首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Substantial differences in isotopic compositions of micas and pyrophyllites from metasomatites related to various stages of the process that formed the giant Gai massive sulfide deposit have been established. The illite from the earliest and predominant chlorite-illite-quartz metasomatite is characterized by the least δD values of −(50–85)‰ and δ18O=7–11‰. The pyrophyllite-quartz metasomatite as well as illite and pyrophyllite schists developed locally in the southern part of the deposit that likely correspond to the site of discharge of late geothermal paleosystem, contain pyrophyllite and illite with much higher values of δD=−(25–45)‰ and δ18O=4–9‰. Local zones of illite-paragonite schist complete the mineral formation and are characterized by the transitional δD values of −(30–55)‰ and elevated δ18O of 10–11‰. The most plausible model of isotopic evolution in the hydrothermal system, with an initial temperature of mica formation at 250°C, assumes the mixing of transformed sea water with a magmatic (metamorphic) water at the initial stage when the background metasomatites and massive sulfide orebodies of the northern lode have been formed. Subsequently, after the burial of the northern lode beneath basaltic andesite flows, the repeated sea water invasions took place in the southern discharge site of the system. As a result, the pyrophyllite-quartz metasomatite was formed; the pyrophyllite and illite schists originated in tectonic compression zones. The interaction of this water with silicate rocks was completed by a formation of illite-paragonite schist. In general, the substantial contribution of sea water to the formation of metasomatic halo of the deposit casts no doubt.  相似文献   

2.
The source of metasomatic fluids in iron-oxide–copper–gold districts is contentious with models for magmatic and other fluid sources having been proposed. For this study, δ 18O and δ 13C ratios were measured from carbonate mineral separates in the Proterozoic eastern Mt Isa Block of Northwest Queensland, Australia. Isotopic analyses are supported by petrography, mineral chemistry and cathodoluminescence imagery. Marine meta-carbonate rocks (ca. 20.5‰ δ 18O and 0.5‰ δ 13C calcite) and graphitic meta-sedimentary rocks (ca. 14‰ δ 18O and −18‰ δ 13C calcite) are the main supracrustal reservoirs of carbon and oxygen in the district. The isotopic ratios for calcite from the cores of Na–(Ca) alteration systems strongly cluster around 11‰ δ 18O and −7‰ δ 13C, with shifts towards higher δ 18O values and higher and lower δ 13C values, reflecting interaction with different hostrocks. Na–(Ca)-rich assemblages are out of isotopic equilibrium with their metamorphic hostrocks, and isotopic values are consistent with fluids derived from or equilibrated with igneous rocks. However, igneous rocks in the eastern Mt Isa Block contain negligible carbon and are incapable of buffering the δ 13C signatures of CO2-rich metasomatic fluids associated with Na–(Ca) alteration. In contrast, plutons in the eastern Mt Isa Block have been documented as having exsolved saline CO2-rich fluids and represent the most probable fluid source for Na–(Ca) alteration. Intrusion-proximal, skarn-like Cu–Au orebodies that lack significant K and Fe enrichment (e.g. Mt Elliott) display isotopic ratios that cluster around values of 11‰ δ 18O and −7‰ δ 13C (calcite), indicating an isotopically similar fluid source as for Na–(Ca) alteration and that significant fluid–wallrock interaction was not required in the genesis of these deposits. In contrast, K- and Fe-rich, intrusion-distal deposits (e.g. Ernest Henry) record significant shifts in δ 18O and δ 13C towards values characteristic of the broader hostrocks to the deposits, reflecting fluid–wallrock equilibration before mineralisation. Low temperature, low salinity, low δ 18O (<10‰ calcite) and CO2-poor fluids are documented in retrograde metasomatic assemblages, but these fluids are paragenetically late and have not contributed significantly to the mass budgets of Cu–Au mineralisation.  相似文献   

