首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seven well-documented and fresh glassy selvages from ocean floor basalt pillows were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Os, Pd, Rb, Re, Sb, Se, Te, Tl, U and Zn. The samples came from active spreading centers in the Indian and Atlantic Ocean. Glasses from DSDP Leg 24, site 238 (Indian Ocean) have a somewhat peculiar trace element pattern, but this is thought to reflect secondary processes operating at shallow depth, not an anomalous source region in the mantle. Our data rather indicate that heterogeneities in the mantle are confined to the highly incompatible lithophile elements.Chemical fractionations during petrogenesis of tholeiitic basalts are discussed in the light of literature data for primitive peridotitic upper mantle nodules. (Ir, Os), Au, Pd, Ni and Re are strongly fractionated from each other in igneous processes; the unfractionated chondritic mantle pattern thus imposes firm constraints on mantle evolution models. The potentially chalcophile elements Ag, Cd, In and Zn do not behave differently from lithophile elements of the same valency and comparable ionic radius. Residual sulfides are not abundant enough to efficiently control the partitioning of these elements during basalt petrogenesis. However, the poor coherence of Tl to Rb and U in ocean floor basalts could point to retention of Tl by residual sulfides during depletion of the MORB source regions. Sb is strongly depleted in the source regions of ocean ridge basalts; most likely, it was present as a highly incompatible Sb5+ cation. The limited Rb/Cs fractionation in oceanic tholeiites, as opposed to continental tholeiites and acidic rocks, appears to reflect the low abundance of volatile constituents and hydrous silicates in normal ocean ridge basalts.  相似文献   

2.
Precise Fe/Mn ratios and MnO contents have been determined for basalts from the Hawaiian shields of Ko’olau and Kilauea by inductively coupled plasma mass spectrometry. It is well known that the youngest Ko’olau (Makapu’u-stage) shield lavas define a geochemical endmember for Hawaiian lavas in terms of CaO and SiO2 contents and isotopic ratios of O, Sr, Nd, Hf, Pb, and Os. We find that their MnO content is also distinct. Despite the small range in MnO, 0.146 to 0.176 wt%, the precision of our data is sufficient to show that among unaltered Ko’olau lavas MnO content is correlated with Nd-Hf-Pb isotopic ratios, La/Nb and Al2O3/CaO elemental ratios, and contents of SiO2, MgO and Na2O + K2O adjusted for olivine fractionation. These trends are consistent with two-component mixing; one endmember is a SiO2-rich, MnO-, and MgO-poor dacite or andesite melt, generated by low degree (10-20%) partial melting of eclogite. Since this low-MgO endmember (dacite or andesite melt) has very low FeO and MnO contents, mixing of high Fe/Mn dacite or andesite melt with a MgO-rich picritic melt, the other endmember, does not significantly increase the Fe/Mn in mixed magmas; consequently, Ko’olau and Kilauea lavas have similar Fe/Mn. We conclude that the high Fe/Mn in Hawaiian lavas relative to mid-ocean ridge basalt originates from the high MgO endmember in Hawaiian lavas.  相似文献   

