首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
REE abundances in minerals from spinel peridotite xenoliths from West Germany, the south-western U.S. and Mongolia decrease in the order clinopyroxene > orthopyroxene > olivine > spinel. While clinopyroxenes are similar in absolute chondrite-normalized concentrations to those known from other studies, orthopyroxenes and olivines are significantly lower in LREE although comparable in HREE. Spinels are much lower in all REE than any previously reported values and are completely negligible for the REE budget of peridotites.Partition coefficients for most orthopyroxene/clinopyroxene pairs increase systematically from La to Lu. Olivine/clinopyroxene and spinel/clinopyroxene partition coefficients increase from the intermediate rare earth elements to Lu and normally are higher for La compared to Sm.The application of Nagasawa's (1966) elastic lattice model suggests that all heavy but only minor amounts of the light REE substitute into structural positions of orthopyroxene and olivine.Significant differences between orthopyroxene/clinopyroxene partition coefficients for various xenoliths may be assigned to dependences upon equilibration temperature and bulk chemistry.Apart from grain surface contaminations, fluid inclusions which are practically always present in mantle minerals, can highly concentrate light rare earth elements and thus may be responsible for unexpectedly high concentrations of incompatible elements frequently reported for mantle olivines or orthopyroxenes.  相似文献   

2.
A spinel ± amphibole ± feldspar bearing Iherzolites, a spinel ± amphibole ± feldspar bearing harzburgites, and a spinel ± amphibole ± phlogopite bearing wehrlites are metasomatized peridotitic mantle xenoliths from Ain Temouchent volcanic complex (North-West Algeria). These xenoliths are metamorphic/deformed rocks with a strong planar fabric typical of mantle tectonites. The wehrlites are not the result of a simple model of partial melting. The spinel ± amphibole ± feldspar bearing harzburgites and lherzolites exhibit asymmetric concave-shaped REE patterns. These indicate that an earlier partial melting event was followed by metasomatic processes. The wehrlites have higher REE concentrations and LREE/HREE fractionations, indicating a sequential evolution of wehrlites from previous refractory material with melting as an addition process. This process reflects the interaction of the lithospheric mantle beneath the Ain Temouchent area with basaltic melt. Metasomatism is expressed by the formation of amphibole, phlogopite, and increased abundances of clinopyroxene at the expense of orthopyroxene, in lherzolite and harzburgite. In the Ain Temouchent area, metasomatizing agents are Na-alkali silicates. The similarities observed between the glasses studied in this paper, and the basaltic host rocks of the Ain Temouchent area, may suggest a common mantle source, or with chemical similarities but with relatively different evolutions pathways. The formation of glass in wehrlites from the Ain Temouchent area has an origin formed by the breakdown of amphibole or phlogopite as a result of decompressional melting and production of silica-undersaturated glasses. The glass reacts with essentially orthopyroxene to produce silica-rich glasses. This study has contributed to highlighting a relationship between glass, and the processes that caused the formation of metasomatic phases.  相似文献   

3.
The partitioning of divalent (Co, Ni) and trivalent (Sc, Cr) trace elements between olivine, ortho- and clinopyroxene and spinel from spinel peridotite xenoliths has been investigated. These peridotites cover a wide range in modal composition from dunite to primitive lherzolites and have equilibrated in the upper mantle between >900° C and <1,200° C.The distribution of Co and Ni shows only minor variation through the whole sequence. In contrast, Sc partitioning between ortho- and clinopyroxene and olivine and clinopyroxene as well as Cr partitioning between olivine and clinopyroxene or olivine and orthopyroxene display high but systematic variations which can be assigned to dependences upon equilibration temperatues. Empirical temperature calibrations are given for Sc-orthopyroxene/clinopyroxene, Sc-olivine/clinopyroxene and Cr-olivine/clinopyroxene which, in principle, may permit to estimate equilibration temperatures not only for lherzolites or harzburgites but for orthopyroxene-free peridotites, too.Sc and Ni partition coefficients between spinel and mantle silicate minerals are primarily dependent upon the major element composition of spinel (e.g. Cr and Al) although a temperature dependence can still be identified. Probably such compositional effects are not observed for trace element partitioning between pyroxenes and olivine or ortho- and clinopyroxene only for the reason that in normal spinel peridotites these minerals show much less variation in major element composition than their coexisting spinels.  相似文献   

