首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Karoo volcanic sequence in the southern Lebombo monocline in Mozambique contains different silicic units in the form of pyroclastic rocks, and two different basalt types. The silicic units in the lower part of the Lebombo sequence are formed by a lower unit of dacites and rhyolites (67–80 wt.% SiO2) with high Ba (990–2500 ppm), Zr (800–1100 ppm) and Y (130–240 ppm), which are part of the Jozini–Mbuluzi Formation, followed by a second unit, interlayered with the Movene basalts, of high-SiO2 rhyolites (76–78 wt.%; the Sica Beds Formation), with low Sr (19–54 ppm), Zr (340–480 ppm) and Ba (330–850 ppm) plus rare quartz-trachytes (64–66 wt.% SiO2), with high Nb and Rb contents (240–250 and 370–381 ppm, respectively), and relatively low Zr (450–460 ppm). The mafic rocks found at the top of the sequence are basalts and ferrobasalts belonging to the Movene Formation. The basalts have roughly flat mantle-normalized incompatible element patterns, with abundances of the most incompatible elements not higher than 25 times primitive mantle. The ferrobasalt has TiO 4.7 wt.%, Fe2O3t = 16 wt.%, and high Y (100 ppm), Zr (420 ppm) and Ba (1000 ppm). The Movene basalts have initial (at 180 Ma) 87Sr/86Sr = 0.7052–0.7054 and 143Nd/144Nd = 0.51232, and the Movene ferrobasalt has even lower 87Sr/86Sr (0.70377) and higher 143Nd/144Nd (0.51259). The silicic rocks show a modest range of initial Sr-(87Sr/86Sr = 0.70470–0.70648) and Nd-(143Nd/144Nd = 0.51223–0.51243) isotope ratios. The less evolved dacites could have been formed after crystal fractionation of oxide-rich gabbroic cumulates from mafic parental magmas, whereas the most silica-rich rhyolites could have been formed after fractional crystallization of feldspars, pyroxenes, oxides, zircon and apatite from a parental dacite magma. The composition of the Movene basalts imply different feeding systems from those of the underlying Sabie River basalts.  相似文献   

2.
A geochemical and isotopic study was carried out for the Mesozoic Yangxin, Tieshan and Echeng granitoid batholiths in the southeastern Hubei Province, eastern China, in order to constrain their petrogenesis and tectonic setting. These granitoids dominantly consist of quartz diorite, monzonite and granite. They are characterized by SiO2 and Na2O compositions of between 54.6 and 76.6 wt.%, and 2.9 to 5.6 wt.%, respectively, enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE), and relative depletion in Y (concentrations ranging from 5.17 to 29.3 ppm) and Yb (0.34–2.83 ppm), with the majority of the granitoids being geochemically similar to high-SiO2 adakites (HSA). Their initial Nd (εNd = − 12.5 to − 6.1) and Sr ((87Sr/86Sr)i = 0.7054–0.7085) isotopic compositions, however, distinguish them from adakites produced by partial melting of subducted slab and those produced by partial melting of the lower crust of the Yangtze Craton in the Late Mesozoic. The granitoid batholiths in the southeastern Hubei Province exhibit very low MgO ranging from 0.09 to 2.19 wt.% with an average of 0.96 wt.%, and large variations in negative to positive Eu anomalies (Eu/Eu = 0.22–1.4), especially the Tieshan granites and Yangxin granite porphyry (Eu/Eu = 0.22–0.73). Geochemical and Nd–Sr isotopic data demonstrate that these granitoids originated as partial melts of an enriched mantle source that experienced significant contamination of lower crust materials and fractional crystallization during magma ascent. Late Mesozoic granitoids in the southeastern Hubei Province of the Middle–Lower Yangtze River belt were dominantly emplaced in an extensional tectonic regime, in response to basaltic underplating, which was followed by lithospheric thinning during the early Cretaceous.  相似文献   

3.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

4.
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating.  相似文献   

5.
A deformed ca. 570 Ma syenite–carbonatite body is reported from a Grenville-age (1.0–1.2 Ga) terrane in the Sierra de Maz, one of the Western Sierras Pampeanas of Argentina. This is the first recognition of such a rock assemblage in the basement of the Central Andes. The two main lithologies are coarse-grained syenite (often nepheline-bearing) and enclave-rich fine-grained foliated biotite–calcite carbonatite. Samples of carbonatite and syenite yield an imprecise whole rock Rb–Sr isochron age of 582 ± 60 Ma (MSWD = 1.8; Sri = 0.7029); SHRIMP U–Pb spot analysis of syenite zircons shows a total range of 206Pb–238U ages between 433 and 612 Ma, with a prominent peak at 560–580 Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525 ± 7 Ma (Pampean orogeny) and at ca. 430–440 Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neo-proterozoic lower continental crust.  相似文献   