3.
Geochemistry of tholeiites from Lanai,Hawaii   总被引:3,自引:0,他引:3  
Lanai is the third smallest of the fifteen principal subaerial shield volcanoes of the Hawaiian hotspot. This volcano apparently became extinct during the shield-building stage of volcanism, as shown by the absence of both alkalic cap and post-erosional lavas. Major and trace element analyses of 22 new samples collected primarily from 3 stratigraphic sections show that Lanai tholeiites span a large range in composition. Some Lanai lavas are unique geochemically among Hawaiian tholeiites in having the lowest abundances of incompatible trace elements of any Hawaiian lavas and well-developed positive Eu anomalies. The geochemical characteristics of these low-abundance Lanai tholeiites are not the result of alteration, differences in mantle source modal mineralogy, the presence of residual accessory mantle phases or fractional crystallization of such phases, assimilation of depleted [MORB] wall-rock, or accumulation/resorption of phenocrysts or xenocrysts. Incompatible trace element ratios (e.g., Nb/La, Nb/Th, La/Th, La/Hf, Ce/Pb) in Lanai tholeiites span considerable ranges and form coherent trends with each other and with absolute abundances of these elements. Large variations in La/Sm, La/Yb, and absolute REE abundances at constant MgO suggest that Lanai tholeiites formed by variable amounts of partial melting. However, large ranges in incompatible element ratios cannot be explained solely by variations in partial melting of a geochemically homogeneous source, but must reflect geochemical heterogeneities in the Lanai source. Partial melting modeling indicates that the mixed Lanai source is probably LREE-enriched [i.e., (La/Yb)CN>1]. One component in the Lanai source, exemplified by the low-abundance tholeiites, has markedly lower REE/HFSE, Th/HFSE, alkali/HFSE, and Ce/Pb ratios than other Lanai or Hawaiian tholeiites and may indicate the presence of recycled residual subduction zone materials in the Hawaiian plume source. The positive Eu anomalies that characterize the low-abundance Lanai tholeiites are not the result of plagioclase accumulation or assimilation but are a feature of this source component. Progressive temporal geochemical variations in Lanai tholeiites from 2 stratigraphic sections indicate that the source composition of these lavas probably evolved over time. This change could have resulted from a progressive decrease in the extent of partial melting of the Lanai source. The compositional variability of Lanai tholeiites suggests that geochemical heterogeneities in their source are larger than the scale of partial melting. Lanai tholeiites could not have formed by smaller degrees of partial melting of plume material than did the larger-volume Hawaiian shields. Therefore, volume differences between Hawaiian shields must be controlled primarily by differences in the volume of supplied plume material rather than by differences in the degree of partial melting. The premature cessation of eruptive activity at Lanai may be attributed to relatively large degrees of partial melting of a small plume.  相似文献   

4.
The abundances of 30 trace elements, including the volatile chalcophile/siderophile elements As, Cd, Ga, In and Sn were determined by laser ablation ICP-MS in minerals of 19 anhydrous and 5 hydrous spinel peridotite xenoliths from three continents. The majority of samples were fertile lherzolites with more than 5% clinopyroxene; several samples have major element compositions close to estimates of the primitive mantle. All samples have been previously analysed for bulk-rock major, minor and lithophile trace elements. They cover a wide range of equilibration temperatures from about 850 to 1250 °C and a pressure range from 0.8 to 3.0 GPa. A comparison of results from bulk-rock analyses with concentrations obtained from combining silicate and oxide mineral data with modal mineralogy, gave excellent agreement, with the exception of As. Arsenic is the only element analysed that has high concentrations in sulphides. For all other elements sulphides can be neglected as host phases in these mantle rocks. The major host phase for Cd, In and Sn is clinopyroxene and if present, amphibole. Cadmium and In appear to behave moderately incompatibly during mantle melting similar to Yb.The data yield new and more reliable mantle abundances for Cd (35 ± 7 ppb), In (18 ± 3 ppb) and Sn (91 ± 28 ppb). The In value is similar to the Mg and CI-normalized Zn abundance of the mantle, although In is cosmochemically more volatile than Zn. The high In content suggests a high content of volatile elements in general in proto-Earth material. The lower relative abundances of volatile chalcophile elements such as Cd, S, Se and Te might be explained by sulphide segregation during core formation. The very low relative abundances of volatile and highly incompatible lithophile elements such as Br, Cl and I, and also C, N and rare gases, imply loss during Earth accretion, arguably by collisional erosion from differentiated planetesimals and protoplanets.  相似文献   

5.
The Kahoolawe shield volcano produced precaldera and caldera-filling tholeiites and mildly alkalic post-caldera lavas that petrographically and compositionally resemble such lavas from other Hawaiian shield volcanoes. However, Kahoolawe tholeiites display wide ranges in incompatible trace element ratios (e.g., Nb/Th=9–24, Th/Ta=0.6–1.3), 87Sr/86Sr (0.70379–0.70440), 143Nd/144Nd (0.51273–0.51298), and 206Pb/204Pb (17.92–18.37). The isotopic variation exceeds that at any other Hawaiian shield volcano, and spans about half the range for all Hawaiian tholeiites. Quasi-cyclic temporal evolution of Kahoolawe tholeiites is consistent with combined fractional crystallization and periodic recharge by primitive magmas. Ratios of highly incompatible trace elements and Sr, Nd, and Pb isotopic ratios from coherent sub-trends that reflect recurrent interactions between variably evolved magmas and two other mantle components whose compositions are constrained by intersections between these trends. The most MgO-rich Kahoolawe tholeiites are partial melts of a high Nb/Th (23.5) ascending plume, possibly comprising ancient subducted oceanic lithosphere. Slightly evolved tholeiites experienced combined crystal fractionation and assimilation (AFC) of material derived from a distinct reservoir (Nb/Th 9) of asthenospheric derivation. The most evolved tholeiites display compositional shifts toward a third component, having mid ocean ridge basalt-like isotopic ratios but enriched OIB-like trace element ratios, representing part of the lithospheric mantle (or melts thereof). Periodic recurrence of all three magma variants suggests that eruptions may have tapped coeval reservoirs distributed over a large depth range. Kahoolawe provides new evidence concerning the nature of the Hawaiian plume, the distribution of compositional heterogeneities in the suboeanic mantle, and the processes by which Hawaiian tholeiites form and evolve.  相似文献   