4.
Mantle xenoliths from the Olot volcanic district (NE Spain) comprise a bi-modal suite consisting of protogranular spinel lherzolites (cpx 12–14%) sometimes with pargasitic amphibole, and highly refractory spinel harzburgites (cpx ≤ 1%) with coarse-grained granular textures. The lherzolites range from slightly depleted to moderately LREE-enriched with flat HREE patterns between 1.5 and 2.7 × chondrite (Ch). In contrast, the harzburgites are extremely depleted in HREE (down to 0.2 × Ch) and strongly LREE-enriched (LaN/YbN = 12.3–17.2). LA-ICP-MS analyses of clinopyroxene and amphibole of the lherzolites highlight variable degrees of LREE depletion (HREE up to 13 × Ch, LaN/YbN down to 0.01), with the exception of a single sample in which both clinopyroxene and amphibole are LREE-enriched (LaN/YbN up to 19). In the harzburgites, clinopyroxenes display totally different REE distributions, characterized by extreme HREE depletion (down to 0.4 × Ch) and upward convex positively fractionated middle-light REE patterns (NdN/YbN up to 20.7 × Ch; LaN/YbN up to 12 × Ch). Sr–Nd–Hf isotopic data for both whole-rocks and cpx separates, coherently indicate depleted mantle (DM) compositions for the lherzolites (εSr = − 15 to − 26, εNd = + 9 to + 17, εHf = + 18 to + 68) and enriched mantle (EM) compositions for the harzburgites (εSr = − 10 to + 36, εNd = − 1 to − 6, εHf = + 3 to + 8). Modelling of the clinopyroxene REE data and isotopic systematics suggest that some lherzolites were affected by pre-Paleozoic (0.6–1 By) low-degree partial melting processes, while others probably reflect some extent of refertilization of the mantle protolith by metasomatizing melts similar to the Triassic rift-related tholeiites reported from several Pyrenean localities. The harzburgites represent extreme refractory residua, resulting from a complex depletion history due to multistage melt extraction as often observed in the cratonic mantle. The distinctive REE patterns and isotopic systematics of their clinopyroxenes suggest that the harzburgites were formed by the interaction of an ultra-depleted peridotite matrix with highly alkaline basic melts similar in composition to the Permo-Triassic alkaline lamprophyres which are widespread within the Iberian plate. Lherzolites possibly represent younger lithosphere (accreted asthenosphere?) up-lifted and juxtaposed to the older subcontinental lithospheric mantle (harzburgites) during the post-Variscan rifting of the Iberian margin. These two genetically different, but adjoining, mantle domains intimately mingled along the northern Iberian margin during the subsequent plate convergence processes, leading to the close association of harzburgites and lherzolites observed in the Olot mantle xenoliths and in some Pyrenean peridotite massifs.  相似文献   

5.
Major element and rare earth element (REE) partitioning among coexisting clinopyroxene-orthopyroxene pairs from mantle xenoliths of the Assab Range (Ethiopia) are discussed in terms of crystal-chemistry.Major element partitioning indicates relatively uniform conditions of subsolidus equilibration over a narrow range of temperatures (mean value about 1100 C) in the spinel peridotite stability field. Major element distributions and correlations, moreover, seem to indicate that the mantle material studied underwent slightly different depletions prior to the metamorphic equilibration.In spite of the rather homogeneous major element compositions for both cpx and opx, clinopyroxenes show chondrite-normalized REE patterns which are widely variable both in shape and absolute values, whereas orthopyroxenes exhibit more restricted ranges and concordant profiles.REE activity ratios have been investigated by applying Iiyama's (Bull. Soc. fr. Minéral. Christallogr.97, 143–151) thermodynamic model: the estimated activity patterns exhibit a good coherence for the different pyroxene pairs, in spite of the contrasting features of their REE concentration ratios. The wide ranges in the measured partition values for the same rare earth element in different pyroxene pairs have been related to coupled substitutions involving A1 in the Z site and REE in the M2 site of clinopyroxene.  相似文献   