6.
Voluminous granitic intrusions are distributed in the West Junggar, NW China, and they can be classified as the dioritic rocks, charnockite and alkali-feldspar granite groups. The dioritic rocks (SiO2 = 50.4–63.8 wt.%) are calc-alkaline and Mg enriched (average MgO = 4.54 wt.%, Mg# = 0.39–0.64), with high Sr/Y ratios (average = 21.2), weak negative Eu (average Eu/Eu = 0.80) and pronounced negative Nb–Ta anomalies. Their Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7035–0.7042, εNd(t) = 4.5–7.9, εHf(t) = 14.1–14.5) show a depleted mantle-like signature. These features are compatible with adakites derived from partial melting of subducted oceanic crust that interacted with mantle materials. The charnockites (SiO2 = 60.0–65.3 wt.%) show transitional geochemical characteristics from calc-alkaline to alkaline, with weak negative Eu (average Eu/Eu = 0.75) but pronounced negative Nb–Ta anomalies. Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7037–0.7039, εNd(t) = 5.2–8.0, εHf(t) = 13.9–14.7) also indicate a depleted source, suggesting melts from a hot, juvenile lower crust. Alkali-feldspar granites (SiO2 = 70.0–78.4 wt.%) are alkali and Fe-enriched, and have distinct negative Eu and Nb–Ta anomalies (average Eu/Eu = 0.26), low Sr/Y ratios (average = 2.11), and depleted Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7024–0.7045, εNd(t) = 5.1–8.9, εHf(t) = 13.7–14.2). These characteristics are also comparable with those of rocks derived from juvenile lower crust. Despite of the differences in petrology, geochemistry and possibly different origins, zircon ages indicate that these three groups of rocks were coevally emplaced at ~ 305 Ma.A ridge subduction model can account for the geochemical characteristics of these granitoids and coeval mafic rocks. As the “slab window” opened, upwelling asthenosphere provided enhanced heat flux and triggered voluminous magmatisms: partial melting of the subducting slab formed the dioritic rocks; partial melting of the hot juvenile lower crust produced charnockite and alkali-feldspar granite, and partial melting in the mantle wedge generated mafic rocks in the region. These results suggest that subduction was ongoing in the Late Carboniferous and, thus support that the accretion and collision in the Central Asian Orogenic Belt took place in North Xinjiang after 305 Ma, and possibly in the Permian.  相似文献   

7.
Faruk Aydin  Orhan Karsli  Bin Chen 《Lithos》2008,104(1-4):249-266
Whole-rock geochemistry, Sr–Nd–Pb isotopes and K–Ar data are reported for alkaline samples collected from the Neogene alkaline volcanics (NAVs) in the Eastern Pontides, northeastern Turkey, in order to investigate their source and petrogenesis and geodynamic evaluation of the region. The NAVs were made of three groups that comprise of basanite–tephrite (feldspar-free; Group A), tephrite–tephriphonolite (feldspar and feldspathoid-bearing; Group B) and alkaline basalt–rhyolite (feldspathoid-free; Group C) series. These rocks cover a broad compositional range from silica-undersaturated to silica-oversaturated types, almost all of which are potassic in character. They show enrichment of LREE and LILE and depletion of HFSE, without a Eu anomaly in most of the mafic samples. Textural features and calculated pressures based on the Cpx-barometer in each series indicate that the alkaline magma equilibrated at shallow crustal depths under a pressure of about 3–4.5 kbar and approximating a crystallization depth of 9–14 km. The NAVs are slightly depleted in isotopic composition, with respect to 87Sr/86Sr (ranging from 0.705018 to 0.705643) and 143Nd/144Nd (ranging from 0.512662 to 0.512714) that indicate young Nd model ages (0.51–059 Ga). This may indicate that the parent melts tapped a homogeneous and young lithospheric mantle source which was metasomatized by subduction-derived sediments during the Late Mesozoic. Pb isotopic compositions (206Pb/204Pb = 18.85–18.95; 207Pb/204Pb = 15.60–15.74; 208Pb/204Pb = 38.82–39.25) may also be consistent with a model for an enriched subcontinental lithospheric mantle source. Lithospheric thinning and resultant upwelling of asthenosphere induced by lithospheric delamination may have favoured partial melting of chemically enriched, young lithospheric mantle beneath the Eastern Pontides. Then, the melt subsequently underwent a fractional crystallization process along with or without minor amounts of crustal assimilation, generating a wide variety of rock types in a post-collision extensional regime in the Eastern Pontides during the Neogene.  相似文献   