6.
Major and trace element and 143Nd/144Nd (0.51209–0.51216) and 87Sr/86Sr (0.70879–0.71105) isotope analyses are presented on a representative group of lavas from the Vulsini district of the Roman magmatic province. Three distinct series are identified; the high-K and low-K series are similar to those described from other Italian volcanoes, while the third is represented by a group of relative ly undifferentiated leucite basanites which are thought to be near-primary mantle melts. Major and trace element variations within the high-K series are consistent with fractional crystallisation from a parental magma similar to the most magnesian leucitites. Crustal contamination resulted in an increase in 87Sr/86Sr with increasing fractionation, but it was superimposed on magmas which had already inherited a range of incompatible element and isotope ratios from enrichment processes in the sub-continental mantle. These are reviewed using the available results from Vulsini, Roccamonfina and Ernici. Transition element abundances and Ta/Yb ratios indicate that the pre-enrichment mantle was similar to that of E-type MORB, and that these elements were not mobilised by the enrichment process. Mixing calculations suggest that three components were involved in the enrichment process; mantle comparable with the source of MORB, and two other components rich in trace elements. One, the low-K component, had high Sr/Nd, Th/Ta and Ba/Nb and no europium anomaly while the second had lower Sr/Nd, a negative europium anomaly and very high Th/Ta. It was also characterised by low Nb/Ba and high Rb/Ba ratios, similar to those reported from phlogopite-rich peridotite xenoliths. The trace element enrichment processes are therefore thought to have occurred in the mantle wedge above a subduction zone with the trace element characteristics of the high-K end-member reflecting the subduction of sediments and the stabilisation of mantle phlogopite.  相似文献   

7.
The Nellore–Khammam Schist Belt (NKSB) in South India is a Precambrian greenstone belt sited between the Eastern Ghats Mobile Belt (EGMB) to the east and the Cratonic region to the west. The belt contains amphibolites, granite gneisses and metasediments including banded iron formations. Amphibolites occurring as dykes, sills and lenses—in and around an Archaean layered complex—form the focus of the present study. The amphibolites are tholeiitic in composition and are compositionally similar to Fe-rich mafic rocks of greenstone belts elsewhere. The NKSB tholeiites show highly variable incompatible trace element abundances for similar Mg#s, relatively constant compatible element concentrations, and uniform incompatible element ratios. Chondrite-normalized REE patterns of the tholeiites range from strongly LREE depleted ((La/Yb) N = 0.19) to LREE enriched ((La/Yb) N = 6.95). Constant (La/Ce) N ratios but variable (La/Yb) N values are characteristic geochemical traits of the tholeiites; the latter has resulted in crossing REE patterns especially at the HREE segment. Even for the most LREE depleted samples, the (La/Ce) N ratios are > 1 and are similar to those of the LREE enriched samples. There is a systematic decrease in FeOt, K2O and P2O5, as well as Ce and other incompatible elements from the LREE enriched to the depleted samples without any variation in the incompatible element ratios and Mg#s. Neither batch and fractional melting, nor magma chamber processes can account for the non-correlation between the LREE enrichment and HREE concentrations. We suggest that dynamic melting of the upper mantle is responsible for these geochemical peculiarities of the NKSB tholeiites. Polybaric dynamic melting within a single mantle column with variable mineralogy is the likely mechanism for the derivation of NKSB tholeiitic melts. It is possible that the NKSB tholeiites are derived from a source with higher FeO/MgO than that of present day ridge basalts.  相似文献   