6.
We present the whole-rock and the mineral chemical data for upper mantle peridotites from the Harmanc?k region in NW Turkey and discuss their petrogenetic–tectonic origin. These peridotites are part of a Tethyan ophiolite belt occurring along the ?zmir-Ankara-Ercincan suture zone in northern Turkey, and include depleted lherzolites and refractory harzburgites. The Al2O3 contents in orthopyroxene and clinopyroxene from the depleted lherzolite are high, and the Cr-number in the coexisting spinel is low falling within the abyssal field. However, the orthopyroxene and clinopyroxene in the harzburgites have lower Al2O3 contents for a given Cr-number of spinel, and plot within the lower end of the abyssal field. The whole-rock geochemical and the mineral chemistry data imply that the Harmanc?k peridotites formed by different degrees of partial melting (~%10–27) of the mantle. The depleted lherzolite samples have higher MREE and HREE abundances than the harzburgitic peridotites, showing convex-downward patterns. These peridotites represent up to ~16 % melting residue that formed during the initial seafloor spreading stage of the Northern Neotethys. On the other hand, the more refractory harzburgites represent residues after ~4–11 % hydrous partial melting of the previously depleted MOR mantle, which was metasomatized by slab-derived fluids during the early stages of subduction. The Harmanc?k peridotites, hence, represent the fragments of upper mantle rocks that formed during different stages of the tectonic evolution of the Tethyan oceanic lithosphere in Northern Neotethys. We infer that the multi-stage melting history of the Harmanc?k peridotites reflect the geochemically heterogeneous character of the Tethyan oceanic lithosphere currently exposed along the ?zmir-Ankara-Erzincan suture zone.  相似文献   

7.
The New Caledonia ophiolite(Peridotite Nappe)consists primarily of harzburgites,locally overlain by mafic-ultramafic cumulates,and minor spinel and plagioclase lherzolites.In this study,a comprehensive geochemical data set(major and trace element,Sr-Nd-Pb isotopes)has been obtained on a new set of fresh harzburgites in order to track the processes recorded by this mantle section and its evolution.The studied harzburgites are low-strain tectonites showing porphyroclastic textures,locally grading into protomylonitic textures.They exhibit a refractory nature,as attested by the notable absence of primary clinopyroxene,very high Fo content of olivine(91-93 mol.%),high Mg#of orthopyroxene(0.91-0.93)and high Cr#of spinel(0.44-0.71).The harzburgites are characterised by remarkably low REE concentrations(<0.1 chondritic values)and display"U-shaped"profiles,with steeply sloping HREE(DyN/YbN=0.07-0.16)and fractionated LREE-MREE segments(LaN/SmN=2.1-8.3),in the range of modern fore-arc peridotites.Geochemical modelling shows that the HREE composition of the harzburgites can be reproduced by multi-stage melting including a first phase of melt depletion in dry conditions(15%fractional melting),followed by hydrous melting in a subduction zone setting(up to 15%-18%).However,melting models fail to explain the enrichments observed for some FME(i.e.Ba,Sr,Pb),LREE-MREE and Zr-Hf.These enrichments,coupled with the frequent occurrence of thin,undeformed films of Al2 O3,and CaO-poor orthopyroxene(Al2O3=0.88-1.53 wt.%,CaO=0.31-0.56 wt.%)and clinopyroxene with low Na2 O(0.03-0.16 wt.%),Al2 O3(0.66-1.35 wt.%)and TiO2(0.04-0.10 wt.%)contents,point to FME addition during fluid-assisted melting followed by late stage metasomatism most likely operated by subductionrelated melts with a depleted trace element signature.Nd isotopic ratios range from unradiogenic to radiogenic(-0.80<εNdi≤+13.32)and negatively correlate with Sr isotopes(0.70257≤87Sr/86Sr≤0.70770).Pb isotopes cover a wide range,trending from DMM toward enriched,sediment-like,compositions.We interpret the geochemical signature displayed by the New Caledonia harzburgites as reflecting the evolution of a highly depleted fore-arc mantle wedge variably modified by different fluid and melt inputs during Eocene subduction.  相似文献   

8.
Here, we investigate the scale and nature of melting and melt percolation processes recorded by 17 supra-subduction peridotites collected in a ~70 km2 area in the northern portion of the Josephine ophiolite (Western USA). We present major and trace element variations in whole rocks; major elements in olivine, orthopyroxene, clinopyroxene and spinel; and trace elements [including rare earth element (REE)] in clinopyroxene and orthopyroxene. In the Josephine peridotites, compositional variability occurs at different scales. On the one hand, large systematic changes from depleted to fertile peridotites occur on large kilometer scales. Field, petrological and geochemical data can be consistently explained if the Josephine mantle experienced variable degrees of hydrous flux melting (10 to >20–23 %), and we argue that small fractions of subduction-derived fluids (0.015–0.1 wt%) were pervasive in the ~70 km2 studied area, and continuously supplied during wedge melting. Fluid localization probably led to increased extent of flux melting in the harzburgitic areas. On the other hand, in single outcrops, sharp transitions from dunite to harzburgite to lherzolite and olivine websterite can be found on meter to centimeter scales. Thus, some fertile samples may reflect limited degrees of refertilization at the outcrop scale. In addition, clinopyroxene and orthopyroxene in ultra-depleted harzburgites (Spinel Cr# > 58) show variable degrees of LREE enrichment, which reflect percolation of and partial re-equilibration with, small fractions of boninite melt. Because the enriched samples also show the highest spinel Cr#, we argue that these enrichments are local features connected to the presence of dunite channels nearby. Lastly, trace element concentrations of pyroxenes in Josephine harzburgites show that they are one of the most depleted harzburgites among worldwide ophiolitic peridotites, indicating particularly high degrees of melting, potentially past the exhaustion of clinopyroxene.  相似文献   