8.
Elemental, Sr–Nd–Pb isotopic and geochronological data are presented for the Taishan high-mg dioritic rocks (western Shandong) from the Eastern Block of the North China Craton in order to better understand the Archean tectonic evolution and crustal growth of the Craton. The rocks gave the zircon U–Pb age of 2536–2540 Ma. They show low SiO2 and Al2O3 contents, high MgO, mg-number, Cr, Ni, Y, Yb, Sr and Ba, enriched LILEs and LREEs, depleted HFSEs and HREEs with (Nb/La)N of 0.07–0.12. They exhibit Nd(t) values of 1.53–3.30, (206Pb/204Pb)i of 11.20–15.30, (207Pb/204Pb)i of 14.14–14.83 and (208Pb/204Pb)I of 31.10–33.93. Such geochemical features with an affinity to both a mantle- and crust-like source for the Taishan dioritic rocks are similar to those of the typical Archean sanukitoids, suggesting an origination from a sub-arc mantle wedge variably metasomatized by the slab-derived dehydration fluids and melts before 50–100 Ma of the emplacement of the Taishan sanukitoid plutons. It is proposed that the Taishan sanukitoids resulted from the sudden change of the downgoing slab from a flat subduction to subsequently steeper subduction in an active continental margin regime during Neoarchean time.  相似文献   

9.
Epigenetic gold mineralization occurs in the Marmato mining district, within the Calima Terrain of the Setentrional Andes, Colombia. Regional rocks associated with this mineralization include: graphite- and chlorite-schists of the Arquia Complex; metamorphosed during the Cretaceous, Miocene sandstones, shales and conglomerates of the Amagá Formation; as well as pyroclastic rocks (clasts of basalt, andesites and mafic lavas) and subvolcanic andesitic/dacitic bodies of the Combia Formation (9 to 6 Ma). The subvolcanic Marmato stock hosts mesothermal and epithermal low-sulfidation Au–Ag ores in the form of distensional veins, stockwork, and quartz veinlets within brecciated zones. Ore minerals are pyrite, sphalerite and galena with subordinate chalcopyrite, arsenopyrite, pyrrhotite, argentite and native gold/electrum.Sericitized plagioclase from a porphyry dacite yielded a K–Ar age of 5.6 ± 0.6 Ma, interpreted as the age of ore deposition. This is in close agreement with the age of reactivation of the Cauca–Romeral Fault System (5.6 ± 0.4 Ma), which bounds the Calima Terrain. A porphyry andesite–dacite (6.7 ± 0.1 Ma), hosting the Au–Ag veins, shows a measured 87Sr/86Sr between 0.70440 and 0.70460, εNd between + 2.2 and + 3.2 and 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of 18.964 to 19.028; 15.561 to 15.570; and 38.640 to 38.745, respectively. The 87Sr/86Sr and εNd values of rocks from the Arquia Group range from 0.70431 to 0.73511 and − 12.91 to + 10.0, respectively, whereas the corresponding Pb isotopic ratios (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) range from 18.948 to 19.652; 15.564 to 15.702; and 38.640 to 38.885, respectively. 87Sr/86Sr and εNd values obtained on sulfides from the gold quartz veins, which occur at shallow and intermediate levels, range from 0.70500 to 0.71210 and from − 1.11 to + 2.40. In the deepest veins, εNd values lie between + 1.25 and + 3.28 and the 87Sr/86Sr of calcite and pyrite fall between 0.70444 and 0.70930. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of all mineralization are in the ranges 18.970 to 19.258; 15.605 to 15.726 and 38.813 to 39.208, respectively. Carbonates have an average 87Sr/86Sr ratio of 0.70445, which is within the range of values measured in the host dacite. The Sr isotopic data indicate that carbonic fluids have a restricted hydrothermal circulation within the host igneous body, while the Sr, Pb and Nd isotopic compositions of the sulfides suggest that the fluids not only circulated within the Marmato stock, but also throughout the Arquia Complex, inferring that these rocks offer a potential target for mineral exploration. Based on geological and geochronological evidence, the epizonal Marmato gold ores formed during the Miocene to Pliocene, as a result of cooling of the Marmato stock and reactivation along a crustal-scale fault zone related to thermal processes in an accretionary oceanic–continental plate orogen.  相似文献   