8.
The Marquesas Archipelago, a volcanic chain in French Polynesia (south-central Pacific Ocean), is predominantly composed of alkalic, transitional and tholeiitic basalts. The variation trends in these intraplate basaltic rocks imply that the magmas were derived from different upper mantle sources. Model calculations using the total inverse method show that the peridotite source of most Marquesas basalts was enriched in incompatible elements compared to a primordial mantle and had higher than chondritic ratios of several elements such as La/Yb, Ti/V and P/Ce. A metasomatic enrichment event is suggested by the sequence of element enrichment in the source relative to the primordial mantle (Ba>Nb>La>Ce>Sr>Sm>Eu> Zr>Hf>Ti>Y>Yb). On the other hand, some lavas including tholeiites of Ua Pou and alkalic basalts of Hiva Oa, were probably derived from relatively depleted upper mantle. In some islands such as Hatutu, the different types of basalts were generated from sources with rather similar compositions. The residual phases of the Marquesas magmas included garnet. The sources of these magmas were similar in trace element chemistry to the oceanic mantle below Hawaii.  相似文献   

9.
We have measured the Hf and Nd isotopic compositions of 38 basalts from the Ko’olau drill hole, Hawai’i. The basalts show limited variations in both 176Hf/177Hf and 143Nd/144Nd (ε Nd varies from +4.2 to +7.3 and ε Hf from +8.0 to +12.3). Their correlated variation has an R 2 of 0.86. The data form an array with a slope of 1.2 on an ε Hfε Nd isotope correlation diagram, while the slope of all Hawai’ian basalt data is 0.98. Both slopes are significantly shallower than that of the mantle array of 1.4 defined by ocean island basalts. Previous studies have shown that a shallow slope in Hf–Nd isotope space can be related to ancient pelagic sediments in the mantle source (Blichert-Toft et al. 1999; Salters and White 1998). However, the combined variations in Ko’olau basalts of Hf–Nd–Pb–Os isotopic compositions and trace element ratios, such as La/Nb, Th/La and Sr/Nd, are not consistent with the simple addition of a sediment component to the mantle. We instead propose that the shallow slope on the Hf–Nd isotope correlation diagram for Ko’olau shield stage basalts can be better explained if the enriched endmember contains either an ancient oceanic lithosphere component or the high-176Hf/177Hf component observed in the Salt Lake Crater (SLC) peridotite xenoliths (which also have a depleted lithosphere origin). Since Ko’olau basalts have high 187Os/188Os (0.135–0.160) and the SLC xenoliths have 187Os/188Os up to 0.13 (Lassiter et al. 2000) Os-isotopes are consistent with the latter being a component in the enriched Ko’olau source.
Vincent J. M. SaltersEmail:
  相似文献   

10.
The importance of melt extraction for tracing mantle heterogeneity   总被引:3,自引:0,他引:3  
Numerous isotope and trace element studies of mantle rocks and oceanic basalts show that the Earth’s mantle is heterogeneous. The isotopic variability in oceanic basalts indicates that most mantle sources consist of complex assemblages of two or more components with isolated long-term chemical evolution, on both global and local scales. The range in isotope and highly incompatible element ratios observed in oceanic basalts is commonly assumed to directly reflect that of their mantle sources. Accordingly, the end-points of isotope arrays are taken to represent the isotopic composition of the different components in the underlying mantle, which is then used to deduce the origin of mantle heterogeneity. Here, a melting model for heterogeneous mantle sources is presented that investigates how and to what extent isotope and trace element signatures are conveyed from source to melt. We model melting of a pyroxenite-bearing peridotite using recent experimental constrains for melting and partitioning of pyroxenite and peridotite. Identification of specific pyroxenite melting signatures allows finger-printing of pyroxenite melts and confirm the importance of lithological heterogeneity in the Earth’s mantle. The model results and the comparison of the calculated and observed trace element-isotope systematics in selected MORB and OIB suites (e.g. from the East Pacific Rise, Iceland, Tristan da Cunha, Gough and St.Helena) further show that factors such as the relative abundance of different source components, their difference in solidus temperature, and especially the extent, style and depth range of melt aggregation fundamentally influence the relationship between key trace element and isotope ratios (e.g. Ba/Th, La/Nb, Sr/Nd, La/Sm, Sm/Yb, 143Nd/144Nd). The reason for this is that any heterogeneity present in the mantle is averaged or, depending on the effectiveness of the melt mixing process, even homogenized during melting and melt extraction. Hence to what degree mantle heterogeneity is reflected in the erupted melts is not only a function of source and melting-induced variability. It also depends on the extent of mixing during melting and melt extraction and thus strongly on the relative incompatibility of the elements considered. The observed trace element variation in erupted melts can be greater or smaller than that of their mantle sources, depending on the incompatibility of the elements investigated. The isotopic variability in erupted melts, on the other hand, is generally smaller than that of their mantle source. Melt mixing during melt extraction consequently has an important influence on the relative extent of variation, and hence the degree of correlation between the isotope and trace element ratios. Overall fewer correlations between trace element and isotope ratios are expected whenever melts are extracted from a restricted depth range, as is the case for ocean island basalts, than for cases where melts are extracted over a larger depth interval (mid ocean ridges and especially ridge centered hotspots like Iceland). While the isotopic composition of the most enriched melts may correspond closely to those of the enriched source component, even the most depleted mid ocean ridge basalts are likely to underestimate the isotopic depletion of the depleted mantle component. These observations imply that using the chemical and isotopic range observed in oceanic basalts as directly representative of that in the corresponding mantle source can be misleading, since this assumption is strictly true only for homogeneous mantle sources. In addition to identifying source or partitioning-related differences in melts from different mantle sources, inferring the true composition, origin, and distribution of heterogeneous components in the Earth’s mantle therefore requires detailed knowledge about the mechanisms of melting and melt mixing during the melt extraction process. Only if these processes and their influence on the isotope-trace element relationship are understood, can the composition and origin of the different source components, and thus mantle heterogeneity, be accurately constrained.  相似文献   