9.
Low-Ca pyroxenes play an important role in mantle melting, melt-rock reaction, and magma differentiation processes. In order to better understand REE fractionation during adiabatic mantle melting and pyroxenite-derived melt and peridotite interaction, we developed a parameterized model for REE partitioning between low-Ca pyroxene and basaltic melts. Our parameterization is based on the lattice strain model and a compilation of published experimental data, supplemented by a new set of trace element partitioning experiments for low-Ca pyroxenes produced by pyroxenite-derived melt and peridotite interaction. To test the validity of the assumptions and simplifications used in the model development, we compared model-derived partition coefficients with measured partition coefficients for REE between orthopyroxene and clinopyroxene in well-equilibrated peridotite xenoliths. REE partition coefficients in low-Ca pyroxene correlate negatively with temperature and positively with both calcium content on the M2 site and aluminum content on the tetrahedral site of pyroxene. The strong competing effect between temperature and major element compositions of low-Ca pyroxene results in very small variations in REE partition coefficients in orthopyroxene during adiabatic mantle melting when diopside is in the residue. REE partition coefficients in orthopyroxene can be treated as constants at a given mantle potential temperature during decompression melting of lherzolite and diopside-bearing harzburgite. In the absence of diopside, partition coefficients of light REE in orthopyroxene vary significantly, and such variations should be taken into consideration in geochemical modeling of REE fractionation in clinopyroxene-free harzburgite. Application of the parameterized model to low-Ca pyroxenes produced by reaction between pyroxenite-derived melt and peridotite revealed large variations in the calculated REE partition coefficients in the low-Ca pyroxenes. Temperature and composition of starting pyroxenite must be considered when selecting REE partition coefficients for pyroxenite-derived melt and peridotite interaction.  相似文献   

10.
Olivine/melt and orthopyroxene/melt rare-earth element (REE) partition coefficients consistent with clinopyroxene/melt partition coefficients were determined indirectly from subsolidus partitioning between olivine, orthopyroxene, and clinopyroxene after suitable correction for temperature. Heavy- and middle-REE ratios for olivine/clinopyroxene and orthopyroxene/clinopyroxene pairs correlate negatively with effective cationic radius, whereas those for the light REEs correlate positively with cationic radius, generating a U-shaped pattern in apparent mineral/clinopyroxene partition coefficients versus cationic radius. Lattice strain models of partitioning modified for subsolidus conditions yield negative correlations of olivine/clinopyroxene and orthopyroxene/clinopyroxene with respect to cationic radii, predicting well the measured partitioning behaviors of the heavy and middle REEs but not that of the light REEs. The light-REE systematics cannot be explained with lattice strain theory and, instead, can be explained by disequilibrium enrichment of the light REEs in melt inclusions or on the rims of olivine and orthopyroxene. Realistic light-REE partition coefficients were thus extrapolated from the measured heavy- and middle-REE partition coefficients using the lattice strain model. Light REE olivine/melt and orthopyroxene/melt partition coefficients calculated in this manner are lower than most published values, but agree reasonably well with partitioning experiments using the most recent in situ analytical techniques (secondary-ionization mass spectrometry and laser ablation inductively coupled plasma mass spectrometry). These new olivine/melt and orthopyroxene/melt partition coefficients are useful for accurate modeling of the REE contents of clinopyroxene-poor to -free lithologies, such as harzburgitic residues of melting. Finally, the application of the lattice strain theory to subsolidus conditions represents a framework for assessing the degree of REE disequilibrium in a rock.  相似文献   