10.
《Gondwana Research》2014,25(2):859-872
Mesozoic lamprophyres are widely present in gold province in the Jiaodong Peninsula. In this study, we analyzed major and trace elements and Sr–Nd–Pb isotopic compositions of lamprophyres from the Linglong and Penglai Au-ore districts in the Jiaodong Peninsula, in an attempt to better understand Mesozoic lithospheric evolution beneath the eastern North China Craton. These lamprophyre dikes are calc-alkaline in nature, and are characterized by low concentrations of SiO2, TiO2 and total Fe2O3, high concentrations of MgO, Mg# and compatible element, enriched in LREE and LILE but variably depleted in HFSE. They display initial 87Sr/86Sr ratios of 0.709134–0.710314, εNd(t) values of − 13.2 to − 18.3, 206Pb/204Pb of 17.364–17.645, 207Pb/204Pb of 15.513–15.571 and 208Pb/204Pb of 37.995–38.374. Interpretation of elemental and isotopic data suggests that the Linglong and Penglai lamprophyres were derived from partial melting of a phlogopite- and/or amphibole-bearing lherzolite in the spinel–garnet transition zone. The parental magma might have experienced fractionation of olivine and clinopyroxene, and minor crustal materials were incorporated during ascent of these mafic magmas. Before ~ 120 Ma of emplacement of these calc-alkaline lamprophyres, the ancient lithospheric mantle was variably metasomatized by hydrous fluids rather than melts from subducted/foundered continental crust. It is proposed that continuous modification by slab-derived hydrous fluids from the Paleo-Pacific plate converted the old cratonic lithospheric mantle to Mesozoic enriched lithospheric mantle. Geodynamic force for generation of these lamprophyres may be related to large scale lithospheric thinning coupled with upwelling of the asthenosphere beneath the North China Craton. Continental arc-rifting related to the Paleo-Pacific plate subduction is favored as a geodynamic force for the cratonic lithosphere detachment.  相似文献   

11.
Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, K2O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. K2O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% K2O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts.Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks.Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios.The primitive basalts have: 206Pb/204Pb 18.09–18.34, 207Pb/204Pb 15.5, 208Pb/204Pb 37.6–37.9, 87Sr/86Sr 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises.Publication authorized by the Director, U.S. Geological Survey  相似文献   

12.
The Changkeng Au and Fuwang Ag deposits represent an economically significant and distinct member of the Au–Ag deposit association in China. The two deposits are immediately adjacent, but the Au and Ag orebodies separated from each other. Ores in the Au deposit, located at the upper stratigraphic section and in the southern parts of the orefield, contain low Ag contents (< 11 ppm); the Ag orebodies, in the lower stratigraphic section, are Au-poor (< 0.2 ppm). Changkeng is hosted in brecciated cherts and jasperoidal quartz and is characterized by disseminated ore minerals. Fuwang, hosted in the Lower Carboniferous Zimenqiao group bioclastic limestone, has vein and veinlet mineralization associated with alteration comprised of quartz, carbonate, sericite, and sulfides. Homogenization temperatures of fluid inclusions from quartz veinlets in the Changkeng and Fuwang deposits are in the range of 210 ± 80 °C and 230 ± 50 °C, respectively. Salinities of fluid inclusions from the two deposits range from 1.6 to 7.3 wt.% and 1.6 to 2.6 wt.% equiv. NaCl, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions from the Changkeng deposit range from − 80‰ to − 30‰, − 7.8‰ to − 3.0‰, − 16.6‰ to − 17.0‰ and 0.0100 to 0.0054 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of fluid inclusions from the Fuwang deposit range from − 59‰ to − 45‰, − 0.9‰ to 4.1‰, − 6.7‰ to − 0.6‰ and 0.5930 to 0.8357 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions suggest the ore fluids of the Changkeng Au-ore come from the meteoric water and the ore fluids of the Fuwang Ag-ore are derived from mixing of magmatic water and meteoric water. The two deposits also show different Pb-isotopic signatures. The Changkeng deposit has Pb isotope ratios (206Pb/204Pb: 18.580 to 19.251, 207Pb/204Pb: 15.672 to 15.801, 208Pb/204Pb: 38.700 to 39.104) similar to those (206Pb/204Pb: 18.578 to 19.433, 207Pb/204Pb: 15.640 to 15.775, 208Pb/204Pb: 38.925 to 39.920) of its host rocks and different from those (206Pb/204Pb: 18.820 to 18.891, 207Pb/204Pb: 15.848 to 15.914, 208Pb/204Pb: 39.579 to 39.786) of the Fuwang deposit. The different signatures indicate different sources of ore-forming material. Rb–Sr isochron age (68 ± 6 Ma) and 40Ar–39Ar age (64.3 ± 0.1 Ma) of the ore-related quartz veins from the Ag deposit indicate that the Fuwang deposit formed during the Cenozoic Himalayan tectonomagmatic event. Crosscutting relationships suggests that Au-ore predates Ag-ore. The adjacent Changkeng and Fuwang deposits could, however, represent a single evolved hydrothermal system. The ore fluids initially deposited Au in the brecciated siliceous rocks, and then mixing with the magmatic water resulted in Ag deposition within fracture zones in the limestone. The deposits are alternatively the product of the superposition of two different geological events. Age evidence for the Fuwang deposit, together with the Xiqiaoshan Tertiary volcanic-hosted Ag deposit in the same area, indicates that the Pacific Coastal Volcanic Belt in the South China Fold Belt has greater potential for Himalayan precious metal mineralization than previous realized.  相似文献   

