首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
29Si MAS NMR experiments have been carried out to determine the silica species distribution (Q distribution) in albite, NaAlSi3O8, and anorthite, CaAl2Si2O8, composition glasses (designated albite and anorthite glass). Our results indicate that the Q distribution of albite glass contains all five possible silica species and shows a tendency towards high Q3 and Q4 concentrations, whereas anorthite glass does not contain Q4 and has a high Q0 concentration. Rationalizations are made in terms of the observed Q distributions to explain differences in devitrification behavior of these two glasses. 27Al MAS NMR data for these glasses suggest that differences in devitrification behavior between these two glasses should be ascribed to small growth rates rather than small nucleation rates of crystalline albite from albite glass.  相似文献   

2.
A drop calorimetric study, between 900 and 1800 K, of amorphous SiO2, NaAlSi3O8, NaAlSi2O6, NaAlSiO4 and KAlSi3O8 shows the increase in heat capacity which results from glass transitions. For these glasses, the fictive temperature has a negligible effect on the heat capacity above room temperature, but it has an important influence on the enthalpy of formation as obtained from solution calorimetry. From these results and published Cp and enthalpy of solution data, several properties have been calculated: the enthalpies of fusion of high albite, nepheline, Jadeite and high sanidine, the thermodynamic functions of amorphous NaAlSi3O8 and KAlSi3O8 between 0 and 2000 K, and some mixing properties of liquids along the join SiO2-NaAlSi3O8. The latter data suggest that these liquids behave more closely as athermal solutions than as regular solutions.  相似文献   

3.
High temperature solution calorimetry of glasses in the system CaMgSi2O6 (Di)-CaAl2SiO6 (CaTs) show them to have negative enthalpies of mixing with a regular enthalpy parameter, WH, of -11.4 ± 0.7 kcal. Negative heats of mixing between alumina-rich and alumina-poor glasses seem to be a general phenomenon in aluminosilicates and are not confined only to glassy systems containing anorthite as a component. The thermodynamic behavior of glasses in the system SiO2-Ca0.5;AlO2-CaMgO2 appears to vary in a smooth fashion, with small positive heats of mixing near SiO2 and substantial negative heats of mixing for other compositions. The exothermic behavior with increasing A1(Al + Si) may be related to local charge balance of M2+ and Al3+. The negative heats of mixing in MgCaSi2O6-CaAl2SiO6, MgCaSi2O6-CaAl2Si2O8 and NaAlSi3O8-CaAl2Si2O8 glasses are in contrast to the positive heats of mixing found in MgCaSi2O6-CaAl2SiO6 (pyroxene) and NaAlSi3O8-CaAl2Si2O8 (high plagioclase) crystalline solid solutions.  相似文献   

4.
New 27Al NMR data are presented in order to clarify the discrepancies in the interpretation of the previous 27Al Magic Angle Spinning (MAS) spectra from hydrous aluminosilicate glasses. The 27Al MAS data have been collected at much higher magnetic field (14.1 and 17.6 T) than hitherto, and in addition, multiple quantum (MQ) MAS NMR data are presented for dry and hydrous nepheline glasses and NaAlSi7.7O17.4 glass that, according to the model of Zeng et al. (Zeng Q., Nekvasil H., and Grey C. P. 2000. In support of a depolymerisation model for water in sodium aluminosilicate glasses: Information from NMR spectroscopy. Geochim. Cosmochim. Acta64, 883-896), should produce a high fraction (up to 30%) of Al in Al Q3-OH on hydration. Although small differences in the MAS spectra of anhydrous and hydrous nepheline glasses are observed, there is no evidence for the existence of significant (>∼2%) amounts of Q3 Al-OH in these glasses in either the MAS or MQMAS data.  相似文献   