11.
The Eocene dyke swarm with east-west general trend intrudes the Cretaceous sedimentary rocks in ~25 km north of the Khur city (Central Iran). Some of the studied dykes can be followed for over 7 km, but the majority of exposures in the area are less than 5 km long. The dykes commonly exhibit a chilled contact with the wall rocks. These dykes are trachybasalt and basalt in composition. The trachybasalt dykes are much more abundant. The basaltic dykes cross cut the trachybasalt dykes in some locations, indicating that trachybasalt dykes are older than the basaltic ones. Primary igneous minerals of the basaltic dykes are olivine (chrysolite), clinopyroxene (diopside, augite), plagioclase (labradorite), sanidine, magnetite, orthopyroxene (enstatite), spinel and phlogopite, and secondary minerals are zeolite (natrolite and mesolite), chlorite (diabantite), calcite and serpentine. The trachybasalt dykes are composed of clinopyroxene (diopside), plagioclase (labradorite), sanidine, mica (biotite and phlogopite), amphibole (magnesio-hastingsite) and magnetite as primary minerals, and chlorite and calcite as secondary ones. Whole rocks geochemical data of the studied dykes indicate their basic and calc-alkaline nature and suggest that these two set of dykes were derived from the same parental magma. The chondrite-normalized REE patterns and the primitive mantle-normalized multi-elemental diagram of the Khur dykes show enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE), and negative anomalies of high field strength elements (HFSE) (e.g. Ti, Nb and Ta). These rocks show enrichment of the large ion lithophile elements (LILE) (e.g. Cs, Ba, Th and U) and depletion of the HREE and Y relative to MREE, Zr and Hf. In the chondrite-normalized REE diagram, the basalts show elevated REE abundances relative to the trachybasalt samples. Geochemical analyses of the studied samples suggest a spinel lherzolite from the mantle as the source rock and confirm the role of subduction in their generation. The chemical characteristics of the Khur dykes resemble those of continental arc rocks, and they were possibly formed by subduction of the Central-East Iranian microcontinent (CEIM) confining oceanic crust and decompression melting of a lithospheric subcontinental mantle spinel lherzolite enriched by subduction.  相似文献   

12.
Iron isotope and major- and minor-element compositions of coexisting olivine, clinopyroxene, and orthopyroxene from eight spinel peridotite mantle xenoliths; olivine, magnetite, amphibole, and biotite from four andesitic volcanic rocks; and garnet and clinopyroxene from seven garnet peridotite and eclogites have been measured to evaluate if inter-mineral Fe isotope fractionation occurs in high-temperature igneous and metamorphic minerals and if isotopic fractionation is related to equilibrium Fe isotope partitioning or a result of open-system behavior. There is no measurable fractionation between silicate minerals and magnetite in andesitic volcanic rocks, nor between olivine and orthopyroxene in spinel peridotite mantle xenoliths. There are some inter-mineral differences (up to 0.2 in 56Fe/54Fe) in the Fe isotope composition of coexisting olivine and clinopyroxene in spinel peridotites. The Fe isotope fractionation observed between clinopyroxene and olivine appears to be a result of open-system behavior based on a positive correlation between the Δ56Feclinopyroxene-olivine fractionation and the δ56Fe value of clinopyroxene and olivine. There is also a significant difference in the isotopic compositions of garnet and clinopyroxene in garnet peridotites and eclogites, where the average Δ56Feclinopyroxene-garnet fractionation is +0.32 ± 0.07 for six of the seven samples. The one sample that has a lower Δ56Feclinopyroxene-garnet fractionation of 0.08 has a low Ca content in garnet, which may reflect some crystal chemical control on Fe isotope fractionation. The Fe isotope variability in mantle-derived minerals is interpreted to reflect subduction of isotopically variable oceanic crust, followed by transport through metasomatic fluids. Isotopic variability in the mantle might also occur during crystal fractionation of basaltic magmas within the mantle if garnet is a liquidus phase. The isotopic variations in the mantle are apparently homogenized during melting processes, producing homogenous Fe isotope compositions during crust formation.  相似文献   

