首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eastern oyster, Crassostrea virginica, plays an essential functional role in many estuarine ecosystems on the east and Gulf coasts of the USA. Oysters form biogenic reefs but also live on alternative intertidal substrates such as artificial surfaces and mangrove prop roots. The hypothesis tested in this study was that non-reef-dwelling oysters (i.e., those inhabiting mangrove, seawall, or restoration substrates) were similar to their reef-dwelling counterparts based upon a suite of biological parameters. The study was carried out at six sites in three zones in Tampa Bay on the west coast of Florida using monthly samples collected from October 2008–September 2009. The timing of gametogenesis and spawning, fecundity, and juvenile recruitment were the same for oysters in all four habitats. Oyster size (measured as shell height), density, and Perkinsus marinus infection intensity and prevalence varied among habitats. This study indicates that oysters on mangroves, seawalls, and oyster restoration substrates contribute larvae, habitats for other species, and likely other ecosystem benefits similar to those of intertidal oyster reefs in Tampa Bay. Oysters from alternative intertidal substrates should be included in any system wide studies of oyster abundance, clearance rates, and the provision of alternate habitats, especially in highly developed estuaries.  相似文献   

2.
A 2-year period with flood versus drought conditions provided the opportunity to examine the effects of flood disturbance on subtidal eastern oyster Crassostrea virginica biology and population dynamics in a south Texas estuary. Oysters were sampled monthly in 2007 and 2008 to examine the impacts of changing environmental conditions on oyster populations. Oysters were also examined quarterly for the presence of Perkinsus marinus. Filtration rates were calculated as a function of oyster size, temperature, salinity, and total suspended solids. Flood events in 2007 caused temporary reductions in salinity and were associated with reductions in oyster abundance, spat settlement, disease levels (weighted prevalence and percent infection), and filtration rates. Oyster populations had generally recovered within 1 year’s time—the oysters were younger and smaller but were just as abundant as pre-flood levels. The rapid return of oysters to pre-flood abundance levels is attributed in part to the ability of oysters in Gulf coast estuaries to spawn multiple times in a single season and in part to their relatively high growth rates. Although flood disturbance may temporarily reduce or destroy oyster populations, the ability of the Mission–Aransas Estuary to retain freshwater pulses within the system and maintain low salinities that are unfavorable for predators and disease can facilitate oyster population recovery. Episodic flood events appear to play a critical role in promoting long-term oyster population maintenance in the Mission–Aransas Estuary. The response of oysters to changing environmental conditions over the short term provides some insights into the potential long-term effects of changing climate.  相似文献   

3.
Management and restoration of wild oyster populations with the ecosystem services they provide require detailed understanding of oyster population dynamics, including temporally and spatially varying growth. Much of the existing literature documenting growth rates for eastern oysters (Crassostrea virginica) reports growth for large, protected, and/or hatchery-spawned oysters. By following growth of wild oysters set on planted clamshells in Delaware Bay, we document early growth (within the first year) of 21 wild oyster cohorts settling over 8 years and assess the importance of interannual variability in temperature and salinity. In general, oysters follow a linear growth trajectory in the first year of life, interspersed by periods of little to no growth in the colder months. Wild oysters settling in the Delaware Bay mid-salinity region reach a size between 27 and 33 mm in their first year and tend to reach greater shell heights at 1 year of age in higher salinity years and at temperatures averaging 23 °C. Multi-year, population-level estimates of wild growth such as these are important for understanding changes in restored and managed oyster populations, and resulting ecosystem services, under naturally variable conditions.  相似文献   

