2 compositional range of the lava in this group is the result of mixing between the hybrid dacite and the rhyolite. Eruption of both groups of lavas apparently was triggered by mafic recharge. A paucity of explosive activity suggests that volatile and thermal exchanges between reservoir and recharge magmas were less important than volume increase and the lubricating effects of recharge by mafic magmas. For the Runtu Jarita group, the eruption is best explained by intrusion of a dike of dacite into a chamber of crystal-rich rhyolite close to its solidus. The rhyolite was encapsulated and transported to the surface by the less-viscous dacite magma, which also acted as a lubricant. Simultaneous effusion of the lavas produced the composite domes, and their zonation reflects the subsurface zonation. The role of recharge by hotter, more fluid mafic magma appears to be critical to the eruption of some highly viscous silicic magmas. Received: 23 August 1998 / Accepted: 10 March 1999  相似文献   

12.
Irregularly shaped, large and clear (LAC) glass inclusions are present in plagioclase phenocrysts in several andesitic lavas erupted from Tolimán volcano, Guatemala. Their morphology is different from densely spaced, fine-grained glass inclusions that form concentric zones in dusty or cellular textured plagioclase phenocrysts. The large size of LAC inclusions make them suitable for microprobe analysis and average bulk compositions are presented for glasses in 30 phenocrysts from eight lava samples. Their compositions are rhyolitic and in disequilibrium, or out-range (Anderson 1976) with respect to whole-rock and groundmass glass compositions. LAC inclusions typically occur in large, tabular plagioclase phenocrysts with relatively uniform, sodic compositions (An 40–54). Compositions of feldspar phenocrysts not containing LAC inclusions range from An 41 to An 81. Petrographic and chemical data support a primary origin for LAC glasses, suggest mixing of mafic and silicic magmas, and also constrain a mechanism for magma mixing. Rapid growth of plagioclase and entrapment of LAC glass occurs during mixing in a vapor-rich silicic liquid under low degrees of undercooling. These conditions are possibly produced in a high-level magma body such as that envisioned by Huppert et al. (1982), where replenishment and subsequent crystallization of a hydrous magma induces density instability and mixing with the resident magma.  相似文献   

13.
The Nevado Sabancaya in southern Peru has exhibited a persistent eruptive activity over eight years following a violent eruption in May–June 1990. The explosive activity consisted of alternated vulcanian and phreatomagmatic events, followed by declining phreatic activity since late 1997. The mean production rate of magma has remained low (106–107 m3 per year).The 1990–1998 eruptive episode produced andesitic and dacitic magmas. The juvenile tephra span a narrow range of compositions (60–64 wt% SiO2). While SiO2 contents do vary slightly, they do not show any systematic variation with time. Phenocryst assemblages in the juvenile rocks consist of mainly plagioclase, associated with high-Ca pyroxene, hornblende, biotite, and iron-titanium oxides. Rare fine-grained magmatic enclaves, with angular to subrounded shapes, are contained within some of the juvenile lava blocks, which were expelled since 1992. They have a homogeneous andesitic composition (57 wt% SiO2) and show randomly oriented interlocking columnar or acicular crystals (plagioclase and amphibole), with interstitial glass and a few voids, which define a quench-textured groundmass.Textural, mineralogical and chemical evidence suggests that the 1990–1998 eruptions have mainly erupted hybrid andesites, except for the 1990 dacite. The hybrid andesites contain a mixed population of plagioclase phenocrysts: Ca-rich clear plagioclase (An40–60), Na-rich clear plagioclase (An25–35), and inversely zoned dusty-rimmed plagioclase with a sodic core (An25–40) surrounded by a Ca-rich mantle (An45–65). Melt-inclusions, wavy dissolution surfaces and stepped zoning within the dusty-rimmed plagioclases are compatible with resorption induced by magma recharge events. Chemical and isotopic lines of evidence also show that andesites are hybrids resulting from magma mixing processes. Repeated magma recharge, incomplete homogenisation and different degrees of crustal assimilation may explain the extended range of isotopic signatures.Our study leads to propose an evolution model for the magmatic system at Nevado Sabancaya. The main magma body consisted of dacitic magmas differentiating through extensive open-system crystallization (AFC). Repeated recharge of more mafic magmas induced magma mixing, leading to the formation of hybrid andesites. A partially crystalline boundary layer formed at the interface between the andesites and the recharge magma. The magmatic enclaves were produced by the disruption and dispersion of this andesitic layer as a result of new magma injection and/or sustained tectonic activity.Periodic magma recharge and interactions with groundwater are two processes that have enabled the explosive regime to remain persistent over an 8-year-long period. What precise mechanism triggers the eruptive activity remains speculative, but it may be related either to new magma injection, or to the sustained tectonic activity that occurred at that time in the vicinity of the volcano, or a combination of both.  相似文献   