13.
A wide range of trace elements have been analysed in mantle xenoliths (whole rocks, clinopyroxene and amphibole separates) from alkaline lavas in the Eastern Carpathians (Romania), in order to understand the process of metasomatism in the subcontinental mantle of the Carpatho-Pannonian region. The xenoliths include spinel lherzolites, harzburgites and websterites, clinopyroxenites, amphibole veins and amphibole clinopyroxenites. Textures vary from porphyroclastic to granoblastic, or equigranular. Grain size increases with increasing equilibrium temperature of mineralogical assemblages and results from grain boundary migration. In peridotites, interstitial clinopyroxenes (cpx) and amphiboles resulted from impregnation and metasomatism of harzburgites or cpx-poor lherzolites by small quantities of a melt I with a melilitite composition. Clinopyroxenites, amphibole veins and amphibole clinopyroxenites are also formed by metasomatism as a result of percolation through fracture systems of large quantities of a melt II with a melanephelinite composition. These metasomatic events are marked by whole-rock enrichments, relative to the primitive mantle (PM), in Rb, Th and U associated in some granoblastic lherzolites and in clinopyroxene and amphibole veins with enrichments in LREE, Ta and Nb. Correlations between major element whole-rock contents in peridotites demonstrate that the formation of interstitial amphibole and clinopyroxene induced only a slight but variable increase of the Ca/Al ratio without apparent modifications of the initial mantle composition. Metasomatism is also traced by enrichments in the most incompatible elements and the LREE. The Ta, Nb, MREE and HREE contents remained unchanged and confirm the depleted state of the initial but heterogeneous mantle. Major and trace element signature of clinopyroxene suggests that amphibole clinopyroxenites and some granoblastic lherzolites have been metasomatized successively by melts I and II. Both melts I and II were Ca-rich and Si-poor, somewhat alkaline (Na > K). Melt I differed from melt II in having higher Mg and Cr contents offset by lower Ti, Al, Fe and K contents. Both were highly enriched in all incompatible trace elements relative to primitive mantle, showing positive anomalies in Rb, Ba, Th, Sr and Zr. They contrasted by their Ta, Nb and LREE contents, lower in melt I than in melt II. Melts I and II originate during a two-stage melting event from the same source at high pressure and under increasing temperature. The source assemblage could be that of a metasomatized carbonated mantle but was more likely that of an eclogite of crustal affinity. Genetic relationships between calc-alkaline and alkaline lavas from Eastern Carpathians and these melts are thought to be only indirect, the former originating from partial melting of mantle sources respectively metasomatized by the melts I and II. Received: 17 March 1997 / Accepted: 14 July 1997  相似文献   

14.
Mantle xenoliths in alkaline lavas of the Kerguelen Islandsconsist of: (1) protogranular, Cr-diopside-bearing harzburgite;(2) poikilitic, Mg-augite-bearing harzburgite and cpx-poor lherzolite;(3) dunite that contains clinopyroxene, spinel phlogopite, andrarely amphibole. Trace element data for rocks and mineralsidentify distinctive signatures for the different rock typesand record upper-mantle processes. The harzburgites reflectan initial partial melting event followed by metasomatism bymafic alkaline to carbonatitic melts. The dunites were firstformed by reaction of a harzburgite protolith with tholeiiticto transitional basaltic melts, and subsequently developed metasomaticassemblages of clinopyroxene + phlogopite ± amphiboleby reaction with lamprophyric or carbonatitic melts. We measuredtwo-mineral partition coefficients and calculated mineral–meltpartition coefficients for 27 trace elements. In most samples,calculated budgets indicate that trace elements reside in theconstituent minerals. Clinopyroxene is the major host for REE,Sr, Y, Zr and Th; spinel is important for V and Ti; orthopyroxenefor Ti, Zr, HREE, Y, Sc and V; and olivine for Ni, Co and Sc. KEY WORDS: mantle xenoliths; mantle metasomatism; partition coefficients; Kerguelen Islands; trace elements  相似文献   

15.
张明  解广轰 《地球化学》1996,25(5):425-444
对中国东部赋存于新生代玄武岩中的地幔岩捕虏体的全岩和单斜辉石等作了主元素和微量元素分析,证实了二辉橄榄岩及其单斜辉石在主元素有连续变化的趋势,反映了具部分熔融后残留相的性质。方辉橄榄岩及其中的单斜辉石的主元素,Nd/Yb,Ti/Zr和Sr/Zr值与二辉橄榄岩的同类矿物是不连续过渡。  相似文献   