4.
The ability of oysters to remove large quantities of particulates from the water column, thereby potentially improving water quality, has been cited as one of the reasons for oyster reef restoration. However, this ability has not yet been effectively demonstrated in the field. As part of the Alabama Oyster Reef Restoration Project, this study was designed to assess impacts of restored eastern oyster (Crassostrea virginica) reefs on primary production, nutrient dynamics, and water quality in shallow tidal creeks. Using a Before–After-Control–Impact (BACI) design, we monitored tidal creeks around Dauphin Island, AL, for changes induced by the introduction of oyster reefs. Reef placement resulted in increased ammonium (NH4+) in two of the three experimental creeks. Interestingly, oyster reefs did not seem to reduce water column particulates or have an impact on phytoplankton or microphytobenthic biomass or productivity. We do not believe that our data discount the importance and/or usefulness of oysters in modifying the water column. Rather, we acknowledge that it is difficult to detect these impacts/environmental services in this type of system (i.e., a tidal creek system), because they seem to be very localized and short-lived (i.e., not ecologically relevant on a creek-wide scale). This study highlights the need to consider location and habitat in planning oyster restoration projects. Also, it demonstrates that the types, magnitudes, and spatial extent of changes in ecosystem services that should be expected after reef restoration might need to be re-evaluated.  相似文献   

5.
The costs and benefits of non-native introductions as a restoration tool should be estimated prior to any action to prevent both undesirable consequences and waste of restoration resources. The suggested introduction of non-native oyster species, Crassostrea ariakensis, into Chesapeake Bay, USA, provides a good example in which the survival of non-native oysters may differ from that of native oysters, Crassostrea virginica, during the larval stage. Experiments were conducted to compare the predation vulnerability of native and non-native oyster larvae to different predator types (visual vs. non-visual, benthic vs. pelagic). The results suggest that the non-native larvae are more vulnerable to visual and non-visual pelagic predators. Although vulnerability was similar for larvae exposed to benthic non-visual predators, the consumption of one non-native strain was higher than the consumption of native C. virginica larvae. When vulnerability data are combined with predator feeding rates, the predation mortality for non-native larvae in the wild can be much higher than for native larvae. Small changes in larval mortality rates can yield large changes in total larval delivery to the reef for settlement, so these differences among species may contribute to differences in settlement success. These results provide an example of how a comprehensive examination of the perceived benefits of non-native introductions into complex ecosystems can provide important information to inform management decisions.  相似文献   

6.
The Delaware Bay region is the epicenter of horseshoe crab, Limulus polyphemus, activity, and despite the ecological and commercial importance of this species, few studies have examined the long-term movements of horseshoe crabs in this area and the amount of mixing that takes place between smaller coastal embayments within the region and the Delaware Bay proper, factors that are critical to effective management. To better understand these factors, 5568 crabs were tagged in the Delaware Inland Bays as part of the U.S. Fish and Wildlife Service’s (USFWS) Cooperative Horseshoe Crab Tagging Program in 2002–2016. A high re-sight rate of 20.1% (1123 crabs) was reported to the USFWS. Re-sights suggest that the Delaware Bay population is distributed between coastal New Jersey (south of Barnegat Bay) and coastal Virginia (north of Chincoteague Inlet). There were 90 re-sights in the Inland Bays and 148 re-sights in Delaware Bay, with 320 days or more between tagging and re-sight, showing that substantial interchange between successive spawning seasons occurs. Distance analyses demonstrated that crabs can move between the Inland Bays and other Delaware Bay region waterbodies within a single year. The findings of this study support the current management strategy of splitting the harvest of Delaware Bay crabs between New Jersey, Delaware, Maryland, and Virginia and also demonstrate that the waterbodies within the Delaware Bay region are highly connected. This connectivity supports protecting spawning habitat within the smaller embayments of the Delaware Bay region and including spawning surveys from these systems in future stock assessments.  相似文献   