13.
In the East European Alpine belt, leucite-sanidine-phlogopite-olivine-bearing volcanic rocks of Late Cenozoic age occur at eight localities within the Vardar suture zone and at one locality in the Southern Carpathian fold-and-thrust belt. Most of these volcanics are characterized by high Mg# (66.6–78.6), high abundances of Ni (117–373 ppm) and Cr (144–445 ppm) as well as high primary K2O contents (5.63–7.01 %) and K2O/Na2O values (1.93–4.91). Rocks with more differentiated compositions are rare. A lamproite affinity of these rocks is apparent from their relatively low contents of Al2O3 (9.9–14.3 wt%) and CaO (6.2–8.3 wt%) in combination with high abundances of Rb (85–967 ppm), Ba (1,027–4,189 ppm), Th (18.9–76.5 ppm), Pb (19–54 ppm), Sr (774–1,712 ppm) and F (0.16–0.52 wt%), and the general lack of plagioclase. Although eruption of the magmas took place in post-collisional extensional settings, significant depletions of Nb and Ta relative to Th and La, low TiO2 contents (0.92–2.17 %), low ratios of Rb/Cs, K/Rb and Ce/Pb as well as high ratios of Ba/La and Ba/Th suggest close genetic relationships to subduction zone processes. Whereas Sr and Nd isotope ratios show relatively large variations (87Sr/86Sr = 0.7078–0.7105, 143Nd/144Nd = 0.51242–0.51215), Pb isotope ratios display a very restricted range with 206Pb/204Pb = 18.68–18.88 and variable but generally high 7/4 (11–18) and 8/4 (65–95) values. The observed petrographic, geochemical and isotopic characteristics are best explained by a genetic model involving preferential melting of phlogopite-rich veins in an originally depleted lithospheric mantle source, whereby the metasomatic enrichment of the mantle source is tentatively related to the addition of components from subducted sediments during consumption of Tethyan oceanic lithosphere.Editorial responsibility: J. Hoefs  相似文献   

14.
The (late syn)- post-collisional magmatic activities of western and northwestern Anatolia are characterized by intrusion of a great number of granitoids. Amongst them, Baklan Granite, located in the southern part of the Muratdağı Region from the Menderes Massif (Banaz, Uşak), has peculiar chemical and isotopic characteristics. The Baklan rocks are made up by K-feldspar, plagioclase, quartz, biotite and hornblende, with accessory apatite, titanite and magnetite, and include mafic microgranular enclaves (MME). Chemically, the Baklan intrusion is of sub-alkaline character, belongs to the high-K, calc-alkaline series and displays features of I-type affinity. It is typically metaluminous to mildly peraluminous, and classified predominantly as granodiorite in composition. The spider and REE patterns show that the rocks are fractionated and have small negative Eu anomalies (Eu/Eu* = 0.62–0.86), with the depletion of Nb, Ti, P and, to a lesser extent, Ba and Sr. The pluton was dated by the K–Ar method on the whole-rock, yielded ages between 17.8 ± 0.7 and 19.4 ± 0.9 Ma (Early Miocene). The intrusion possesses primitive low initial 87Sr/86Sr ratios (0.70331–0.70452) and negative εNd(t) values (−5.0 to −5.6). The chemical contrast between evolved Baklan rocks (SiO2, 62–71 wt.%; Cr, 7–27 ppm; Ni, 5–11 ppm; Mg#, 45–51) and more primitive clinopyroxene-bearing monzonitic enclaves (SiO2, 54–59 wt.%; Cr, 20–310 ppm; Ni, 10–70 ppm; Mg#, 50–61) signifies that there is no co-genetic link between host granite and enclaves. The chemical and isotopic characteristics of the Baklan intrusion argue for an important role of a juvenile component, such as underplated mantle-derived basalt, in the generation of the granitoids. Crustal contamination has not contributed significantly to their origin. However, with respect to those of the Baklan intrusion, the generation of the (late syn)- post-collisional intrusions with higher Nd(t) values from the western Anatolia require a much higher amount of juvenil component in their source domains.  相似文献   