16.
The trace element composition of silicate inclusions in diamonds: a review   总被引:1,自引:0,他引:1  
On a global scale, peridotitic garnet inclusions in diamonds from the subcratonic lithosphere indicate an evolution from strongly sinusoidal REEN, typical for harzburgitic garnets, to mildly sinusoidal or “normal” patterns (positive slope from LREEN to MREEN, fairly flat MREEN–HREEN), typical for lherzolitic garnets. Using the Cr-number of garnet as a proxy for the bulk rock major element composition it becomes apparent that strong LREE enrichment in garnet is restricted to highly depleted lithologies, whereas flat or positive LREE–MREE slopes are limited to less depleted rocks. For lherzolitic garnet inclusions, there is a positive relation between equilibration temperature, enrichment in MREE, HREE and other HFSE (Ti, Zr, Y), and decreasing depletion in major elements. For harzburgitic garnets, relations are not linear, but it appears that lherzolite style enrichment in MREE–HREE only occurs at temperatures above 1150–1200 °C, whereas strong enrichment in Sr is absent at these high temperatures. These observations suggest a transition from melt metasomatism (typical for the lherzolitic sources) characterized by fairly unfractionated trace and major element compositions to metasomatism by CHO fluids carrying primarily incompatible trace elements. Melt and fluid metasomatism are viewed as a compositional continuum, with residual CHO fluids resulting from primary silicate or carbonate melts in the course of fractional crystallization and equilibration with lithospheric host rocks.

Eclogitic garnet inclusions show “normal” REEN patterns, with LREE at about 1× and HREE at about 30× chondritic abundance. Clinopyroxenes approximately mirror the garnet patterns, being enriched in LREE and having chondritic HREE abundances. Positive and negative Eu anomalies are observed for both garnet and clinopyroxene inclusions. Such anomalies are strong evidence for crustal precursors for the eclogitic diamond sources. The trace element composition of an “average eclogitic diamond source” based on garnet and clinopyroxene inclusions is consistent with derivation from former oceanic crust that lost about 10% of a partial melt in the garnet stability field and that subsequently experienced only minor reenrichment in the most incompatible trace elements. Based on individual diamonds, this simplistic picture becomes more complex, with evidence for both strong enrichment and depletion in LREE.

Trace element data for sublithospheric inclusions in diamonds are less abundant. REE in majoritic garnets indicate source compositions that range from being similar to lithospheric eclogitic sources to strongly LREE enriched. Lower mantle sources, assessed based on CaSi–perovskite as the principal host for REE, are not primitive in composition but show moderate to strong LREE enrichment. The bulk rock LREEN–HREEN slope cannot be determined from CaSi–perovskites alone, as garnet may be present in these shallow lower mantle sources and then would act as an important host for HREE. Positive and negative Eu anomalies are widespread in CaSi–perovskites and negative anomalies have also been observed for a majoritic garnet and a coexisting clinopyroxene inclusion. This suggests that sublithospheric diamond sources may be linked to old oceanic slabs, possibly because only former crustal rocks can provide the redox gradients necessary for diamond precipitation in an otherwise reduced sublithospheric mantle.  相似文献   


17.
ODP Leg 209 Site 1274 mantle peridotites are highly refractory in terms of lack of residual clinopyroxene, olivine Mg# (up to 0.92) and spinel Cr# (∼0.5), suggesting high degree of partial melting (>20%). Detailed studies of their microstructures show that they have extensively reacted with a pervading intergranular melt prior to cooling in the lithosphere, leading to crystallization of olivine, clinopyroxene and spinel at the expense of orthopyroxene. The least reacted harzburgites are too rich in orthopyroxene to be simple residues of low-pressure (spinel field) partial melting. Cu-rich sulfides that precipitated with the clinopyroxenes indicate that the intergranular melt was generated by no more than 12% melting of a MORB mantle or by more extensive melting of a clinopyroxene-rich lithology. Rare olivine-rich lherzolitic domains, characterized by relics of coarse clinopyroxenes intergrown with magmatic sulfides, support the second interpretation. Further, coarse and intergranular clinopyroxenes are highly depleted in REE, Zr and Ti. A two-stage partial melting/melt–rock reaction history is proposed, in which initial mantle underwent depletion and refertilization after an earlier high pressure (garnet field) melting event before upwelling and remelting beneath the present-day ridge. The ultra-depleted compositions were acquired through melt re-equilibration with residual harzburgites. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