7.
An important ecological role ascribed to oysters is the transfer of materials from the water column to the benthos as they feed on suspended particles (seston). This ecosystem service has been often touted as a major reason for many oyster restoration efforts, but empirical characterization and quantification of seston removal rates in the field have been lacking. Changes in chlorophyll a (chl a) concentrations in the water column were measured in May 2005 and June 2006 in South Carolina using in situ fluorometry and laboratory analysis of pumped water samples taken upstream and downstream as water flowed over natural and constructed intertidal oyster reefs. Both methods gave similar results overall, but with wide variability within individual reef datasets. In situ fluorometer data logged at 10 to 30-s intervals for up to 1.3 h over eight different reefs (three natural and five constructed) showed total removal (or uptake) expressed as % removal of chl a ranging from −9.8% to 27.9%, with a mean of 12.9%. Our data indicate that restored shellfish reefs should provide water-quality improvements soon after construction, and the overall impact is probably determined by the size and density of the resident filter feeder populations relative to water flow characteristics over the reef. The measured population-level chl a removal was converted to mean individual clearance rates to allow comparison with previous laboratory studies. Although direct comparisons could not be made due to the small size of oysters on the study reefs (mean shell height, 36.1 mm), our calculated rates (mean, 1.21 L h−1) were similar to published laboratory measured rates for oysters of this size. However, the wide variability in measured removal by the oyster reefs suggests that individual oyster feeding rates in nature may be much more variable than in the laboratory. The proliferation of ecosystem-level models that simulate the impacts of bivalves on water quality based only on laboratory-feeding measurements underscores the importance of further research aimed at determining ecologically realistic feeding rates for oysters in the field. Because in situ methods provide many replicate measurements quickly, they represent a potentially powerful tool for quantifying the effects of oyster reefs, including all suspension-feeding taxa present, on water quality.  相似文献   

8.
Analysis of fisheries-independent data for Galveston Bay, Texas, USA, since 1985 shows eastern oysters (Crassostrea virginica) frequently demonstrate increased abundance of market-sized oysters 1 to 2 years after years with increased freshwater inflow and decreased salinity. These analyses are compared to Turner’s (Estuaries and Coasts 29:345–352, 2006) study using 3-year running averages of oyster commercial harvest since 1950 in Galveston Bay. Turner’s results indicated an inverse relationship between freshwater inflow and commercial harvest with low harvest during years of high inflow and increased harvest during low flow years. Oyster populations may experience mass mortalities during extended periods of high inflow when low salinities are sustained. Conversely, oyster populations may be decimated during prolonged episodes of low flow when conditions favor oyster predators, parasites, and diseases with higher salinity optima. Turner’s (Estuaries and Coasts 29:345–352, 2006) analysis was motivated by a proposed project in a basin with abundant freshwater where the goal of the project was to substantially increase freshwater flow to the estuary in order to increase oyster harvest. We have the opposite concern that oysters will be harmed by projects that reduce flow, increase salinity, and increase the duration of higher salinity periods in a basin with increasing demand for limited freshwater. Turner’s study and our analysis reflect different aspects of the complex, important relationships between freshwater inflow, salinity, and oysters.  相似文献   

9.
Seagrass beds have declined in Chesapeake Bay, USA as well as worldwide over the past century. Increased seston concentrations, which decrease light penetration, are likely one of the main causes of the decline in Chesapeake Bay. It has been hypothesized that dense populations of suspension-feeding bivalves, such as eastern oysters (Crassostrea virginica), may filter sufficient seston from the water to reduce light attenuation and enhance seagrass growth. Furthermore, eastern oyster populations can form large three-dimensional reef-like structures that may act like breakwaters by attenuating waves, thus decreasing sediment resuspension. We developed a quasi-three-dimensional Seagrass-Waves-Oysters-Light-Seston (SWOLS) model to investigate whether oyster reefs and breakwaters could improve seagrass growth by reducing seston concentrations. Seagrass growth potential (SGP), a parameter controlled by resuspension-induced turbidity, was calculated in simulations in which wave height, oyster abundance, and reef/breakwater configuration were varied. Wave height was the dominant factor influencing SGP, with higher waves increasing sediment resuspension and decreasing SGP. Submerged breakwaters parallel with the shoreline improved SGP in the presence of 0.2 and 0.4 m waves when sediment resuspension was dominated by wave action, while submerged groins perpendicular to the shoreline improved SGP under lower wave heights (0.05 and 0.1 m) when resuspension was dominated by along-shore tidal currents. Oyster-feeding activity did not affect SGP, due to the oysters’ distance from the seagrass bed and reduced oyster filtration rates under either low or high sediment concentrations. Although the current implementation of the SWOLS model has simplified geometry, the model does demonstrate that the interaction between oyster filtration and along-shore circulation, and between man-made structures and wave heights, should be considered when managing seagrass habitats, planning seagrass restoration projects, and choosing the most suitable methods to protect shorelines from erosion.  相似文献   