15.
There are large areas of Permian basaltic rocks in the Tarim basin (PBRT) in northwestern China. Precise Ar–Ar dating of these rocks revealed an eruption age span of 262 to 285 Ma. Most of the PBRT is composed of alkaline basaltic rocks with high TiO2 (2.43%–4.59%, weight percent), high Fe2O3 + FeO (12.63%–17.83%) and P2O5 (0.32%–1.38%) contents. Trace elements of these rocks have affinities with oceanic island basalts (OIB), as shown in chondrite normalized rare earth elements (REE) diagrams and primitive mantle normalized incompatible elements diagrams. The rocks show complex Sr–Nd isotopic character based on which they can be subdivided into two distinct groups: group 1 has relatively small initial (t = 280 Ma)87Sr/86Sr ratio ( 0.7048) and positive εNd(t) (3.42–4.66) values. Group 2 has relatively large initial 87Sr/86Sr ratio (0.7060–0.7083) and negative εNd(t) (from − 2.79 to − 2.16) values. Lead isotopes are even more complex with variations of (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t ranging from 17.9265 to 18.5778, 15.4789 to 15.6067 and 37.2922 to 38.1437, respectively. Moreover, these two groups have different trace elements ratios such as Nb/La, Ba/Nb, Zr/Nb, Nb/Ta and Zr/Hf, implying different magmatic processes. Based on the geochemistry of basaltic rocks and an evaluation of the tectonics, deformation, and the compositions of crust and lithospheric mantle in Tarim, we conclude that these basaltic rocks resulted from plume–lithosphere interaction. Permian mantle plume caused an upwelling of the Tarim lithosphere leading to melting of the asthenospheric mantle by decompression. The magma ascended rapidly to the base of lower crust, where different degrees of assimilation of OIB-like materials and fractionation occurred. Group 1 rocks formed where the upwelling is most pronounced and the assimilation was negligible. In other places, different degrees of assimilation and fractionation account for the geochemical traits of group 2.  相似文献   

16.
Major and trace element, Sr–Nd–Pb isotope and mineral chemical data are presented for post-collisional late Cenozoic shoshonitic volcanic rocks from the western Kunlun Mountains, NW China. They are distributed in two approximately E–W striking sub-belts, with the lavas in the southern sub-belt having been generated earlier than those in the northern sub-belt. The mineralogy of the rocks reflects crystallization from moderate temperature magmas (700–1000 °C) with high oxygen and water fugacities. They are geochemically characterized by relatively low TiO2, Al2O3 and FeO and high alkalies coupled with very high contents of incompatible element concentrations. Remarkably negative Nb, Ta and Ti anomalies are displayed on primitive mantle-normalized incompatible element patterns. In addition, they show a relatively broad range of low εNd (−1.8 to −8.7) at more restricted 87Sr/86Sr ratios (0.7081–0.7090). Pb isotopes are characterized by a range of 207Pb/204Pb (15.48–15.74) and 208Pb/204Pb (38.30–39.12) ratios at relatively invariant 206Pb/204Pb (18.60–18.83) values, except one sample with a ratio of 18.262, leading to near-vertical arrays. The lavas from the northern sub-belt have relatively high 87Sr/86Sr ratios. All lavas have extremely high La/Yb ratios, probably reflecting that the magmas were derived from a metasomatized lithospheric mantle source containing phlogopite–hornblende garnet peridotite affected by subducted sediments and hydrous fluids, rather than from a depleted asthenopheric mantle source or mantle plume source. However, the lavas from the southern sub-belt were derived from a lower degree of melting of more highly metasomatized sub-lithospheric mantle in comparison with those from the northern sub-belt. Processes responsible for partial melting of metasomatized lithospheric mantle and post-collision magmatism in the western Kunlun could be a consequence of continuously conductive heating of upwelling, hot asthenospheric mantle following the delamination subsequent to thickening, which is consistent with the spatial and temporal geochemical variations in shoshonitic rocks in Tibet.  相似文献   