14.
Some recent calc-alkaline andesites and dacites from southern and central Martinique contain basic xenoliths belonging to two main petrographic types:
  • The most frequent one has a hyalodoleritic texture (« H type ») with hornblende + plagioclase + Fe-Ti oxides, set in an abundant glassy and vacuolar groundmass.
  • The other one exhibits a typical porphyritic basaltic texture (« B type ») and mineralogy (olivine + plagioclase + orthopyroxene + clinopyroxene + Fe-Ti oxides and scarce, or absent hornblende).
  • Gradual textural and mineralogical transitions occur between these two types (« I type ») with the progressive development of hornblende at the expense of olivine and pyroxenes. Mineralogical and chemical studies show no primary compositional correlations between the basaltic xenoliths and their host lavas, thus demonstrating that the former are not cognate inclusions; they are remnants of basaltic liquids intruded into andesitic to dacitic magma chambers. This interpretation is strengthened by the typical calc-alkaline basaltic composition of the xenoliths, whatever their petrographic type (« H », « I » or « B »). The intrusion of partly liquid, hot basaltic magma into colder water-saturated andesitic to dacitic bodies leads to drastic changes in physical conditions. The two components; the basaltic xenoliths are quenched and homogeneized with their host lavas with respect to To;fO2 andpH2O conditions. « H type » xenoliths represent original mostly liquid basalts in which such physical changes lead to the formation of hornblende and the development of a vacuolar and hyalodoleritic texture. The temperature increase of the acid magma depends on the amount of the intruding basalt and on the thermal contrast between the two components. The textural diversity which characterizes the xenoliths reflects the cooling rate of the basaltic fragments and/or their position relative to the basaltic bodies (chilled margins or inner, more crystallized, portions). In addition to physical equilibration (T, fO2) between the magmas, mixing involves:
  • mechanical transfer of phenocrysts from one component to another, in both directions;
  • volatile transfer to the basaltic xenoliths, with chemical exchanges.
  • It is here demonstrated that a short period of time (some ten hours to a few days) separates the mixing event from the eruption, outlining the importance of magma mixing in the triggering of eruption. The common occurrence of basaltic xenoliths (generally of « H » type) in calc-alkaline lavas is emphasized, showing that this mechanism is of first importance in calc-alkaline magma petrogenesis.  相似文献   