11.
Petrologic and chemical data are presented for samples from five volcanically active islands in the northern Marianas group, an intra-oceanic island arc. The data include microprobe analyses of phenocryst and xenolith assemblages, whole rock major and trace element chemistry including REE, and Sr isotope determinations (87Sr/86Sr=0.7034±0.0001). Quartz-normative basalt and basaltic andesite are the most abundant lava types. These are mineralogically and chemically similar to the mafic products of other intra-oceanic islands arcs. It is suggested, however, that they are not typical of the ‘island arc tholeiitic’ series, having Fe enrichment trends and K/Rb, for example, more typical of calc-alkaline suits. Major and trace element characteristics, and the presence of cumulate xenoliths, indicate that extensive near surface (< 3 Kb) fractionation has occurred. Thus, even least fractionated basalts have low abundances of Mg, Ni and Cr, and high abundances of K and other large cation, imcompatible elements, relative to ocean ridge tholeiites. However, abundances of REE and small cation lithophile elements, such as Ti, Zr, Nb, and Hf are lower than typical ocean ridge tholeiites. The REE data and Sr isotope compositions suggest a purely mantle origin for the Marianas island arc basalts, with negligible input from subducted crustal material. Thus, subduction of oceanic lithosphere may not be a sufficient condition for initiation of island arc magmatism. Intersection of the Benioff zone with an asthenosphere under appropriate conditions may be requisite. Element ratios and abundances, combined with isotopic data, suggest that the source for the Marianas island arc basalts is more chondritic in some respects, and less depleted in large cations than the shallow (?) mantle source for ocean ridge tholeiites.  相似文献   

12.
Desilicification elevates extraction of Re and platinum‐group elements (PGEs) from many geological reference materials (RMs), but the extent to which it affects less chalcophile elements has been investigated rarely. To further evaluate the effect of desilicification, mass fractions of elements with variable chalcophile affinities (In, Cd, Cu, Ag, S, Se, Te, Re and PGEs) in different RMs were obtained by isotope dilution and digestion procedures involving HF‐HNO3 in bombs versus HNO3‐HCl in Carius tubes. The results show that the extraction efficiencies of HF‐desilicification vary in different RMs and for different elements. HF‐desilicification led to a significant increase (30–70%) for In and Cd mass fractions in all analysed RMs, but it played a negligible role in other strongly chalcophile elements in many samples (e.g., UB‐N and WGB‐1). Noticeably, desilicification led to a 10–30% increase in the mass fractions of Cu, Ag, S, Se and Te in BHVO‐2 and BIR‐1a, but less so in BCR‐2. These results could be attributed mainly to the variable chalcophile affinities of elements and their relative budget in sulfides, alloys and silicates. Desilicification should thus be preferred to determine chalcophile elements for most samples, except in cases where they are negligibly hosted in silicates.  相似文献   

