首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
太阳耀斑大多数发生在磁极复杂的黑子群上空,因此,黑子群磁类型可以作为预测太阳耀斑的重要依据.针对同时具有白光图和磁图数据的太阳黑子分类,提出了一种双流卷积神经网络(Convolutional Neural Network,CNN)的黑子群磁类型分类方法.该方法通过两个网络分支同时提取白光图和磁图特征,在全连接层对两类特...  相似文献   

2.
太阳磁场的极性反转线(Polarity Inversion Line, PIL)是研究太阳活动、分析太阳磁场结构演变和预测太阳耀斑最重要的日面特征之一.磁场极性反转的位置是太阳耀斑和暗条可能出现的位置."先进天基太阳天文台(ASO-S)"是中国首颗空间太阳专用观测卫星,其搭载的"全日面矢量磁像仪(Full-Disk Vector Magnetograph, FMG)"主要任务是探测高空间、高时间分辨率的全日面矢量磁场.为了提高观测数据使用效率、快速监测太阳活动水平、提高太阳耀斑与日冕物质抛射的预报水平以及更好地服务于FMG数据处理与分析系统,采用了图像自动识别与处理技术,更加精确有效地检测极性反转线.从支持向量机(Support Vector Machine, SVM)的模型出发,将极性反转线位置的探测问题转化为一个模式识别中的二分类问题,提出了一种基于支持向量机的极性反转线检测算法,自动探测与识别太阳动力学天文台(Solar Dynamics Observatory, SDO)日震和磁成像仪(Helioseismic and Magnetic Imager, HMI)磁图的极性反转线位置.与现有算法的对比结果表明,此算法可以精确直观地检测太阳活动区的极性反转线.  相似文献   

3.
近年来,许多人分别从不同波段,不同时段的观测资料,得到太阳耀斑活动存在152天—158天的周期。本文用极大熵谱估计方法逐年分析了第21太阳周(1976年—1985年)每天从全日面观测得到的1级及其以上太阳光学耀斑加权数组成的时间序列,进而得到太阳耀斑活动的155天左右的周期仅在太阳黑子活动达到极大之后三年中才比较显著的结论。这个结果对进一步了解太阳耀斑活动的规律,了解与太阳耀斑有关的日地物理量的变化,以及有效地作出太阳活动的中、长期预报都有一定价值。  相似文献   

4.
星系的光谱包含其内部恒星的年龄和金属丰度等信息, 从观测光谱数据中测量这些信息对于深入了解星系的形成和演化至关重要. LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope)巡天发布了大量的星系光谱, 这些高维光谱与它们的物理参数之间存在着高度的非线性关系. 而深度学习适合于处理多维、海量的非线性数据, 因此基于深度学习技术构建了一个8个卷积层$+$4个池化层$+$1个全连接层的卷积神经网络, 对LAMOST Data Release 7 (DR7)星系的年龄和金属丰度进行自动估计. 实验结果表明, 使用卷积神经网络通过星系光谱预测的星族参数与传统方法基本一致, 误差在0.18dex以内, 并且随着光谱信噪比的增大, 预测误差越来越小. 实验还对比了卷积神经网络与随机森林回归模型、深度神经网络的参数测量结果, 结果表明卷积神经网络的结果优于其他两种回归模型.  相似文献   

5.
太阳暗条作为太阳大气磁场的示踪,对研究太阳磁场有极其重要的意义。针对现有的暗条检测方法存在检测精度不高,弱小暗条错检、漏检等问题,提出一种基于改进VNet网络的太阳暗条检测方法。首先,使用大熊湖天文台Hα全日面图像并结合磁图制作了太阳暗条数据集;其次,在VNet网络下采样部分采用Inception模块融合不同尺度特征图的特征,同时加入注意力机制增强特征图中暗条部分的语义信息;最后在上采样部分引入深度监督模块,更多地保留太阳暗条的细节特征。为验证算法性能,采用191幅Hα全日面图像数据集,其中包含暗条共3372条。算法在测试数据集上平均准确率达到0.9883,F1值达到0.8385。实验结果证明,该方法可以有效识别Hα全日面图中的暗条。  相似文献   