5.
The combined results of 27Al-1H and 1H-29Si-1H cross polarization NMR experiments for hydrous glasses (containing 0.5-2 wt% water) along the SiO2-NaAlSiO4 join confirm that the dissolution mechanism of water in aluminosilicate glasses is fundamentally the same as for Al-free systems, i.e. the dissolved water ruptures oxygen bridges and creates Si-OH and Al-OH groups, in addition to forming molecular water (H2Omol). The fraction of Al-OH increases non-linearly as the Al content increases with up to half of the OH groups as Al-OH for compositions close to NaAlSiO4. The relative abundances of the different species are controlled by the degree of Al-avoidance and the relative tendency of hydrolysis of the different types of oxygen bridges, Si-O-Si, Si-O-Al and Al-O-Al. A set of homogeneous reactions is derived to model the measured Al-OH/Si-OH speciation, and the obtained equilibrium constants are in agreement with literature data on the degree of Al-avoidance. With these equilibrium constants, the abundance of the different oxygen species, i.e. Si-O-Si, Si-O-Al, Al-O-Al, Si-OH, Al-OH and H2Omol, can be predicted for the entire range of water and Al contents.  相似文献   

6.
Hartree-Fock and B3LYP NMR calculations were performed at the 6-311+G(2df,p) level on cluster models representing albite glasses using B3LYP/6 to 31G* optimized geometries. Calculation results on several well-known crystalline materials, such as low albite and KHSi2O5, were used to check the accuracy of the calculation methods.Calculated 29Si-NMR results on clusters that model protonation of Al-O-Si linkages and the replacement of Na+ by H+ indicate a major increase in Si-O(H) bond length and a 5 ppm difference in δiso for 29Si compared to that for anhydrous albite glass. The calculated δiso of 27Al in such linkages agrees with the experimental data, but shows an increase in Cq that cannot be fully diminished by H-bonding to additional water molecules. This protonation model is consistent with both experimental 17O NMR data and the major peak of 1H-NMR spectra. It cannot readily explain the existence of the small peak in the experimental 1H spectra around 1.5 ppm. Production of the depolymerized units Al [Q3]-O-H upon the dissolution of water is not consistent with 27Al, 1H, or 17O NMR experimental results. Production of Si [Q3]-O-H is consistent with all of the experimental 17O and 1H-NMR data; such units can produce both the major peak at 3.5 ppm and the small peak at 1.5 ppm in 1H spectra, either with or without hydrogen bonding. This species, however, cannot produce the main features of 29Si spectra.It is concluded that although neither protonation nor the production of Si [Q3]-O-H alone is consistent with the available experimental data, the combination of these two processes is consistent with available experimental NMR data.  相似文献   

7.
The investigation of hydrous boro(alumino)silicate melts and glasses with near infrared (NIR) spectroscopy revealed an important effect of boron on the water speciation. In the NIR spectra of B-bearing glasses new hydroxyl-related bands develop at the high frequency side of the 4500 cm−1 peak. In NaAlSi3O8 + B2O3 glasses this new peak is present as a shoulder at 4650 cm−1, and in NaAlSi3O8-NaBSi3O8 (Ab-Rd) glasses it appears as a resolved peak at 4710 cm−1. These bands increase with increasing boron concentration, suggesting that they are due to B-OH complexes. Furthermore, the variations in the NIR spectra indicate that with increasing B-content, but constant total water concentration, the amount of structurally bonded hydroxyl groups increases at the expense of molecular H2O. For example, at a total water concentration of 4 wt.%, pure Rd-glass contains ∼50% more water as hydroxyl groups than pure Ab-glass.In-situ NIR spectroscopy at high P and T using a hydrothermal diamond-anvil cell was used to gain information about the temperature dependence of the water speciation in NaBSi3O8 melts. The data demonstrate the conversion of molecular H2O to hydroxyl groups with increasing temperature. However, a fully quantitative evaluation of the high T spectra was hampered by problems with defining the correct baseline in the spectra. As an alternative approach annealing experiments on a Rd-glass containing 2.8 wt.% water were performed. The results confirm the conversion of H2O to OH groups with increasing T, but also suggest that the OH groups represented by the 4710 cm−1 peak (B-OH) participate much less in the conversion reaction compared to X-OH, represented by the 4500 cm−1 peak.  相似文献   