13.
Tholeiitic basalts dredged from the Mid-Atlantic Ridge (MAR) axis at 43 ° N are enriched in incompatible trace elements compared to the ‘ normal’ incompatible element depleted tholeiites found from 49 ° N to 59 ° N and south of 33 ° N on the MAR. The most primitive 43 ° N glasses have MgO/FeO*= 1.2 and coexist with olivine (Fo90–91) and chrome-rich spinel. The tholeiitic basalts from the MAR 43 ° N are distinct from the strongly incompatible trace element depleted tholeiities found elsewhere in the Atlantic, and have trace element features typical of island tholeiities and MAR axis tholeiites from 45 ° N. Petrographic, major, and compatible trace element trends of the axial valley tholeiites at 43 ° N are consistent with shallow-level fractionation; in particular, evolution from primitive liquids with forsteritic olivine plus chrome spinel as liquidus phases to fractionated liquids with plagioclase plus clinopyroxene as major crystallizing phases. However, each dredge haul has distinctive incompatible trace element abundances. These trace element characteristics require a hetrogeneous mantle or complex processes such as open system fractional crystallization and magma mixing. Alkali basalts (~5% normative nepheline) were dredged from a prominent fracture zone at 43 ° N. Typical of alkali basalts they are strongly enriched (compared to tholeiites) in incompatible elements. Their highly fractionated rare-earth element (REE) abundances require residual garnet during partial melting. The 43 ° N tholeiites and alkali basalts could be derived from a garnet peridotite source with REE contents equal to 2 × chondrites by ~5% and 1% melting, respectively. Alternatively, they could be derived from a moderately light REE enriched source by ~25% and 9.5% melting, respectively.  相似文献   

14.
The natural river water certified reference material SLRS‐5 (NRC‐CNRC) was routinely analysed in this study for major and trace elements by ten French laboratories. Most of the measurements were made using ICP‐MS. Because no certified values are assigned by NRC‐CNRC for silicon and 35 trace element concentrations (rare earth elements, Ag, B, Bi, Cs, Ga, Ge, Li, Nb, P, Rb, Rh, Re, S, Sc, Sn, Th, Ti, Tl, W, Y and Zr), or for isotopic ratios, we provide a compilation of the concentrations and related uncertainties obtained by the participating laboratories. Strontium isotopic ratios are also given.  相似文献   

15.
Seamounts on the drifting oceanic crust are inevitably carried by plate motions and eventually accreted or subducted. However, the geochemical signatures of the subducted seamounts and the significance of seamount subduction are not well constrained. Hundreds of seamounts have subducted beneath the Philippine Sea Plate following the westward subduction of the Pacific Plate since the Eocene (~52 Ma). The subducted oceanic crust and seamount materials can be exhumed from the mantle depth to the seafloor in the Mariana forearc region by serpentinite mud volcanoes, providing exceptional opportunities to directly study the subducted oceanic crust and seamounts. The International Ocean Discovery Program (IODP) expedition 366 has recovered a few metamorphosed mafic clasts exhumed from the Mariana forearc serpentinite mud volcanoes, e.g., the Fantangisña and Asùt Tesoru seamounts. These mafic clasts have tholeiitic to alkaline affinities with distinct trace elements and Nd-Hf isotopes characteristics, suggesting different provenances and mantle sources. The tholeiites from the Fantangisña Seamount have trace element characteristics typical of mid-ocean ridge basalt. The Pacific-type Hf-Nd isotopic compositions, combined with the greenschist metamorphism of these tholeiites further suggest that they came from the subducted Pacific oceanic crust. The alkali basalts-dolerites from the Fantangisña and Asùt Tesoru seamounts show ocean island basalt (OIB)-like geochemical characteristics. The OIB-like geochemical signatures and the low-grade metamorphism of these alkali basalts-dolerites suggest they came from subducted seamounts that originally formed in an intraplate setting on the Pacific Plate. The Pacific Plate origin of these metabasites suggests they were formed in the Early Cretaceous or earlier.Two types of OIBs have been recognized from alkali metabasites, one of which is geochemically similar to the HIMU-EMI-type OIBs from the West Pacific Seamount Province, and another is similar to the EMII-type OIBs from the Samoa Island in southern Pacific, with negative Nb-Ta-Ti anomalies and enriched Nd-Hf isotopes. Generally, these alkali metabasites are sourced from the heterogeneous mantle sources that are similar to the present South Pacific Isotopic and Thermal Anomaly. This study provides direct evidence for seamount subduction in the Mariana convergent margins. We suggest seamount subduction is significant to element cycling, mantle heterogeneity, and mantle oxidation in subduction zones.  相似文献   