17.
The Central African Belt in the Nkambe area, northwestern Cameroon represents a collisional zone between the Saharan metacraton and the Congo craton during the Pan-African orogeny, and exposes a variety of granitoids including foliated and massive biotite monzogranites in syn- and post-kinematic settings. Foliated and massive biotite monzogranites have almost identical high-K calc-alkaline compositions, with 73–67 wt.% SiO2, 17–13 wt.% Al2O3, 2.1–0.9 wt.% CaO, 4.4–2.7 wt.% Na2O and 6.3–4.4 wt.% K2O. High concentrations of Rb (264–96 ppm), Sr (976–117 ppm), Ba (3680–490 ppm) and Zr (494–99 ppm), with low concentrations of Y (mostly< 20 ppm with a range 54–6) and Nb (up to 24 ppm) suggest that the monzogranites intruded in collisional and post-collisional settings. The Sr/Y ratio ranges from 25 to 89. K, Rb and Ba resided in a single major phase such as K-feldspar in the source. Garnet was present in the source and remained as restite at the site of magma generation. This high K2O and Sr/Y granitic magma was generated by partial melting of a granitic protolith under high-pressure and H2O undersaturated conditions where garnet coexists with K-feldspar, albitic plagioclase. CHIME (chemical Th–U-total Pb isochron method) dating of zircon yields ages of 569 ± 12–558 ± 24 Ma for the foliated biotite monzogranite and 533 ± 12–524 ± 28 Ma for the massive biotite monzogranite indicating that the collision forming the Central African Belt continued in to Ediacaran (ca 560 Ma).  相似文献   

18.
Geochronological data, major and trace element abundances, Nd and Sr isotope ratios, δ18O whole rock values and Pb isotope ratios from leached feldspars are presented for garnet-bearing granites (locality at Oetmoed and outcrop 10 km north of Omaruru) from the Damara Belt (Namibia). For the granites from outcrop 10 km N′ Omaruru, reversely discordant U–Pb monazite data give 207Pb/235U ages of 511±2 Ma and 517±2 Ma, similar to previously published estimates for the time of regional high grade metamorphism in the Central Zone. Based on textural and compositional variations, garnets from these granites are inferred to be refractory residues from partial melting in the deep crust. Because PT estimates from these xenocrystic garnets are significantly higher (800°C/9–10 kbar) than regional estimates (700°C/5 kbar), the monazite ages are interpreted to date the peak of regional metamorphism in the source of the granites. Sm–Nd garnet–whole rock ages are between 500 and 490 Ma indicating the age of extraction of the granites from their deep crustal sources. For the granites from Oetmoed, both Sm–Nd and Pb–Pb ages obtained on igneous garnets range from 500 to 490 Ma. These ages are interpreted as emplacement ages and are significantly younger than the previously proposed age of 520 Ma for these granites based on Rb/Sr whole rock age determinations. Major and trace element compositions indicate that the granites are moderately to strongly peraluminous S-type granites. High initial 87Sr/86Sr ratios (>0.716), high δ18O values of >13.8‰, negative initial Nd values between −4 and −7 and evolved Pb isotope ratios indicate formation of the granites by anatexis of mid-crustal rocks similar to the exposed metapelites into which they intruded. The large range of Pb isotope ratios and the lack of correlation between Pb isotope ratios and Nd and Sr isotope ratios indicate heterogeneity of the involved crustal rocks. Evidence for the involvement of isotopically highly evolved lower crust is scarce and the influence of a depleted mantle component is unlikely. The crustal heating events that produced these granites might have been caused by crustal thickening and thrusting of crustal sheets enriched in heat-producing elements. Very limited fluxing of volatiles from underthrust low- to medium-grade metasedimentary rocks may have also been a factor in promoting partial melting. Furthermore, delamination of the lithospheric mantle and uprise of hot mantle could have caused localized high-T regions. The presence of coeval A-type granites at Oetmoed that have been derived at least in part from a mantle source supports this model.  相似文献   