8.
Dissolution of water in magmas significantly affects phase relations and physical properties. To shed new light on the this issue, we have applied 1H and 29Si nuclear magnetic resonance (NMR) spectroscopic techniques to hydrous silicate glasses (quenched melts) in the CaO-MgO-SiO2 (CMS), Na2O-SiO2, Na2O-CaO-SiO2 and Li2O-SiO2 systems. We have also carried out ab initio molecular orbital calculations on representative clusters to gain insight into the experimental results.The most prominent result is the identification of a major peak at ∼1.1 to 1.7 ppm in the 1H MAS NMR spectra for all the hydrous CMS glasses. On the basis of experimental NMR data for crystalline phases and ab initio calculation results, this peak can be unambiguously attributed to (Ca,Mg)OH groups. Such OH groups, like free oxygens, are only linked to metal cations, but not part of the silicate network, and are thus referred to as free hydroxyls in the paper. This represents the first direct evidence for a substantial proportion (∼13∼29%) of the dissolved water as free hydroxyl groups in quenched hydrous silicate melts. We have found that free hydroxyls are favored by (1) more depolymerized melts and (2) network-modifying cations of higher field strength (Z/R2: Z: charge, R: cation-oxygen bond length) in the order Mg > Ca > Na. Their formation is expected to cause an increase in the melt polymerization, contrary to the effect of SiOH formation. The 29Si MAS NMR results are consistent with such an interpretation. This water dissolution mechanism could be particularly important for ultramafic and mafic magmas.The 1H MAS NMR spectra for glasses of all the studied compositions contain peaks in the 4 to 17 ppm region, attributable to SiOH of a range of strength of hydrogen bonding and molecular H2O. The relative population of SiOH with strong hydrogen bonding grows with decreasing field strength of the network-modifying cations. Ab initio calculations confirmed that this trend largely reflects hydrogen bonding with nonbridging oxygens.  相似文献   

9.
We have measured in-situ Raman spectra of aluminosilicate glasses and liquids with albite (NaAlSi3 O8) and anorthite (CaAl2Si2O8) compositions at high temperatures, through their glass transition range up to 1700 and 2000 K, respectively. For these experiments, we have used a wire-loop heating device coupled with micro-Raman spectroscopy, in order to achieve effective spatial filtering of the extraneous thermal radiation. A major concern in this work is the development of methodology for reliably extracting the first and second order contributions to the Raman scattering spectra of aluminosilicate glasses and liquids from the high temperature experimental data, and analyzing these in terms of vibrational (anharmonic) and configurational changes. The changes in the first order Raman spectra with temperature are subtle. The principal low frequency band remains nearly constant with increasing temperature, indicating little change in the T-O-T angle, and that the angle bending vibration is quite harmonic. This is in contrast to vitreous SiO2, studied previously. Above Tg, intensity changes in the 560–590 cm?1 regions of both sets of spectra indicate configurational changes in the supercooled liquids, associated with formation of additional Al-O-Al linkages, or 3-membered (Al, Si)-containing rings. Additional intensity at 800 cm?1 reflects also some rearrangement of the Si-O-Al network.  相似文献   