10.
The National Oceanic and Atmospheric Administration (NOAA) Status and Trends Mussel Watch Program sampled the largest oysters in nearly every major US coastal lagoon and estuary in the Gulf of Mexico once during the winter from 1986 to 2010. This contribution examines trends in the principal oyster disease in the Gulf of Mexico, Dermo, caused by Perkinsus marinus, and some related population dynamic characteristics for its host, Crassostrea virginica. During the 1986–2000 period, P. marinus prevalence and infection intensity and oyster population dynamics followed the El Niño-Southern Oscillation (ENSO) cycle, responding to variations in salinity caused by variations in rainfall and freshwater inflow. The ENSO signal in the oyster population effectively ceased circa 2002. Beginning around this time, wintertime P. marinus prevalence and weighted prevalence began a decadal decline, as did the length of the largest oysters and the fraction of these largest animals that were female. The trends in Dermo disease, oyster length, and oyster sex ratio are all consistent with the following hypothesis: increasing temperature during the 2000s resulted in an increase in P. marinus infection intensity sufficient to increase the mortality rate in late summer and fall in the larger animals. This simultaneously reduced Dermo prevalence and infection intensity in the winter at the time of sampling and also resulted in the decline in the length of the largest animals targeted by Mussel Watch. Coincident with the decline in length is the expected decline in the fraction female, such that the percent female in the largest animals dropped to ≤50 % throughout much of the Gulf of Mexico. The decline in length leading to fewer large animals reproducing and the loss of females are predicted to have reduced oyster population reproductive capacity substantially during the 2000s. The early 60 % of the Mussel Watch time series took place during a period of negative Atlantic Multidecadal Oscillation (AMO) indices. The AMO moved into positive territory circa 2000. A positive AMO index is consistent with observed warmer water temperatures, and increased water temperature is consistent with an increase in Dermo-induced mortality.  相似文献   

11.
Oysters can create reefs that provide habitat for associated species resulting in elevated resident abundances, lower mortality rates, and increased growth and survivorship compared to other estuarine habitats. However, there is a need to quantify trophic relationships and transfer at created oyster reefs to provide a better understanding of their potential in creating suitable nekton habitat. Stable isotope analyses (δ13C and δ15N) were conducted to examine the organic matter sources and potential energy flow pathways at a created intertidal oyster (Crassostrea ariakensis; hereinafter, oyster) reef and adjacent salt marsh in the Yangtze River estuary, China. The δ13C values of most reef-associated species (22 of 37) were intermediate between those of suspended particle organic matter (POM) and benthic microalgae (BMI), indicating that both POM and BMI are the major organic matter sources at the created oyster reef. The sessile and motile macrofauna colonizing the reef make up the main prey of transient nekton (e.g., spotted sea bass, Asian paddle crab, and green mud crab), thus suggesting that the associated community was most important in supporting higher trophic levels as opposed to the direct dietary subsidy of oysters. The created oyster reef consistently supported higher trophic levels than the adjacent salt marsh habitat due to the dominance of secondary consumers. These results indicate that through the provision of habitat for associated species, created oyster reefs provide suitable habitat and support a higher average trophic level than adjacent salt marsh in the Yangtze River estuary.  相似文献   