3.
Isotopic composition of monthly composite precipitation samples from Kozhikode (n = 31), a wet tropic station and Hyderabad (n = 25), a semi-arid station across southern India were studied for a period of four years from 2005 to 2008. During the study period, the Kozhikode station recorded an average rainfall of 3500 mm while the Hyderabad station showed an average rainfall of 790 mm. The average stable isotope values in precipitation at the Kozhikode station were δ 18O = −3.52‰, d-excess = 13.72‰; δ 18O = −2.94‰, d-excess = 10.57‰; and δ 18O = −7.53‰, d-excess = 13.79‰, respectively during the pre-monsoon (March–May), monsoon (June–September) and post-monsoon (October–February) seasons. For the Hyderabad station, the average stable isotope values were δ 18O = −5.88‰, d-excess = 2.34‰; δ 18O = −4.39‰, d-excess = 9.21‰; and δ 18O = −8.69‰, d-excess = 14.29‰, respectively for the three seasons. The precipitation at the two stations showed distinctive isotopic signatures. The stable isotopic composition of precipitation at the Hyderabad station showed significant variations from the global trend while the Kozhikode station almost followed the global value. These differences are mainly attributed to the latitudinal differences of the two stations coupled with the differences in climatic conditions.  相似文献   

4.
The stable isotopic composition of the bivalve shell has been widely used to reconstruct the pa-laeo-climate and palaeo-environment. The climatic and environmental significance of carbon isotopic composition of the bivalve shell is still in dispute, and incorporation of metabolic carbon can obscure carbon isotope records of dis-solved inorganic carbon. This study deals with freshwater bivalve, Corbicula fluminea aragonite shell. The results indicated that the δ13C values of bivalve shells deposited out of equilibrium with the host water and showed an onto-genic decrease, indicating that there are metabolic effects and more metabolic carbon is incorporated into larger shells. The proportion of metabolic carbon of shells varies between 19.8% and 26.8%. However, δ13CS can still be used as qualitative indicators of δ13CDIC and environmental processes that occurred during shell growth.  相似文献   

5.
 Late Proterozoic to Cambrian carbonate rocks from Lone Mountain, west central Nevada, record multiple post-depositional events including: (1) diagenesis, (2) Mesozoic regional metamorphism, (3) Late Cretaceous contact metamorphism, related to the emplacement of the Lone Mountain granitic pluton and (4) Tertiary hydrothermal alteration associated with extension, uplift and intrusion of silicic porphyry and lamprophyre dikes. Essentially pure calcite and dolomite marbles have stable isotopic compositions that can be divided into two groups, one with positive δ13C values from+3.1 to +1.4 ‰ (PDB) and high δ18O values from +21.5 to +15.8 ‰ (SMOW), and the other with negative δ13C values from –3.3 to –3.6‰ and low δ18O values from +16.9 to +11.1‰. Marbles also contain minor amounts of quartz, muscovite and phlogopite. Brown and blue luminescent, clear, smooth textured quartz grains from orange luminescent calcite marbles have high δ18O values from +23.9 to +18.1‰, while brown luminescent, opaque, rough textured quartz grains from red luminescent dolomite marbles typically have low δ18O values from +2.0 to +9.3‰. The δ18O values of muscovite and phlogopite from marbles are typical of micas in metamorphic rocks, with values between +10.4 and +14.4‰, whereas mica δD values are very depleted, varying from −102 to −156‰. No significant lowering of the δ18O values of Lone Mountain carbonates is inferred to have occurred during metamorphism as a result of devolatilization reactions because of the essentially pure nature of the marbles. Bright luminescence along the edges of fractures, quartz cements and quartz overgrowths in dolomite marbles, low δD values of micas, negative δ13C values and low δ18O values of calcite and dolomite, and depleted δ18O values of quartz from dolomite marbles all indicate that meteoric fluids interacted with Lone Mountain marbles during the Tertiary. Partial oxygen isotopic exchange between calcite and low 18O meteoric fluids lowered the δ18O values of calcite, resulting in uniform quartz-calcite fractionations that define an apparent pseudoisotherm. These quartz-calcite fractionations significantly underestimate both the temperature of metamorphism and the temperature of post-metamorphic alteration. Partial oxygen isotopic exchange between quartz and meteoric fluids also resulted in 18O depletion of quartz from dolomite marbles. This partial exchange was facilitated by an increase in the surface area of the quartz as a result of its dissolution by meteoric fluids. The negative δ13C values in carbonates result from the oxidation of organic material by meteoric fluids following metamorphism. Stable isotopic data from Lone Mountain marbles are consistent with the extensive circulation of meteoric hydrothermal fluids throughout western Nevada in Tertiary time. Received: 1 February 1994/Accepted: 12 September 1995  相似文献   