10.
We have taken a systematic approach utilizing advanced solid-state NMR techniques to gain new insights into the controversial issue concerning the dissolution mechanisms of water in aluminosilicate melts (glasses). A series of quenched anhydrous and hydrous (∼2 wt% H2O) glass samples along the diopside (Di, CaMgSi2O6)—anorthite (An, CaAl2Si2O8) join with varying An components (0, 20, 38, 60, 80, and 100 mol %) have been studied. A variety of NMR techniques, including one-dimensional (1D) 1H and 27Al MAS NMR, and 27Al → 1H cross-polarization (CP) MAS NMR, as well as two-dimensional (2D) 1H double-quantum (DQ) MAS NMR, 27Al triple-quantum (3Q) MAS NMR, and 27Al → 1H heteronuclear correlation NMR (HETCOR) and 3QMAS/HETCOR NMR, have been applied. These data revealed the presence of SiOH, free OH ((Ca,Mg)OH) and AlOH species in the hydrous glasses, with the last mostly interconnected with Si and residing in the more polymerized parts of the structure. Thus, there are no fundamental differences in water dissolution mechanisms for Al-free and Al-bearing silicate melts (glasses), both involving two competing processes: the formation of SiOH/AlOH that is accompanied by the depolymerization of the network structure, and the formation of free OH that has an opposite effect. The latter is more important for depolymerized compositions corresponding to mafic and ultramafic magmas.Aluminum is dominantly present in four coordination (AlIV), but a small amount of five-coordinate Al (AlV) is also observed in all the anhydrous and hydrous glasses. Furthermore, six-coordinate Al (AlVI) is also present in most of the hydrous glasses. As Al of higher coordinations are favored by high pressure, AlVIOH and AlVOH may become major water species at higher pressures corresponding to those of the Earth’s mantle.  相似文献   

11.
A model for the mixing of H2O and silicate melts has been derived from the experimentally determined effects of H2O on the viscosity (fluidity), volumes, electrical conductivities, and especially the thermodynamic properties of hydrous aluminosilicate melts. It involves primarily the reaction of H2O with those O?2 ions of the melt that are shared (bridging) between adjacent (Al, Si)O4 tetrahedra to produce OH? ions. However, in those melts that contain trivalent ions in tetrahedral coordination, such as the Al3+ ion in feldspathic melts, the model further involves exchange of a proton from H2O with a non-tetrahedrally coordinated cation that must be present to balance the net charge on the AlO4 group. This cation exchange reaction, which goes essentially to completion, results in dissociation of the H2O and is limited only by the availability of H2O and the number of exchangeable cations per mole of aluminosilicate.In the system NaAlSi3O8-H2O, upon which this thermodynamic model is based, there is 1 mole of exchangeable cations (Na+) per mole (GFW) of NaAlSi3O8, consequently ion exchange occurs for H2O contents up to a 1:1 mole ratio (Xmw = mole fraction H2O = 0.5). For mole fractions of H2O greater than 0.5, no further exchange can occur and the reaction with additional bridging oxygens of the melt produces 2 moles of associated OH? ions per mole of H2O dissolved. These reactions lead to a linear dependence of the thermodynamic activity of H2O (amw) on the square of its mole fraction (Xmw) for values of Xmw, up to 0.5 and an exponential dependence on Xmw at higher H2O contents. Thus, for values of Xmw ? 0.5, amw = k(Xmw)2, where k is a Henry's law constant for the dissociated solute.Extension of the thermodynamic model for NaAlSi3O8-H2O to predict H2O solubilities and other behavior of compositionally more complex aluminosilicate melts (magmas) requires placing these melts on an equimolal basis with NaAlSi3O8. This is readily accomplished using chemical analyses of quenched glasses by normalizing to the stoichiometric requirements of NaAlSi3O8, first in terms of equal numbers of exchangeable cations for mole fractions of H2O up to 0.5 and secondly in terms of 8 moles of oxygen for higher H2O contents. Chemical analyses of three igneous-rock glasses, ranging in composition from tholeiitic basalt to lithium-rich pegmatite, were thus recast and the experimental H2O solubilities were computed on this equimolal basis. The resulting equimolal solubilities are all the same, within experimental error, as the solubility of H2O in NaAlSi3O8 melt calculated from the thermodynamic relations.The equivalence of equimolal solubilities implies that the Henry's law constant (k), which is a function of temperature and pressure, is independent of aluminosilicate composition over a wide range. Moreover, as a consequence of the Gibbs-Duhem relation and the properties of exact differentials, it is clear that the silicate components of the melt, properly defined, mix ideally. Thus, a relatively simple mixing model for H2O in silicate melts has led to a quantitative thermodynamic model for magmas that has far-reaching consequences in igneous petrogenesis.  相似文献   