19.
The Sierra Norte-Ambargasta batholith is one of the largest plutonic expressions of the Pampean orogeny in western Argentina. A thorough petrographic, geochemical, isotopic (Sr and Nd) and geochronological (U–Pb SHRIMP) study is reported. The batholith comprises granitoid rocks that may be subdivided into those affected by Pampean D2 dextral shearing and mylonization and those emplaced after deformation had ceased; representative samples gave U–Pb zircon ages of 537 ± 4 Ma and 530 ± 4 Ma respectively. The earlier, dominant, group were derived largely from metaluminous calc-alkaline subduction-related magmas, whereas the late granites are peraluminous. However, all have relatively high initial 87Sr/86Sr ratios (0.706 to at least 0.710, strongly negative εNdt values (−1.7 to −5.9) and, in some cases inherited 600 Ma and 970 Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen.  相似文献   

20.
《Gondwana Research》2014,25(3-4):1108-1126
Detailed petrology and zircon U–Pb dating data indicate that the Wulong pluton is a zoned granitic intrusive, formed from successive increments of magmas. An age range of at least 30 Ma is recorded from the 225–235 Ma quartz diorite on the pluton margin, the ca. 218 Ma granodiorite in the intermediate zone, and the ca. 207 Ma monzogranite at the pluton center. All the granitoids display evolved Sr–Nd–Pb isotopic compositions, with 87Sr/86Sr(i) of 0.7044–0.7062, unradiogenic Nd (εNd(t) values of − 6.1 to − 3.0, Nd model ages of 1.1–1.3 Ga, and moderately radiogenic Pb compositions (206Pb/204Pb(i) = 17.500–17.872, 207Pb/204Pb(i) = 15.513–15.549, 208Pb/204Pb(i) = 37.743–38.001), in combination with variations in zircon Hf isotopic compositions (with εHf(t) values in each stage span 12 units) and the Hf isotopic model ages of 800–1600 Ma. These features suggest that the granitoids might have been derived from the reworking of an old lower crust, mixed with Paleozoic and Proterozoic materials. The rocks also display an adakitic affinity with Sr (479–973 ppm), high Sr/Y ratios (mostly > 60) and negligible Eu anomalies (Eu/Eu* = 0.78–0.97) but low Rb/Sr ratios, low Y (4.6–17 ppm), HREE (Yb = 0.95–1.7 ppm), Yb/Lu (6–7) and Dy/Yb (1.9–2.4) ratios, suggesting the absence of plagioclase and presence of garnet + amphibole in their residue. Considering a large gap among their crystallization ages, we propose that the geochemical evolution from pluton margin to center was controlled mainly by melting conditions and source compositions rather than fractional crystallization. Mafic enclaves that were hosted in the quartz diorite and granodiorite are mainly syenogabbroic to syenodioritic in composition, and are metaluminous and enriched in LREE and LILEs, but are depleted in HFSE, and display an evolved Sr–Nd–Pb isotopic composition, suggesting that they may have been derived from the partial melting of an enriched mantle lithosphere, which was metasomatized by adakitic melts and fluids from a subducted continental crust.In combination with the results of the Triassic ultra-high pressure metamorphic rocks in the Dabie orogenic belt, we apply a model involving the exhumation of subducted continental crust to explain the formation of the Wulong pluton. At the first stage, a dense and refractory mafic lower crust that was trapped at mantle depth by continental subduction witnessed melting under high temperature conditions to produce the quartz diorite magma, characterized by low SiO2 (60.65–63.98 wt.%) and high TiO2 (0.39–0.86 wt.%). The magma subsequently interacted with mantle peridotite, leading to high Mg# (57–67) and the metasomatism of the overriding mantle wedge. At the second stage, an asthenosphere upwelling that was probably caused by slab break-off at ca. 220 Ma melted the enriched sub-continental lithospheric mantle (SCLM) to produce mafic magmas, represented by the mafic enclaves that are hosted in the quartz and granodiorite, resulting in the partial melting of the shallower subducted crust, and generating the granodiorite that is distinguished by high SiO2 (69.16–70.82 wt.%), high Al2O3 (15.33–16.22 wt.%) and A/CNK values (mostly > 1.05). At the third stage, the final collapse of the Triassic Qinling–Dabie Orogenic Belt at ca. 215–205 Ma caused extensive partial melting of the thickened orogenic lower crust to produce the monzogranite, which is characterized by high SiO2 (67.68–70.29 wt.%), low TiO2 (mostly < 0.35 wt.%) and high Sr/Y ratios of 86–151.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号