16.
Published and original data on the contents of 50 elements in carbonaceous sediments from seas (Black, Baltic, and Caspian) and fertile oceanic shelves (shelves of Namibia, Peru, Chile, and California) are generalized. The comparison of these results with the average composition of ancient carbonaceous shales reveals both similarities and differences in the distribution of indicator trace elements (Re, Hg, Se, Ag, Cd, Tl, U, Mo, As, Ni, and Zn). Correlation coefficients were analyzed to determine the characteristic element associations. It is established that oceanic carbonaceous sediments are closer in composition to carbonaceous shales than their marine analogues, which is related to the differences in sedimentation conditions, including hydrological, hydrochemical, and biogeochemical factors. The role of anoxic environment in the accumulation of chalcophile elements in sediments is estimated. The comparison of the contents of some mobile trace elements in oceanic water and carbonaceous sediments of modern oceans demonstrates that the water composition affects the composition of carbonaceous sediments and can be used for deciphering the composition of ancient ocean water.  相似文献   

17.
Six C1 chondrite samples and a C2 xenolith from the Plainview H5 chondrite were analyzed by radiochemical neutron activation for the elements Ag, Au, Bi, Br, Cd, Ce, Cs, Eu, Ge, In, Ir, Lu, Nd, Ni, Os, Pd, Pt, Rb, Re, Sb, Se, Sn, Tb, Te, Tl, Yb, and Zn. The data were combined with 9 earlier analyses from this laboratory and examined for evidence of chemical fractionation in C1 chondrites.A number of elements (Br, Rb, Cs, Au, Re, Os, Ni, Pd, Sb, Bi, In, Te) show small but correlated variations. Those of the first 8 probably reflect hydrothermal alteration in the meteorite parent body, whereas those of Sb, Bi, In, and Te may at least in part involve nebular processes. Br and Au show systematic abundance differences from meteorite to meteorite, which suggests hydrothermal transport on a kilometer scale. The remaining elements vary from sample to sample, suggesting transport on a centimeter scale.There is no conclusive evidence for nebular fractionation affecting C1 's. Though C1 chondrites have lower ZrHf and IrRe ratios than do other chondrite classes, these ratios vary in other classes, suggesting that those classes rather than C1's are fractionated. Three fractionation-prone REE—Ce, Eu, and Yb have essentially the same relative abundances in C1's and all other chondrite classes, and hence apparently are not fractionated in C1's. We did not confirm the large Tb and Yb variations in C1's reported by other workers.We present revised mean C1 abundances for 35 elements, based on the new data and a critical selection of literature data. Changes are generally less than 10%, except for Br, Rb, Ag, Sb, Te, Au, and the REE.The Plainview C2 xenolith has normal trace element abundances, except for 3 elements falling appreciably above the C2 range: Rb, Cs, and Bi. Hydrothermal alteration may be the reason for all 3, though nebular fractionation remains a possibility for Bi.  相似文献   

18.
ABSTRACT

We present the major and trace elements and Sr, Nd, and Pb isotopes in mid-ocean ridge basalts (MORB) from the East Pacific Rise (EPR) at 2.6–3.1°S. These samples are low-K tholeiites and show significant variation in their major element compositions (e.g. 4.60–8.18 wt% MgO, 8.34–12.12 wt% CaO, 9.78–14.25 wt% Fe2O3, and 0.06–0.34 K2O wt%). Trace element abundances of the 2.6–3.1°S MORB are variably depleted (e.g. (La/Sm), N = 0.51–0.78, Zr/Y = 2.35–3.42, Th/La = 0.035–0.056, and Ce/Yb = 2.38–3.96) but closely resemble the average N-MORB. In the compatible elements (Ni and Cr) against incompatible element Zr plots, the 2.6–3.1°S MORB show well-defined negative correlations, together with a liquid line of descent (LLD) modelling and petrographic observations, implying a significant role of olivine, plagioclase and clinopyroxene fractionation during magma evolution. When compared to global MORB and peridotites, the 2.6–3.1°S MORB and most of the other axial lavas from the South EPR show similar Zn/Fe, Zn/Mn, and Fe/Mn ratios, attesting to a peridotite-dominated mantle lithology. However, the relationships between incompatible trace element ratios, such as Zr/Rb and Nb/Sm, and the negative correlation between Zr/Nb and 87Sr/86Sr indicate a geochemically heterogeneous mantle source. The mantle beneath the South EPR likely consists of two components, with the enriched component residing as physically distinct domains (e.g. veins or dikes) in the depleted peridotite matrix. In the Sr–Nd–Pb isotope space, the South EPR MORB lie along the mixing lines between the depleted MORB mantle (DMM) and the ‘C’-like Pukapuka endmember. We infer that low-F melts derived from these enriched materials may cause localized mantle heterogeneity (veins or dikes) via an infiltration process. Subsequent melting of the refertilized mantle may impart an isotopically distinct characteristic to South EPR MORB.  相似文献   