12.
Dynamics of Na in sodium aluminosilicate glasses and liquids   总被引:1,自引:0,他引:1  
23Na NMR measurements on Na2Si3O7, Na3AlSi6O15, and NaAlSi3O8 glasses from room temperature to 1200°C show that the dynamics and local structure of sodium in silicate/aluminosilicate glasses and melts vary with composition and temperature.The peak positions decrease in frequency between room temperature and 200°C indicating that the Na sees a larger average site as temperature is increased. Between 200°–300° and 700°C, line widths, nutation frequencies and peak positions are consistent with motional averaging of quadrupolar satellites. Above 700°C there is little or no change in the peak positions with temperature. Chemical shifts of the materials at 1000°C (Na2Si3O7: 3.6; Na3AlSi6O15:-1.3; NaAlSi3O8:-6.4 ppm) indicate a slight change in the average Na coordination number from 6–7 for the silicate to 7–8 for the aluminosilicates.  相似文献   

13.
We describe here high-field 17O magic-angle-spinning (MAS) and triple-quantum MAS (3QMAS) NMR spectra for several alkali silicate and Na, K, and Ca aluminosilicate glasses containing up to 10 wt.% water. The H2O site appears to have a large quadrupolar coupling constant, and its chemical shift increases from Na- to K- glasses, suggesting significant cation-H2O interactions. In 17O one-pulse MAS and 3QMAS and 27Al one-pulse NMR experiments, major differences were seen between spectra for anhydrous and hydrous calcium aluminosilicate glasses. The changes in the 17O MAS spectra can be explained by the addition of an H2O peak and to the disappearance of an Al-O-Al peak from the 17O NMR spectrum for the hydrous glass. The 27Al results are consistent with this interpretation.  相似文献   

14.
The Raman spectra of albite glasses with 4.5 and 6.6 weight percent water have been obtained, and are compared with that of a dry sample. The hydrous glasses show bands near 3600 cm?1 due to O-H stretching, and a previously unreported weak band near 1600 cm?1 due to bending of molecular H2O. Other weak spectral features are discussed, and the effect of dissolved water on the aluminosilicate framework vibrations is considered.  相似文献   

15.
Concomitant changes of refractive index (n) with density (ϱ) of isochemical series comprizing several densified silicate glasses were analyzed. The data include glasses of the systems SiO2, TiO2-SiO2, Na2O-SiO2, and NaAlSi3O8-CaAl2Si2O8. Extending the ideal point dipole theory, an electronic overlap parameter (b) accounting for the non-ideal behaviour of solids was refined using the general refractivity formula , where α is the molar polarizability. Statistical analyses assuming α=constant within each isochemical series showed no systematic variation of b with chemical composition. A constrained refinement of b using all data converged at b=1.3. Applying this common overlap parameter and appropriate polarizability constants, recalculated refractive index values fit excellently the experimental results within the entire n−ϱ range. Furthermore, the additivity of polarizabilities, often assumed for oxide components, is derived for TiO2-SiO2 glasses and for glasses of plagioclase composition.  相似文献   