12.
Research on the effects of declining abundances of the Eastern oyster (Crassostrea virginica) in Chesapeake Bay and other estuaries has primarily focused on the role of oysters in filtration and nutrient dynamics, and as habitat for fish or fish prey. Oysters also play a key role in providing substrate for the overwintering polyp stage of the scyphomedusa sea nettle,Chrysaora quinquecirrha, which is an important consumer of zooplankton, ctenophores, and icthyoplankton. Temporal trends in sea nettle abundances in visual counts from the dock at Chesapeake Biological Laboratory, trawls conducted in the mesohaline portion of the Patuxent River, and published data from the mainstem Chesapeake Bay indicate that sea nettles declined in the mid 1980s when overfishing and increased disease mortality led to sharp decreases in oyster landings and abundance. Climate trends, previously associated with interannual variation in sea nettle abundances, do not explain the sharp decline. A potentially important consequence of declining sea nettle abundances may be an increase in their ctenophore prey (Mnemiopsis leidyi), and a resultant increase in predation on icthyoplankton and oyster larvae. Increased predation on oyster larvae by ctenophores may inhibit recovery of oyster populations and reinforce the current low abundance of oysters in Chesapeake Bay.  相似文献   

13.
Oyster cultch was added to the lower intertidal marsh-sandflat fringe of three previously createdSpartina alterniflora salt marshes. Colonization of these created reefs by oysters and other select taxa was examined. Created reefs supported numerous oyster reef-associated faunas at equivalent or greater densities than adjacent natural reefs. Eastern oyster (Crassostrea virginica) settlement at one site of created reef exceeded that of the adjacent natural reefs within 9 mo of reef creation. After only 2 yr, harvestable-sizeC. virginica (>75 mm) were present in the created reefs along with substantial numbers ofC. virginica clusters. The created reefs also had a higher number of molluscan, fish, and decapod species than the adjacent natural reefs. After 2 yr the densities ofC. virginica, striped barnacle (Balanus amphitrite), scorched mussel (Brachidontes exustus), Atlantic ribbed mussel (Geukensia demissa), common mud crab (Panopeus herbstii), and flat mud crab (Eurypanopeus depressus) within the created reefs were equivalent to that of adjacent natural reefs. From these data it is evident that created oyster reefs can quickly acquire functional ecological attributes of their natural counterparts. Because the demand for oysters continues to increase in the face of dwindling natural resources, habitat creation techniques need to evolve and these approaches need to consider the ancillary ecological benefits reef creation may provide. Reef function as well as physical and ecological linkages of oyster reefs to other habitats (marsh, submerged aquatic vegetation, and bare bottom) should be considered when reefs are created in order to provide the best use of resources to maintain the integrity of estuarine systems.  相似文献   

14.
Three models are combined to investigate the effects of changes in environmental conditions on the population structure of the Eastern oyster,Crassostrea virginica. The first model, a time-dependent model of the oyster population as described in Powell et al. (1992, 1994, 1995a,b, 1996, 1997) and Hofmann et al. (1992, 1994, 1995), tracks the distribution, development, spawning, and mortality of sessile oyster populations. The second model, a time-dependent larval growth model as described in Dekshenieks et al. (1993), simulates larval growth and mortality. The final model, a finite element hydrodynamic model, simulates the circulation in Galveston Bay, Texas. The coupled post-settlement-larval model (the oyster model) runs within the finite element grid at locations that include known oyster reef habitats. The oyster model was first forced with 5 yr of mean environmental conditions to provide a reference simulation for Galveston Bay. Additional simulations considered the effects of long-term increases and decreases in freshwater inflow and temperature, as well as decreases in food concentration and total seston on Galveston Bay oyster populations. In general, the simulations show that salinity is the primary environmental factor controling the spatial extent of oyster distribution within the estuary. Results also indicate a need to consider all environmental factors when attempting to predict the response of oyster populations; it is the superposition of a combination of these factors that determines the state of the population. The results from this study allow predictions to be made concerning the effects of environmental change on the status of oyster populations, both within Galveston Bay and within other estuarine systems supporting oyster populations.  相似文献   