    15.
    The Mt Somers Volcanics are part of a suite of mid-Cretaceous (89 ± 2 Ma) intermediate to silicic volcanics, erupted onto an eroded surface of Torlesse sediments. Rock types vary from basaltic andesite to high-silica rhyolite. Andesites are medium- to high-K with phenocrysts of plagioclase, orthopyroxene and pigeonite. Dacites are peraluminous and commonly contain granulite facies xenoliths and garnet xenocrysts. Equilibrium mineral assemblages indicate metamorphic pressures of close to 6 kbar at 800°C. Rhyolites are peraluminous with phenocrysts of quartz, sanidine, plagioclase, biotite, garnet and orthopyroxene. The ferromagnesian phases show textural evidence of magmatic crystallization and are chemically distinct from xenocryst phases in dacites. Equilibrium assemblages indicate that early magmatic crystallization occurred at close to 7 kbar (20 km depth) at above 850°C, with melt-water contents of less than 3.5%. Major-element contents, trace-element contents and an initial 87Sr/86Sr ratio of 0.7085 indicate that the rhyolites formed by partial melting of dominantly quartzo-feldspathic Torlesse sediments, leaving a granulite-facies residue. The chemical variation displayed by the rhyolites is best explained by fractional crystallization of the observed high-pressure phenocryst assemblage. Most elements show a compositional gap between rhyolite and dacite. The major-element, trace-element and Sr isotope compositions of the intermediate lavas are best explained by assimilation of lower crustal material combined with fractional crystallization in mantle-derived tholeiitic magmas. Magmatism was the result of heat and magma flux from the mantle, during the change from compressive to extensional tectonics after the culmination of the Rangitata Orogeny.  相似文献   

    16.
    Physical and chemical analyses of distal tephra from the 1912 eruption of Novarupta, Alaska, show considerable variations in glass and mineral compositions. A combination of a 150°C range in temperature deduced from iron-titanium oxide geothermometry, and curved patterns in bivariant element plots of glass compositions indicate that a chamber of compositionally zoned magma existed prior to the eruption. Magma-mixing cannot explain these features. The magma chamber may have resembled the model recently proposed by McBirney (1980). A highly silicic, quartz-phyric magma with mean phenocryst compositions of An25 plagioclase, Fs42 orthopyroxene, at a temperature of 880°C and a water pressure of 1.4 kbar, was located above a more mafic, hotter magma, bearing phenocrysts of An45 plagioclase and Fs35, orthopyroxene.Our results on distal tephras compare favorably with those from a recently completed study at source by Hildreth (1983), suggesting that useful petrologic information about distant volcanoes can be obtained from both types of deposits. Compositionally heterogeneous abyssal tephra layers are common in the Gulf of Alaska. Eruptions from chambers of zoned magma may account for many of these layers.  相似文献   

    17.
    Products of contrasting mingled magmas are widespread in volcanoes and intrusions. Subvolcanic trachyte intrusions hosting mafic enclaves crop out in the Manori–Gorai area of Mumbai in the Deccan Traps. The petrogenetic processes that produced these rocks are investigated here with field data, petrography, mineral chemistry, and whole rock major, trace, and Pb isotope chemistry. Local hybridization has occurred and has produced intermediate rocks such as a trachyandesitic dyke. Feldspar crystals have complex textures and an unusually wide range in chemical composition. Crystals from the trachytes cover the alkali feldspar compositional range and include plagioclase crystals with anorthite contents up to An47. Crystals from the mafic enclaves are dominated by plagioclase An72–90, but contain inclusions of orthoclase and other feldspars covering the entire compositional range sampled in the trachytes. Feldspars from the hybridized trachyandesitic dyke yield mineral compositions of An80–86, An47–54, Ab94–99, Or45–60, and Or96–98, all sampled within individual phenocrysts. We show that these compositional features are consistent with partial melting of granitoid rocks by influx of mafic magmas, followed by magma mixing and hybridization of the partial melts with the mafic melts, which broadly explains the observed bulk rock major and trace element variations. However, heterogeneities in Pb isotopic compositions of trachytes are observed on the scale of individual outcrops, likely reflecting initial variations in the isotopic compositions of the involved source rocks. The combined data point to one or more shallow-level trachytic magma chambers disturbed by multiple injections of trachytic, porphyritic alkali basaltic, and variably hybridized magmas.  相似文献   