19.
Major and trace element data are used to establish the nature and extent of spatial and temporal chemical variations in basalts erupted in the Iceland region of the North Atlantic Ocean. The ocean floor samples are those recovered by legs 38 and 49 of the Deep Sea Drilling Project. Within each of the active zones on Iceland there are small scale variations in the light rare earth elements and ratios such as K/Y: several central complexes and their associated fissure swarms erupt basalts with values of K/Y distinct from those erupted at adjacent centres; also basalts showing a wide range of immobile trace element ratios occur together within single vertical sections and ocean floor drill holes. Although such variations can be explained in terms of the magmatic processes operating on Iceland they make extrapolations from single basalt samples to mantle sources underlying the outcrop of the sample highly tenuous. 87Sr/86Sr ratios measured for 25 of the samples indicate a total range from 0.7028 in a tholeiite from the Reykjanes Ridge to 0.7034 in an alkali basalt from Iceland and are consistent with other published ratios from the region. A positive correlation between 87Sr/86Sr and Ce/Yb ratios indicates the existence of systematic isotopic and elemental variations in the mantle source region. An approximately fivefold variation in Ce/Yb ratio observed in basalts with the same 87Sr/86Sr ratio implies that different degrees and types of partial melting have been involved in magma genesis from a single mantle composition. 87Sr/86Sr ratios above 0.7028, Th/U ratios close to 4 and La/Ta ratios close to 10 distinguish most basalts erupted in this part of the North Atlantic Ocean from normal mid-ocean ridge basalt (N-type MORE) — although N-type MORB has been erupted at extinct spreading axes just to the north and northeast of Iceland as well as the presently active Iceland-Jan Mayen Ridge.Comparisons with the hygromagmatophile element and radiogenic isotope ratios of MORB and the estimated primordial mantle indicate that the mantle sources producing Iceland basalts have undergone previous depletion followed by more recent enrichment events. A veined mantle source region is proposed in preference to the mantle plume model to explain the chemical variations.  相似文献   

20.
韩江伟  熊小林  朱照宇 《岩石学报》2009,25(12):3208-3220
对雷琼地区21个晚新生代玄武岩样品的主量、微量元素和Sr、Nd、Pb同位素分别用湿化学法、ICP-MS和MC-ICPMS进行了测定.这些玄武岩主要为石英拉斑玄武岩,其次为橄榄拉斑玄武岩和碱性玄武岩.大多数样品的微量元素和同位素成分与洋岛玄武岩(OIBs)相似,而且随着SiO_2不饱和度增加,不相容元素含量也增加.除R4-1可能受到地壳混染外,其他样品相对均一的Nd同位素(ε_(Nd)=2.5-6.0)以及变化明显但范围有限的Sr同位素(0.703106~0.704481),可能继承了地幔源区的特征.~(87)Sr/~(86)Sr与~(206)Pb/~(204)Pb的正相关和~(143)Nd/~(144)Nd与~(206)Pb/~(204)Pb的负相关特征暗示DM(软流圈地幔)与EM2(岩石圈地幔)的混合.地幔捕虏体的同位素特征暗示EM2成分不可能存在于尖晶石橄榄岩地幔,而La/Yb和Sm/Yb系统表明岩浆由石榴石橄榄岩部分熔融产生,这意味着EM2成分可能存在于石榴石橄榄岩地幔.雷琼地区玄武岩的地球化学变化可以用软流圈地幔为主的熔体加入不同比例石榴石橄榄岩地幔不同程度熔融产生的熔体来解释:碱性玄武岩和橄榄拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较低程度(7%~9%)熔融体混合,而石英拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较高程度(10%~20%)熔融体的混合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号