15.
The restoration of dead/degraded oyster reefs is increasingly pursued worldwide to reestablish harvestable populations or renew ecosystem services. Evidence suggests that oysters can improve water quality, but less is known about the role of associated benthic sediments in promoting biogeochemical processes, such as nutrient cycling and burial. There is also limited understanding of if, or how long postrestoration, a site functions like a natural reef. This study investigated key biogeochemical properties (e.g., physiochemical properties, nutrient pools, microbial community size and activity) in the sediments of dead reefs; 1-, 4-, and 7-year-old restored reefs; and natural reference reefs of the eastern oyster, Crassostrea virginica, in Mosquito Lagoon (FL, USA). Results indicated that most of the measured biogeochemical properties (dissolved organic carbon (C), NH4 +, total C, total nitrogen (N), and the activity of major extracellular enzymes involved in C, N, and phosphorus (P) cycling) increased significantly by 1-year postrestoration, relative to dead reefs, and then remained fairly constant as the reefs continued to age. Few differences were observed in biogeochemical properties between restored reefs of any age (1 to 7 years) and natural reference reefs. Variability among reefs of the same treatment category was often correlated with differences in the number of live oysters, reef thickness, and/or the availability of C and N in the sediments. Overall, this study demonstrates the role of live intertidal oyster reefs as biogeochemical hot spots for nutrient cycling and burial and the rapidity (within 1 year) with which biogeochemical properties can be reestablished following successful restoration.  相似文献   

16.
We measured seasonal effects of wastewater treatment plant (WTP) effluent on growth, survival, and accumulation of microbes in oysters near a major WTP in Mobile Bay, AL. Despite higher nutrients near the WTP, seasonal conditions rather than distance affected chlorophyll a concentration and oyster growth. In summer and fall, when oyster growth was higher, δ15N‰ in oysters near the WTP changed through time to reflect δ15N‰ in effluent (approx. −4‰). Microbial indicators (male-specific coliphage, fecal coliforms) were highest in oysters near the WTP in all seasons and correlated with δ15N‰ in fall and summer. Increased riverine discharge and slower acquisition of δ15N‰ likely confounded correlations in winter/spring. Although we did not detect gross ecological effects of wastewater exposure for oysters, data indicated wastewater-derived particles entered the local food web and accumulated in oysters. These data highlight the importance of using multiple indicators of wastewater exposure and considering both seasonal and spatial effects when defining wastewater influence on a system or species.  相似文献   

17.
Predicting population- and ecosystem-level benefits of habitat restoration minimally requires an understanding of the link between the trophic ecology of a species and their use of a habitat. This study combined novel, non-lethal natural tracers of trophic ecology with acoustic tagging techniques to examine spatial and temporal patterns of habitat use of spotted seatrout Cynoscion nebulosus on Half Moon Reef (HMR), a recently restored oyster reef in Matagorda Bay, Texas. Forty-one spotted seatrout (408?±?25 mm total length) were captured at HMR, surgically implanted with acoustic transmitters, and monitored by an array of underwater listening stations from December 2015 to August 2016. Patterns of presence-absence on HMR were strongly influenced by water temperature, and to a lesser extent, salinity and tidal height. Overall, spotted seatrout residency to HMR was low, with fish being present on the reef 24% of days. When present, individual fish exhibited strong site-attachment to small portions of the reef. Residency to HMR increased significantly with size, while scale stable isotope analysis revealed fish exhibiting high residency to HMR occupied significantly smaller isotopic niches. If indeed smaller fish with decreased residency rely upon a wider range of prey items across multiple habitats than larger, more resident individuals, restored oyster reef habitat may be expected to primarily benefit larger spotted seatrout.  相似文献   