6.
 Hydrogen and oxygen isotope analyses have been made of hydrous minerals in gabbros and basaltic xenoliths from the Eocene Kap Edvard Holm intrusive complex of East Greenland. The analyzed samples are of three types: (1) primary igneous hornblendes and phlogopites that crystallized from partial melts of hydrothermally altered basaltic xenoliths, (2) primary igneous hornblendes that formed during late–magmatic recrystallization of layered gabbroic cumulates, and (3) secondary actinolite, epidote and chlorite that formed during subsolidus alteration of both xenoliths and gabbros. Secondary actinolite has a δ18O value of −5.8‰ and a δD value of −158‰. These low values reflect subsolidus alteration by low–δ18O, low–δD hydrothermal fluids of meteoric origin. The δD value is lower than the −146 to −112‰ values previously reported for amphiboles from other early Tertiary meteoric–hydrothermal systems in East Greenland and Scotland, indicating that the meteoric waters at Kap Edvard Holm were isotopically lighter than typical early Tertiary meteoric waters in the North Atlantic region. This probably reflects local climatic variations caused by formation of a major topographic dome at about the time of plutonism and hydrothermal activity. The calculated isotopic composition of the meteoric water is δD=−110 ± 10‰, δ18O ≈−15‰. Igneous hornblendes and phlogopites from pegmatitic pods in hornfelsed basaltic xenoliths have δ18O values between −6.0 and −3.8‰ and δD values between −155 and −140‰. These are both much lower than typical values of fresh basalts. The oxygen isotope fractionations between pegmatitic hornblendes and surrounding hornfelsic minerals are close to equilibrium fractionations for magmatic temperatures, indicating that the pegmatites crystallized from low–δ18O partial melts of xenoliths that had been hydrothermally altered and depleted in 18O prior to stoping. The pegmatitic minerals may have crystallized with low primary δD values inherited from the altered country rocks, but these values were probably overprinted extensively by subsolidus isotopic exchange with low–δD meteoric–hydrothermal fluids. This exchange was facilitated by rapid self–diffusion of hydrogen through the crystal structures. Primary igneous hornblendes from the plutonic rocks have δ18O values between +2.0 and +3.2‰ and δD values between −166 and −146‰. The 18O fractionations between hornblendes and coexisting augites are close to equilibrium fractionations for magmatic temperatures, indicating that the hornblendes crystallized directly from the magma and subsequently underwent little or no oxygen exchange. The hornblendes may have crystallized with low primary δD values, due to contamination of the magma with altered xenolithic material, but the final δD values were probably controlled largely by subsolidus isotopic exchange. This inference is based partly on the observation that coexisting plagioclase has been extensively depleted in 18O via a mineral–fluid exchange reaction that is much slower than the hydrogen exchange reaction in hornblende. It is concluded that all hydrous minerals in the study area, whether igneous or secondary, have δD values that reflect extensive subsolidus isotopic equilibration with meteoric–hydrothermal fluids. Received: 22 March 1994 / Accepted: 26 January 1995  相似文献   

7.
Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca–HCO3 type water with depleted δ18O and δD (mean value of −8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca–Na–Mg–HCO3–Cl–SO4 type), and heavier δ18O and δD were observed (around −8‰ δ18O). Before the surface water with mean δ18O of −8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of −8.8‰ δ18O) were similar to those of transferred water (−8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca–HCO3, Na–HCO3, to Na–SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the complex alluvial fan aquifer system.  相似文献   