18.
The Saramta peridotite massif is located within the Sharyzhalgai complex, SW margin of the Siberian craton. The Saramta massif was formed in the Archean and then juxtaposed with granulites of crystalline basement of the Siberian craton. The Saramta harzburgites are highly refractory in terms of lack of residual clinopyroxene, olivine Mg-number (up to 0.937), and spinel Cr-number (∼0.5), suggesting high degree of partial melting. Detailed study of their microstructures shows that they have extensively reacted with a SiO2-rich melt, leading to the crystallization of orthopyroxene, clinopyroxene, amphibole and spinel at the expense of olivine. The major element compositions of the least reacted harzburgites are similar to the residues of refractory peridotites produced by the fractional melting (initial melting pressures >3 GPa and melt fractions ∼40%). Moreover, non-residual clinopyroxenes are highly depleted in Yb, Zr and Ti, but highly enriched in LREE. A two-stage history is proposed for the Saramta peridotite: (1) primitive mantle underwent depletion in the garnet stability field followed by melting in the spinel stability field; (2) refractory harzburgites underwent refertilization by SiO2-rich melt in supra-subduction zone. Rare Saramta lherzolites probably formed from more refractory harzburgites as a result of such a melt–rock reaction. The Saramta peridotites are similar to low-T coarse-grained peridotites of subcratonic mantle. Processes of their formation, as reflected by textures and composition of minerals of the Saramta peridotites, are characteristic of the early stages of subcratonic mantle formation.  相似文献   

19.
Trace element analyses have been obtained employing RNAA andINAA techniques for 23 bulk-rock specimens and for five pairsof mechanically separated opx and cpx from Western Alpine peridotites.Investigated rocks include 5 garnet lherzolites from Alpe Arami,and spinel (+plagioclase) lherzolites from Finero (2), Balmuccia(7), Baldissero (6) and Lanzo (3). Three pyroxene pairs wereanalysed from Balmuccia and two from Baldissero. All rocks exhibit marked LREE depletions relative to chondriticabundances except for the two Finero samples which appear tobe HREE depleted. Separated minerals also show LREE depletionsand HREE enrichments relative to chondrites. However, intermediaterare earths are markedly depleted in opx whereas they are enrichedin coexisting cpx. Higher overall concentrations and patternssimilar to those of the bulk rocks indicate that REE distributionsin lherzolites are dominated by clinopyroxene chemistry. Incontrast, both opx and cpx appear to contribute equally to the3d transition element geochemistry of the investigated peridotites. Most of the investigated rocks show the effects of early partialmelting of a pre-existing mantle source material characterizedby ‘chondritic’ REE fractionation and by a 3d transitionelement composition near the estimated values of Jagoutz etal. (1979). The melting process probably developed in a closed system (equilibriummelting) and at temperatures which, for the spinel peridotiteprotolith, seemingly were compatible with estimates of Presnallel al. (1979) for the ‘melting at the cusp’ process(T = 1200–1250 °C). In some cases the residual rocksunderwent a further contamination event. This is particularlyevident for the Lanzo peridotites, but possibly also for singleBaldissero and Balmuccia specimens. During ascent to the surface, the rocks underwent subsolidusannealing which occurred at temperatures around 900–1000°C under more or less closed system conditions.  相似文献   

20.
The Luobusa ophiolite, Southern Tibet, lies in the Indus–YarlungZangbo suture zone that separates Eurasia to the north fromthe Indian continent to the south. The ophiolite contains awell-preserved mantle sequence consisting of harzburgite, clinopyroxene(cpx)-bearing harzburgite and dunite. The harzburgite containsabundant pods of chromitite, most of which have dunite envelopes,and the cpx-bearing harzburgites host numerous dunite dykes.Dunite also exists as a massive unit similar to those of themantle–crust transition zones in other ophiolites. Allof the dunites in the ophiolite have a similar mineralogy, comprisingmainly olivine with minor orthopyroxene and chromite and tracesof clinopyroxene. They also display similar chemical compositions,including U-shaped chondrite-normalized REE patterns. Mantle-normalizedPGE patterns show variable negative Pt anomalies. Detailed analysisof a chromite-bearing dunite dyke, which grades into the hostcpx-bearing harzburgite, indicates that LREE and Ir decrease,whereas HREE, Pd and Pt increase away from the dunite. Thesefeatures are consistent with formation of the dunite dykes byinteraction of MORB peridotites with boninitic melts from whichthe chromitites were formed. Because the transition-zone dunitesare mineralogically and chemically identical to those formedby such melt–rock reaction, we infer that they are ofsimilar origin. The Luobusa ultramafic rocks originally formedas MORB-source upper mantle, which was subsequently trappedas part of a mantle wedge above a subduction zone. Hydrous meltsgenerated under the influence of the subducted slab at depthmigrated upward and reacted with the cpx-bearing harzburgitesto form the dunite dykes. The modified melts ponded in smallpockets higher in the section, where they produced podiformchromitites with dunite envelopes. At the top of the mantlesection, pervasive reaction between melts and harzburgite producedthe transition-zone dunites. KEY WORDS: melt–rock interaction; REE; PGE; hydrous melt; mantle; ophiolite; Tibet  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号