6.
22周上升相日面各经度带的活动规律   总被引:1,自引:0,他引:1  
本文回顾了1983年以来一些对太阳活动的谱分析结果。大致可分为两种规律:在太阳活动11年周期的上升相一般呈现80天左右的周期。下降相呈现150天左右的周期。这些规律均是由太阳全日面总体活动指数得到的谱分析结果。文中将第22周上升段(1987.1.1—1988.7.31)的太阳黑子群和X射线耀斑按经度带作了极大熵谱估计。结果表明,各经度带的活动规律不同,同一经度带内,太阳黑子群和X射线耀斑的出现规律也不尽相同。这种将事件按经度带分布得到的活动规律对事件本身的中期预报将会有实际应用价值。  相似文献   

7.
利用云南天文台5吋太阳黑子望远镜,通过光学系统的改装配置佳能数码照相机,建立了对太阳全日面黑子实施高分辨观测的照相装置。照相结果表明大小黑子、本影、半影都清晰可见,可以取代长期以来以手工描迹太阳黑子的传统观测方法。照相观测资料的计算机处理,可给出当日太阳黑子相对数、黑子总的球面积和圆面积等主要参数,有关资料处理及软件问题将另文介绍。  相似文献   

8.
针对目前从海量的快速射电暴(Fast Radio Burst, FRB)候选体中人工筛选FRB事件难以为继的现状,提出了一种基于卷积神经网络(Convolutional Neural Networks, CNN)的FRB候选体分类方法.首先,通过真实的观测数据和仿真FRB组成训练和测试样本集.其次,建立了二输入的深度卷积神经网络模型,并对其进行训练、测试和优化,获取FRB候选体分类器.最后,利用来自脉冲星的单脉冲数据对该分类器的有效性和性能进行了验证.实验结果表明,该方法可以快速从大量候选体中准确识别出单脉冲事件,极大地提高了FRB候选体的处理速率和效率.  相似文献   

9.
太阳耀斑是由于在太阳黑子附近磁场能量的突然释放所引起的爆发现象.人们发现在许多类太阳恒星上也有类似的耀斑(称类太阳恒星耀斑)出现.主要采用开普勒太空望远镜获取的数据,从中选取SC(Short Cadence)数据进行分析,找出类太阳恒星上耀斑光变轮廓的特征参数并做统计,总结耀斑的活动特点.分析结果表明:类太阳恒星耀斑的光变轮廓和爆发的特征时间与太阳耀斑的相似,这可以说明两种耀斑的物理机制相同.  相似文献   

10.
天体光谱数据的智能处理正由传统机器学习方法逐步转向深度学习,主要采用基于计算机视觉的技术手段。基于计算机视觉领域广泛应用的DenseNet网络结构,针对光谱数据进行修改,建立了适用于光谱数据的一维卷积神经网络模型,解决天体光谱数据分类任务。在验证数据集上,恒星、星系、类星体的F1分数达到了0.998 7、0.912 7、0.914 7,高于传统的神经网络。光谱分类关注区域的可视化结果表明,本文模型可以学习到各类天体对应的特征谱线,具有较强的可解释性。本文方法被用于阿里云天池天文数据挖掘大赛——天体光谱智能分类,并在843支参赛队伍的3次数据评比中获得了2次第一、1次第三的成绩,证明了该模型在保证分类精度的同时,具有极强的鲁棒性、泛化性,适用于光谱的自动分类。  相似文献   

11.
在建立太阳全日面黑子照相观测系统的基础上对黑子观测资料进行了处理,给出黑子观测的重要数据及相关参数,为太阳物理学家研究太阳活动规律提供和积累最基本的第一手数据。这些数据包括:太阳黑子相对数,南北半球太阳黑子的坐标和黑子群数,太阳黑子的圆面积和球面积等。编写了一个程序,对每天的太阳黑子观测资料进行处理,给出以上物理参数,彻底改变了手工描绘黑子和计算黑子参数的传统方法,同时也提高了黑子资料处理的精度和效率。  相似文献   