8.
 Isotopic (δ13C, δ18O) and elemental (Mg, Sr, Mn, Fe) compositions were analysed in sclerochronological profiles of several shells of late Cretaceous rudist bivalves from Greece, Turkey, Somalia and the Arabian Peninsula. The preservation of original compositions of low-Mg calcite of outer shell layers is indicated by constant and high Sr, generally low Fe and Mn, and the preservation of fibrous-prismatic ultrastructures. Cyclic variations in δ18O and Mg are interpreted to reflect seasonal temperature/salinity cycles and, thus, annual growth increments. In shells of Torreites, amplitudes of correlated δ13C and δ18O cycles cannot be related to reasonable palaeotemperatures or salinity. This isotopic pattern reflects vital fractionations of an extent which is unknown from modern bivalves. In contrast, almost identical ranges and amplitudes of δ18O cycles are observed in 13 shells of five species from Santonian-Campanian localities in central Greece and northern Turkey, suggesting that seasonal variations in environmental conditions were recorded without significant vital fractionations. The effect of seasonal salinity changes on δ18O of the shells is evaluated, and mean palaeotemperatures are constrained within the range of 30–32.5  °C. The annual range of temperature was estimated to be 7  °C, assuming a constant salinity. This agrees with other isotopic proxies of Late Cretaceous palaeotemperatures, and with global circulation models which predict higher low-latitude sea-surface temperatures than the present ones. Received: 12 February 1998 / Accepted: 24 May 1999  相似文献   

9.
The Jervois region of the Arunta Inlier, central Australia, contains para- and orthogneisses that underwent low-pressure amphibolite facies metamorphism (P = 200–300 MPa, T = 520–600 °C). Marble layers cut by metre-wide quartz + garnet ± epidote veins comprise calcite, quartz, epidote, clinopyroxene, grandite garnet, and locally wollastonite. The marbles also contain locally discordant decimetre-thick garnet and epidote skarn layers. The mineral assemblages imply that the rocks were infiltrated by water-rich fluids (XCO2 = 0.1–0.3) at ∼600 °C. The fluids were probably derived from the quartz-garnet vein systems that represent conduits for fluids exsolved from crystallizing pegmatites emplaced close to the metamorphic peak. At one locality, the marble has calcite (Cc) δ18O values of 9–18‰ and garnet (Gnt) δ18O values of 10–14‰. The δ18O(Gnt) values are only poorly correlated with δ18O(Cc), and the δ18O values of some garnet cores are higher than the rims. The isotopic disequilibrium indicates that garnet grew before the δ18O values of the rock were reset. The marbles contain  ≤15% garnet and, for water-rich fluids, garnet-forming reactions are predicted to propagate faster than O-isotopes are reset. The Sm-Nd and Pb-Pb ages of garnets imply that fluid flow occurred at 1750–1720 Ma. There are no significant age differences between garnet cores and rims, suggesting that fluid flow was relatively rapid. Texturally late epidote has δ18O values of 1.5–6.2‰ implying δ18O(H2O) values of 2–7‰. Waters with such low-δ18O values are probably at least partly meteoric in origin, and the epidote may be recording the late influx of meteoric water into a cooling hydrothermal system. Received: 29 April 1996 / Accepted: 12 March 1997  相似文献   