16.
Revealing the atomic structure and disorder in oxide glasses, including sodium silicates and aluminosilicates, with varying degrees of polymerization, is a challenging problem in high-temperature geochemistry as well as glass science. Here, we report 17O MAS and 3QMAS NMR spectra for binary sodium silicate and ternary sodium aluminosilicate glasses with varying degrees of polymerization (Na2O/SiO2 ratio and Na2O/Al2O3 ratio), revealing in detail the extent of disorder (network connectivity and topological disorder) and variations of NMR parameters with the glass composition. In binary sodium silicate glasses [Na2O-k(SiO2)], the fraction of non-bridging oxygens (NBOs, Na-O-Si) increases with the Na2O/SiO2 ratio (k), as predicted from the composition. The 17O isotropic chemical shifts (17O δiso) for both bridging oxygen (BO) and NBO increase by about 10-15 ppm with the SiO2 content (for k = 1-3). The quadrupolar coupling products of BOs and NBOs also increase with the SiO2 content. These trends suggest that both NBOs and BOs strongly interact with Na; therefore, the Na distributions around BOs and NBOs are likely to be relatively homogenous for the glass compositions studied here, placing some qualitative limits on the extent of segregation of alkali channels from silica-enriched regions as suggested by modified random-network models. The peak width (in the isotropic dimension) and thus bond angle and length distributions of Si-O-Si and Na-O-Si increase with the SiO2 content, indicating an increase in the topological disorder with the degree of polymerization. In the ternary aluminosilicate glasses [Na2O]x[Al2O3]1−xSiO2, the NBO fraction decreases while the Al-O-Si and Al-O-Al fractions apparently increase with increasing Al2O3 content. The variation of oxygen cluster populations suggests that deviation from “Al avoidance” is more apparent near the charge-balanced join (Na/Al = 1). The Si-O-Si fraction, which is closely related to the activity coefficient of silica, would decrease with increasing Al2O3 content at a constant mole fraction of SiO2. Therefore, the activity of silica may decrease from depolymerized binary silicates to fully polymerized sodium aluminosilicate glasses at a constant mole fraction of SiO2.  相似文献   

17.
To assist in the assignment and interpretation of 23Na NMR spectra in silicate and aluminosilicate minerals and glasses we have calculated the 23Na NMR shieldings and the electric field gradients (EFG) at the Na for a number of Na-containing species. Included are Na(OH2) n +, n = 1, 2, 4, 5, 6 and 8, and Na+ complexes with SiH3OH, SiH3ONa and O(SiH3)2. We have also evaluated shieldings and EFGs for Na-centered clusters extracted from crystalline Na2SiO3 and anhydrous sodalite, Na6[AlSiO4]6. Using 6-31G* SCF optimized geometries and the GIAO method with a 6-31G* basis set [and 6-311(2d,p) bases for the smaller clusters] we find a calculated increase in shielding with coordination number (CN) for the Na(OH2) n +, n = 4, 6, 8 series that agrees reasonably well with experimental trends. Calculated changes in the Na shielding as water is replaced by bridging or nonbridging silicate O atoms are also consistent with experimental observations. The deshielding of Na (with respect to gas-phase Na+) which is produced by an O-containing ligand is a strongly decreasing function of the R(Na–O) and a weakly decreasing function of the underbonding or free valence of the O. Deshielding contributions to the isotropic shielding from different ligands are additive to good approximation for low CN species, so that the total deshielding can be calculated accurately by summing the contributions from the individual ligands. However for the larger CN species the directly calculated deshieldings are substantially smaller than those obtained using such an additivity approximation. We further test this approximation by calculating the deshieldings for Na in 12 different sites in silicate and aluminosilicate minerals which have recently been studied experimentally, using our calculated deshielding contributions for individual O-containing ligands and experimental values for the Na–O distances. Correlation coefficients between the experimental shifts and the calculated deshieldings are around 0.9 and the slope of the correlation is almost 1.0 . Calculations on large Na-centered clusters extracted from the crystal structures of Na2SiO3 and anhydrous sodalite reproduce the experimental values for both NMR shieldings and electric field gradients but at considerable computational cost. Comparison with recent 23Na NMR studies on hydrous albite glasses indicates that coordination of either H2O or OH to the Na could give the magnitude of deshielding observed, depending upon the detailed Na–O distances within the hydrous glass. Received: 31 December 1998 / Revised, accepted: 11 May 1999  相似文献   