18.
Gillichthys mirabilis population static measurements (abundance, age, and size class structures) and vital rates (growth, mortality, recruitment) were monitored on an annual basis from 2002 to 2007. Population-level metrics were used to gauge habitat quality at two study sites (a contaminated site and a reference site) in two large northern California estuaries (San Francisco and Tomales Bays). San Francisco Bay populations exhibited slower growth and higher mortality rates and contained higher amounts of contaminants than Tomales Bay. Recruitment rates were highest at contaminated sites (Stege Marsh and Walker Creek) in 3 years out of 5 years, suggesting low adult survival. This study suggests that population-level effects on a residential fish may be attributed to estuarine contamination on the US Pacific coast.  相似文献   

19.
A habitat suitability index (HSI) model, developed for the American oyster,Crassostrea virginica, along the Gulf of Mexico, was field tested on 38 0.1-ha reef and nonreef sites in Galveston Bay, Texas. The HSI depends upon six (HSI1) or, optionally, eight (HSI2) variables. The six variables are percent of bottom covered with suitable cultch (V1), mean summer water salinity (V2), mean abundance of living oysters (V3) (a gregarious settling factor), historic mean water salinity (V4), frequency of killing floods (V5), and substrate firmness (V6). The optional variables are the abundance of the southern oyster drillThais haemostoma (V7), and the intensity of the oyster pathogenPerkinsus marinus (V8). The HSI values were lowest at high and low salinity sites and highest at intermediate-salinity sites. To validate the model, the hypothesis that the output of the HSI model was correlated with oyster density was therefore tested. A significant correlation was found between HSI1 and oyster density (Kendall Tau Beta correlation coefficient, τ=0.674, p<0.001, n=38); however, a statistical independence problem exists with the above test, that is, oyster density is both the independent standard for the test and a variable in the model. A regression model was constructed to test the relationship between log-transformed oyster density values (dependent variable) and the other variables of the model (independent variables). Most variation (r2=0.72, r=0.85) in the log-transformed density values were explained by a regression model that contained V2, V4, V5, V6, V7, and V8 as independent variables. The regression model was useful in constructing a modified HSI model (MHSI). A significant correlation (τ=0.674, p<0.05, n=10) was found between MHSI1 values and oyster densities from reefs closed to harvesting. The MHSI improves upon the original model by (i) simplifying the model structure, (ii) removing the requirement to measure V3, (iii) accounting better for the negative effects of high salinity, disease, and parasitism upon oysters, and (iv) eliminating the statistical independence problem by dropping V3 from the model. The MHSI should be tested against a new, independently-collected data set.  相似文献   

20.
Anthropogenic carbon dioxide (CO2) emissions reduce pH of marine waters due to the absorption of atmospheric CO2 and formation of carbonic acid. Estuarine waters are more susceptible to acidification because they are subject to multiple acid sources and are less buffered than marine waters. Consequently, estuarine shell forming species may experience acidification sooner than marine species although the tolerance of estuarine calcifiers to pH changes is poorly understood. We analyzed 23 years of Chesapeake Bay water quality monitoring data and found that daytime average pH significantly decreased across polyhaline waters although pH has not significantly changed across mesohaline waters. In some tributaries that once supported large oyster populations, pH is increasing. Current average conditions within some tributaries however correspond to values that we found in laboratory studies to reduce oyster biocalcification rates or resulted in net shell dissolution. Calcification rates of juvenile eastern oysters, Crassostrea virginica, were measured in laboratory studies in a three-way factorial design with 3 pH levels, two salinities, and two temperatures. Biocalcification declined significantly with a reduction of ∼0.5 pH units and higher temperature and salinity mitigated the decrease in biocalcification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号