10.
The Early Devonian Gumeshevo deposit is one of the largest ore objects pertaining to the dioritic model of the porphyry copper system paragenetically related to the low-K quartz diorite island-arc complex. The (87Sr/86Sr)t and (ɛNd)t of quartz diorite calculated for t = 390 Ma are 0.7038–0.7045 and 5.0–5.1, respectively, testifying to a large contribution of the mantle component to the composition of this rock. The contents of typomorphic trace elements (ppm) are as follows: 30–48 REE sum, 5–10 Rb, 9–15 Y, and 1–2 Nb. The REE pattern is devoid of Eu anomaly. Endoskarn of low-temperature and highly oxidized amphibole-epidote-garnet facies is surrounded by the outer epidosite zone. Widespread retrograde metasomatism is expressed in replacement of exoskarn and marble with silicate (chlorite, talc, tremolite)-magnetite-quartz-carbonate mineral assemblage. The 87Sr/86Sr ratios of epidote in endoskarn and carbonate in retrograde metasomatic rocks (0.7054–0.7058 and 0.7053–0.7065, respectively) are intermediate between the Sr isotope ratios of quartz dioritic rocks and marble (87Sr/86Sr = 0.70784 ± 2). Isotopic parameters of the fluid equilibrated with silicates of skarn and retrograde metasomatic rocks replacing exoskarn at 400°C are δ18O = +7.4 to +8.5‰ and δD = −49 to −61‰ (relative to SMOW). The δ13C and δ18O of carbonates in retrograde metasomatic rocks after marble are −5.3 to +0.6 (relative to PDB) and +13.0 to +20.2% (relative to SMOW), respectively. Sulfidation completes metasomatism, nonuniformly superimposed on all metasomatic rocks and marbles with formation of orebodies, including massive sulfide ore. The δ34S of sulfides is 0 to 2‰ (relative to CDT);87Sr/86Sr of calcite from the late calcite-pyrite assemblage replacing marble is 0.704134 ± 6. The δ13C and 87Sr/86Sr of postore veined carbonates correlate positively (r = 0.98; n = 6). The regression line extends to the marble field. Its opposite end corresponds to magmatic (in terms of Bowman, 1998b) calcite with minimal δ13C, δ18O, and 87Sr/86Sr values (−6.9 ‰, +6.7‰, and 0.70378 ± 4, respectively). The aforementioned isotopic data show that magmatic fluid was supplied during all stages of mineral formation and interacted with marble and other rocks, changing its Sr, C, and O isotopic compositions. This confirms the earlier established redistribution of major elements and REE in the process of metasomatism. A contribution of meteoric and metamorphic water is often established in quartz from postore veins.  相似文献   

11.
Alluvial and colluvial gem sapphires are common in the basaltic fields of the French Massif Central (FMC) but sapphire-bearing xenoliths are very rare, found only in the Menet trachytic cone in Cantal. The O-isotope composition of the sapphires ranges between 4.4 and 13.9‰. Two distinct groups have been defined: the first with a restricted isotopic range between 4.4 and 6.8‰ (n = 22; mean δ18O = 5.6 ± 0.7‰), falls within the worldwide range defined for blue-green-yellow sapphires related to basaltic gem fields (3.0 < δ18O < 8.2‰, n = 150), and overlaps the ranges defined for magmatic sapphires in syenite (4.4 < δ18O < 8.3‰, n = 29). A second group, with an isotopic range between 7.6 and 13.9‰ (n = 9), suggests a metamorphic sapphire source such as biotite schist in gneisses or skarns. The δ18O values of 4.4–4.5‰ for the blue sapphire-bearing anorthoclasite xenolith from Menet is lower than the δ18O values obtained for anorthoclase (7.7–7.9‰), but suggest that these sapphires were derived from an igneous reservoir in the subcontinental spinel lherzolitic mantle of the FMC. The presence of inclusions of columbite-group minerals, pyrochlore, Nb-bearing rutile, and thorite in these sapphires provides an additional argument for a magmatic origin. In the FMC lithospheric mantle, felsic melts crystallized to form anorthoclasites, the most evolved peraluminous variant of the alkaline basaltic melt. The O-isotopic compositions of the first group suggests that these sapphires crystallized from felsic magmas under upper mantle conditions. The second group of isotopic values, typified for example by the Le Bras sapphire with a δ18O of 13.9‰, indicates that metamorphic sapphires from granulites were transported to the surface by basaltic magma.  相似文献   

12.
H. Holail  R. Tony 《GeoJournal》1995,35(4):481-486
The stable isotopic composition (13C and 18O) and elemental (Sr and Mg) of marine molluscs are presented for Carditacea and Solenacea shells collected off the Mediterranean coast of Egypt. Based on shell microstructures and mineralogy, the bivalve shells are preserved in their original mineralogy and chemistry.The Sr and Mg concentrations of the bivalve shells have mean values of 1960 ppm and 226 ppm respectively. The stable isotopic composition generally show high values of 18O and 13C. The 18O values range from +0.1 to –1.8 PDB and most shells are highly enriched in13C; averaging +2.5 PDB. These elemental and isotopic signatures are analogous to modern marine bivalves from other localities.The oxygen and carbon isotopes, together with the calculated temperatures, suggest that the aragonitic bivalve shells were precipitated in isotopic equilibrium from warm marine waters.  相似文献   