18.
Chlorine-35 magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra were collected at 14.1 and 18.8 Tesla fields to determine the atomic scale structural environments of the chloride ions in anhydrous and hydrous silicate and aluminosilicate glasses containing 0.2 to 0.7 wt% Cl. NMR peaks are broad and featureless, but are much narrower than the total chemical shift range for the nuclide in inorganic chlorides. Peak widths are primarily due to quadrupole interactions and to a lesser extent to chemical shift distributions. Peak positions are quite different for the Na- and Ca-containing glasses, suggesting that most Cl coordination environments contain network modifier cations. Comparison of peak positions and shapes for silicate and aluminosilicate glasses containing either Na or Ca suggests that there is no obvious contribution from Cl bonded to Al, and relative quantitation of peak areas indicates that there is no systematic undercounting of 35Cl spins in the aluminous vs. the Al-free samples. In Ca-Na silicate glasses with varying Ca/(Ca + Na), the mixed-cation glasses have intermediate chemical shifts between those of the end members, implying that there is not a strong preference of either Ca2+ or of Na+ around Cl. Hydrous Na-aluminosilicate glasses with H2O contents up to 5.9 wt% show a shift to higher frequency NMR signal with increasing H2O content, while the quadrupole coupling constant (CQ) remains constant at ∼3.3 MHz. However, the change in frequency is much smaller than that expected if H2O systematically replaced Na+ in the first-neighbor coordination shell around Cl. A series of hydrous Ca-aluminosilicate glasses with H2O contents up to 5.5 wt% show no shift in NMR signal with increasing H2O content. The CQ remains constant at ∼4.4 MHz, again suggesting no direct interaction between Cl and H2O in these samples.  相似文献   

19.
We have obtained high quality Raman spectra for two H/D isotopically substituted hydrous aluminosilicate glasses with compositions along the NaAlSi3O8-SiO2 join. Consistent with the results of previous studies, the isotope shift for the band near 900 cm–1, whose intensity grows with increasing water content, is extremely small: v h /v d = 1.004 ± 0.004. The lack of a definite H/D isotope shift for this band does not, however, preclude its association with a vibration of a hydrous species in the glass, because of likely strong coupling between different vibrational modes of hydrated framework species. The 900 cm–1 band could well be due to a T — OH (T = Si, Al) stretching or bending vibration in the hydrous glass, as required by the presence of a combination band near 4500 cm–1 in near-infrared spectra.  相似文献   

20.
The development of an accurate analytical procedure for determination of dissolved water in complex alumino-silicate glasses via micro-Raman analysis requires the assessment of the spectra topology dependence on glass composition. We report here a detailed study of the respective influence of bulk composition, iron oxidation state and total water content on the absolute and relative intensities of the main Raman bands related to glass network vibrations (LF: ∼490 cm−1; HF: ∼960 cm−1) and total water stretching (H2OT: ∼3550 cm−1) in natural glasses. The evolution of spectra topology was examined in (i) 33 anhydrous glasses produced by the re-melting of natural rock samples, which span a very large range of polymerisation degree (NBO/T from 0.00 to 1.16), (ii) 2 sets of synthetic anhydrous basaltic glasses with variable iron oxidation state (Fe3+/FeT from 0.05 to 0.87), and (iii) 6 sets of natural hydrous glasses (CH2OT from 0.4 to 7.0 wt%) with NBO/T varying from 0.01 to 0.76.In the explored domain of water concentration, external calibration procedure based on the H2OT band height is matrix-independent but its accuracy relies on precise control of the focusing depth and beam energy on the sample. Matrix-dependence strongly affects the internal calibrations based on H2OT height scaled to that of LF or HF bands but its effect decreases from acid (low NBO/T, SM) to basic (high NBO/T, SM) glasses. Structural parameters such as NBO/T (non-bridging oxygen per tetrahedron) and SM (sum of structural modifiers) describe the matrix-dependence better than simple compositional parameters (e.g. SiO2, Na2O + K2O). Iron oxidation state has only a minor influence on band topology in basalts and is thus not expected to significantly affect the Raman determinations of water in mafic (e.g. low SiO2, iron-rich) glasses. Modelling the evolution of the relative band height with polymerisation degree allows us to propose a general equation to predict the dissolved water content in natural glasses:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号