    18.
    Twenty-three volcanic rocks from the Setouchi volcanic belt, southwest Japan, were analyzed for Nd and Sr isotopic compositions for the purpose of examining the genetic relationships among the basalt, high-magnesium andesite (HMA) and evolved porphyritic andesite. The andesites have higher87Sr/86Sr (0.70487–0.70537) and lower143Nd/144Nd (0.512509–0.512731) than the basalts, i.e., 0.70408–0.70468 and 0.512691–0.512830, respectively. This result confirms earlier conclusions obtained from petrologic study that the andesites cannot be fractionation products of basaltic magma but that the andesitic and basaltic magmas were generated independently. On the basis of melting experiments for HMA and basalt, it is inferred that there is an isotopically stratified mantle beneath southwest Japan. Evolved porphyritic andesites have essentially identical Sr and Nd isotopic ratios to HMA and can be derived by fractionation of primary andesitic magma. A model to produce orogenic andesite is proposed on petrologic, experimental and isotopic bases.  相似文献   

    19.
    Glass separates from 115 ash layers derived from the Kamchatkan (DSDP Site 192; 34 layers), the eastern Aleutian (DSDP Site 183; 56 layers) and the Alaska Peninsula (DSDP Site 178; 25 layers) volcanic arcs have been analyzed for up to 28 elements. In addition, the abundance and diversity of associated mafic phenocrysts have been evaluated. The resulting data set has made possible an evaluation of the late Miocene to Recent changes in composition of ashes derived from North Pacific volcanic arcs and of the factors controlling the evolution of highly siliceous magmas.We find no evidence for a general transition from arc tholeiite to calc-alkalic magma parentage of ashes derived from the volcanic arcs during the last 10 m.y., but instead find 0.1- to 0.5-m.y. intervals during which particular types of volcanism are prevalent. Most convincing is the transition from arc tholeiite to calc-alkalic for ashes derived from Kamchatka during the last 0.8 m.y., a change believed to be associated with a landward shift in the site of magma generation. Considered together, ashes derived from North Pacific volcanic arcs have been becoming more siliceous during the last 1.5 m.y. and may be associated with accelerated subduction during the same time interval.Hydrous phenocrysts (e.g., biotite) are typically associated with low-silica deep-sea ashes, but not with terrestrial volcanic rocks of comparable silica contents, suggesting the important role of water in the evolution of siliceous magma. REE patterns and relative abundances of mafic phenocrysts demonstrate the importance of fractional crystallization in controlling the evolution of highly siliceous arc magmas. REE increase with increasing silica, but become less concentrated in ashes with SiO2 > 64%. Eu anomalies increase throughout the SiO2 range. Initial fractionation is dominated by clinopyroxene and plagioclase with amphibole strongly influencing fractionation above 64% SiO2.  相似文献   

    20.
    The Rauðafell composite complex is part of the Neogene Breiðdalur volcano, eastern Iceland and is composed of a composite feeder dyke, a vent structure and a composite flow. The two end-members of the composite complex are rhyolite and basalt, and both are rich in plagioclase macrocrysts: bytownite in basalt and oligoclase in rhyolite. The rhyolite also includes ferroaugite macrocrysts. The mixed rocks are separated in three textural groups related to mixing proportions. When the basaltic end-member is dominant, a hybrid texture with a homogeneous matrix is observed and the only evidence of mixing is the presence of antecrysts of both end-members. When the basaltic end-member represents c. 65 to 30 % of the mixture, we observe emulsion textures composed of finely co-mingled basalt and rhyolite. The difference between these two textural expressions of mixing is due to effects of diffusion. The third texture shows mafic enclaves suspended in a rhyolitic matrix. In these rocks, the proportion of the basaltic end-member is inferior to 30 %, implying that the basalt froze solid in contact with the rhyolite. Zoning of plagioclase shows that the mixing processes are driven initially by highly efficient micro-mingling; the emulsification is possibly a result of compositional gradient stresses (Korteweg stress) between miscible basalt and rhyolite. This is followed by chemical diffusion (hybridisation) and tend to protect antecrysts from reaction with the primitive magmas. When antecrysts originated in the evolved magma, they undergo dissolution due to thermal disequilibrium during mingling and chemical disequilibrium during hybridisation. We argue that such mixing processes are important in producing intermediate rocks in Iceland and elsewhere that shows only the chemical attributes of an origin by mixing. The preservation of emulsion textures is rare and highly dependent on cooling history.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号