13.
Origin of ultramafic-hosted magnesite on Margarita Island,Venezuela   总被引:1,自引:0,他引:1  
Ultramafic-hosted deposits of magnesite (MgCO3) have been studied on Margarita Island, Venezuela, to elucidate the source of carbon and conditions of formation for this type of ore. Petrographic, mineralogic, and δ18O data indicate that magnesite precipitated on Margarita in near-surface environments at low P and T. δ13C ranges from −9 to −16‰ PDB within the magnesite and −8 to −10‰ PDB within some calcite and dolomite elsewhere on the island. The isotopically light dolomite fills karst and the calcite occurs as stock-work veins which resemble the magnesite deposits. These carbon isotopic ratios are consistent with a deep-seated source rather than an overlying source from a zone of surficial weathering. However, there is not much enrichment of precious metals and no enrichment of heavy rare-earth elements, as would be expected if the carbon had migrated upward as aqueous carbonate ions. The carbon probably has risen as a gaseous mixture of CO2 and CH4 which partially dissolved in near-surface water before leaching cations and precipitating as magnesite and other carbonates. The process probably is ongoing, given regional exhalation of carbonaceous gases.  相似文献   

14.
The main objective of this work is the generalization of lithostratigraphic, biostratigraphic and isotopic-geochronological data characterizing carbonate rocks from type succession of the broadly acknowledged chronostratigraphic subdivision of the Lower Riphean, such as the Burzyan Group of the Southern Urals and its analogs. Using an original approach to investigation of the Rb-Sr and Pb-Pb isotopic systems in carbonates and strict criteria of their retentivity, we studied the least altered (“best”) samples of the Burzyan carbonates, which retain the 87Sr/86Sr ratio of the sedimentation environment. As long ago as 1550 ± 30 and 1430 ± 30 Ma, that ratio corresponded to 0.70460–0.70480 and 0.70456–0.70481. The results confirm the influx of the mantle material predominantly into the World Ocean of the Early Riphean. The influence of meteoric diagenesis was likely responsible for local declines of δ18O in the Burzyan carbonates down to the values of −2.5 to −1.5‰ V-PDB. In the “best” samples, this parameter ranges from −0.7 to 0‰, which is consistent with the assumption that δ18O values (0 ± 1‰) characterized the stasis of the carbonate carbon isotopic composition in oceanic water 2.06–1.25 Ga ago. C-isotopic data on carbonate from the Paleoproterozoic-Lower Riphean boundary formations of the Urals, India, North America and Siberia suggest that the mentioned stasis ended by the commencement of the Early Riphean ca. 1.6–1.5 Ga ago. In the least altered carbonates of the Early Riphean, the δ18O variation range corresponds to 4.0–4.5‰.  相似文献   

15.
Geochemical mixing models were used to decipher the dominant source of freshwater (rainfall, canal discharge, or groundwater discharge) to Biscayne Bay, an estuary in south Florida. Discrete samples of precipitation, canal water, groundwater, and bay surface water were collected monthly for 2 years and analyzed for salinity, stable isotopes of oxygen and hydrogen, and Sr2+/Ca2+ concentrations. These geochemical tracers were used in three separate mixing models and then combined to trace the magnitude and timing of the freshwater inputs to the estuary. Fresh groundwater had an isotopic signature (δ 18O = −2.66‰, δD −7.60‰) similar to rainfall (δ 18O = −2.86‰, δD = −4.78‰). Canal water had a heavy isotopic signature (δ 18O = −0.46‰, δD = −2.48‰) due to evaporation. This made it possible to use stable isotopes of oxygen and hydrogen to separate canal water from precipitation and groundwater as a source of freshwater into the bay. A second model using Sr2+/Ca2+ ratios was developed to discern fresh groundwater inputs from precipitation inputs. Groundwater had a Sr2+/Ca2+ ratio of 0.07, while precipitation had a dissimilar ratio of 0.89. When combined, these models showed a freshwater input ratio of canal/precipitation/groundwater of 37%:53%:10% in the wet season and 40%:55%:5% in the dry season with an error of ±25%. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for 1–2% of the total fresh and saline water input.  相似文献   

16.
Spinel lherzolite and pyroxenite xenoliths from the Rio Puerco Volcanic Field, New Mexico, were analyzed for oxygen isotope ratios by laser fluorination. In lherzolites, olivine δ18O values are high (+5.5‰), whereas δ18O values for pyroxenes are low (cpx=+5.1‰; opx=+5.4‰) compared to average mantle values. Pyroxenite δ18O values (cpx=+5.0‰; opx=+5.3‰) are similar to those of the lherzolites and are also lower than typical mantle oxygen isotope compositions. Texturally and chemically primary calcite in pyroxenite xenoliths is far from isotopic equilibrium with other phases, with δ18O values of +21‰. The isotopic characteristics of the pyroxenite xenoliths are consistent with a petrogenetic origin from mixing of lherzolitic mantle with slab-derived silicate and carbonatite melts. The anomalously low δ18O in the pyroxenes reflects metasomatism by a silicate melt from subducted altered oceanic crust, and high δ18O calcite is interpreted to have crystallized from a high δ18O carbonatitic melt derived from subducted ophicarbonate. Similar isotopic signatures of metasomatism are seen throughout the Rio Puerco xenolith suite and at Kilbourne Hole in the southern Rio Grande rift. The discrete metasomatic components likely originated from the subducted Farallon slab but were not mobilized until heating associated with Rio Grande rifting occurred. Oxygen diffusion modeling requires that metasomatism leading to the isotopic disequilibrium between calcite and pyroxene in the pyroxenites occurred immediately prior to entrainment. Melt infiltration into spinel-facies mantle (xenoliths) prior to eruption was thus likely connected to garnet-facies melting that resulted in eruption of the host alkali basalt.  相似文献   

17.
 Metasomatic garnet-vesuvianite veins occur within the contact metamorphic marble sequence of the Lower Triassic Prezzo formation in a narrow, 1–5 m wide zone along an intrusive marble-granodiorite contact at the southwestern border of the Tertiary Adamello batholith. The metasomatic mineral assemblage is comprised of garnet, vesuvianite, clinopyroxene, wollastonite, and pyrrhotite, which were precipitated from the vein-forming fluid in a preexisting calcite matrix at conditions of about 2800 bars and 630° C. The veins are enriched in silicon, aluminum, iron, magnesium, titanium and depleted in calcium with respect to the unaltered contact metamorphic marble. Graphite, which is present in the unaltered Prezzo Marble is absent in the veins. Irregularly shaped mineralogically distinct zones with different degrees of silicification can be distinguished within the veins. The isotopic compositions of calcite (cc) in the unaltered marble are about δ18O (SMOW; Standard mean Ocean Water)=21.0‰ and δ13C(PDB; Peedee belemnite)=0.0‰. They are reset to significantly lower values within the veins, where δ18Occ is 15.0 to 16.0‰ and δ13Ccc is −4.5 to −3.5‰. The isotopic front coincides with an abrupt change in the microscopic texture of matrix carbonate which occurs at the sharp boundary between graphite-bearing and graphite-free material. Within the veins the oxygen isotope fractionation between calcite and garnet (gar) varies systematically with distance from highly silicified zones. The variations in Δ18Occ-gar are as large as 2‰, on a millimeter scale, indicating garnet-calcite isotopic disequilibrium. Vein formation was due to the infiltration of a water rich fluid of magmatic provenance into the carbonate country rock along fractures. Removal of graphite from the wall rock by dissolution through the metasomatic fluid induced recrystallization of matrix calcite. Permeability was enhanced during calcite recrystallization facilitating material transport into the wall rock and metasomatic alteration. Vein garnet was precipitated in isotopic equilibrium with the metasomatic fluid. The isotopic composition of preexisting calcite was initially out of equilibrium with the vein-forming fluid and it was shifted towards equilibrium by surface-reaction controlled calcite-fluid isotopic exchange during calcite recrystallization. Due to the short lifetime of the metasomatic system, calcite-fluid isotopic equilibrium was generally not attained. Within the veins, oxygen and carbon transport was fast relative to mineral-fluid exchange of their isotopes and the geometry of the isotopic pattern is largely controlled by the kinetics of mineral-fluid exchange. Received: 16 June 1994/Accepted: 20 May 1995  相似文献   

18.
The Sr, Nd and O isotopic compositions of the Kalatongke and Xibodu mafic-ultramafic complexes from the southern margin of the Altay orogenic belt show that they have similar isotopic compositions, characterized by low (87Sr/86Sr), and high ε Nd(t) values (6.3–9.1). It suggests that they were derived from a depleted asthenospheric mantle. However, most of the samples have δ 18O values >6‰ (5.4‰–10.2‰), indicating crustal contamination. A combination of Sr and O isotopic data shows the incorporation of crustal materials into the depleted mantle. They were produced by the melting of depleted mantle by the incorporation of subducted oceanic crust, and this incorporation might have occurred in the Early Paleozoic in the light of their Nd model ages and regional tectonics. The Kalatongke complex might have undertaken the contamination of the upper crust whereas the Xibodu complex does not have any signature of contamination of the upper crust. In addition, the similarities of the sources of the two complexes, which were located at the northern and southern sides of the regional Irtysh fault zone respectively, suggest that this fault might not be the boundary between the Altay and Junggar orogenic belts. Translated from Geological Review, 2006, 52(1): 38–42 [译自: 地质论评]  相似文献   

19.
Summary Oxygen isotope ratios of igneous zircon from magmatic rocks in Finland provide insights into the evolution and growth of the Precambrian crust during the Svecofennian orogeny. These data preserve magmatic δ18O values and correlate with major discontinuities in the lower crust. Oxygen isotope ratios of zircon across the 1.88–1.87 Ga Central Finland granitoid complex (CFGC) range from 5.50‰ to 6.84‰, except for three plutons in contact with the adjacent greenstone and metasedimentary belts (δ18O(Zrc) = 7.60‰–7.78‰). There is a systematic variation in δ18O(Zrc) with respect to geographic location in the CFGC, ranging from 6.60±0.23‰ (σ) in the northeast to 5.90±0.40‰ in the west-southwest. These values correlate with a change in crustal thickness and shift in geochemical composition. The oxygen isotope composition of the 1.65–1.54 Ga rapakivi granites and related rocks in southern Finland show a decreasing trend from north to south, independent of their emplacement age. The southern anorogenic granite group has an average δ18O in zircon of 6.14±0.07‰ and the northern anorogenic group has an average δ18O in zircon of 8.14±0.59‰. This difference reflects the boundary between island arc terrains accreted during the Paleoproterozoic. Deceased  相似文献   

20.
Early carbonate cements in the Yanchang Formation sandstones are composed mainly of calcite with relatively heavier carbon isotope (their δ^18O values range from -0.3‰- -0.1‰) and lighter oxygen isotope (their δ^18O values range from -22.1‰- -19.5‰). Generally, they are closely related to the direct precipitation of oversaturated calcium carbonate from alkaline lake water. This kind of cementation plays an important role in enhancing the anti-compaction ability of sandstones, preserving intragranular volume and providing the mass basis for later disso- lution caused by acidic fluid flow to produce secondary porosity. Ferriferous calcites are characterized by relatively light carbon isotope with δ^13C values ranging from -8.02‰ to -3.23‰, and lighter oxygen isotope with δ^18O values ranging from -22.9‰ to -19.7‰, which is obviously related to the decarboxylation of organic matter during the late period of early diagenesis to the early period of late diagenesis. As the mid-late diagenetic products, ferriferous cal- cites in the study area are considered as the characteristic authigenic minerals for indicating large-scaled hydrocarbon influx and migration within the clastic reservoir. The late ankerite is relatively heavy in carbon isotope with δ^13C values ranging from -1.92‰ to -0.84‰, and shows a wide range of variations in oxygen isotopic composition, with δ^18O values ranging from -20.5‰ to -12.6‰. They are believed to have nothing to do with decarboxylation, but the previously formed marine carbonate rock fragments may serve as the chief carbon source for their precipitation, and the alkaline diagenetic environment at the mid-late stage would promote this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号