12.
光辉的太阳给我们带来光明和温暖,太阳活动现象如太阳黑子、日珥、耀斑等也和我们息息相关。其中最直观的是太阳黑子,太阳黑子是业余天文观测的主要活动内容之一。太阳黑子是经常出现在光球表面上的黑斑。当太阳活动剧烈时,地球上常会发生磁暴、极光、电离层骚扰等地球物理现象。地球上的旱涝、水灾、地震等也与太阳黑子有一定的联系。因此观测和研究太阳黑子活动规律是很重要的。太阳黑子的大小、温度和分布太阳黑子的大小不一,小的直径有1千公里,大的可达20万公里,有十几个地球大。黑子的形状象一个浅碟,中间凹陷。发展完全的黑子…  相似文献   

13.
恒星光谱分类是天文学中一个重要的研究问题.对于已经采集到的海量高维恒星光谱数据的分类,采用模式匹配方法对光谱型分类较为成功,但其缺点在于标准恒星模版之间的差异性在匹配实际观测数据中不能体现出来,尤其是当需要进行光谱型和光度型的二元分类时模版匹配法往往会失败.而采用谱线特征测量的光度型分类强烈地依赖谱线拟合的准确性.为了解决二元分类的问题,介绍了一种基于卷积神经网络的恒星光谱型和光度型分类模型(Classification model of Stellar Spectral type and Luminosity type based on Convolution Neural Network, CSSL CNN).这一模型使用卷积神经网络来提取光谱的特征,通过注意力模块学习到了重要的光谱特征,借助池化操作降低了光谱的维度并压缩了模型参数的数量,使用全连接层来学习特征并对恒星光谱进行分类.实验中使用了大天区面积多目标光纤光谱天文望远镜(Large Sky Area Multi-Object Fiber Spectroscopy Telescope, LAMOST)公开数据集Data Release 5 (DR5,用了其中71282条恒星光谱数据,每条光谱包含了3000多维的特征)对该模型的性能进行验证与评估.实验结果表明,基于卷积神经网络的模型在恒星的光谱型分类上准确率达到92.04%,而基于深度神经网络的模型(Celestial bodies Spectral Classification Model, CSC Model)只有87.54%的准确率; CSSL CNN在恒星的光谱型和光度型二元分类上准确率达到83.91%,而模式匹配方法MKCLASS仅有38.38%的准确率且效率较低.  相似文献   

14.
用势场方法和格林函数解构造了三维日冕磁场.相关的边界条件是所观测的光球磁场以及光球上2.6个太阳半径的开放场(源表面).所用的光球数据来自高精度的MDI/SOHO观测(2″/像素,1桢/98min).这种外推方法可以用来分析太阳大事件在大尺度上的可能触发机制.作为一个例子,我们分析了活动区NOAA9077的外推日冕场,发现它们的形态与EIT/SOHO的日冕观测相符很好.结合全日面Hα演化,我们推测来自活动区9082的一次激波扰动应该是导致2000年7月14日大耀斑和日冕物质抛射的触发原因,该扰动沿着外推所得到的一个磁环系统直接传到大耀斑爆发位置.  相似文献   

15.
用势场方法和格林函数解构造了三维日冕磁场,相关的边界条件是所观测的光球磁场以及光球上2.6个太阳半径的开放场(源表面),所用的光球数据来自高精度的MDI/SOHO观测(2″/像素,1桢/98min),这种外推方法可以用来分析太阳大事件在大尺度上的可能触发机制,作为一个例子,我们分析了活动区NOAA9077的外推日冕场,发现它们的形态与EIT/SOHO的日冕观测相符很好,结合全日面Ha演化,我们推测来自活动区9082的一次激波扰动应该是导致2000年7月14日大耀斑和日冕物质抛射的触发原因,该扰动沿着外推所得到的一个磁环系统直接传到大耀斑爆发位置。  相似文献   

16.
在太阳观测研究中,高分辨图像与全日面像的配准是一项非常有意义的工作,但由于他们之间存在着旋转、缩放和平移,因此很难高精度地进行匹配。提出一种结合局部统计信息和控制点匹配的图像配准方法,核心思想为将视场等间隔划分为大量重叠的局部区域,通过相关匹配在全日面像上寻找对应的局部区域,然后计算每一对局部区域间的亚像元偏移,根据偏移量确定每一对特征点的坐标位置,据此作为点匹配中的特征控制点;最后根据控制点建立仿射变换的转换方程,采用最小二乘求解整个视场的转换参数,根据解出的参数重新对图像进行迭代,得到收敛后的结果并进行配准。通过对高分辨观测图像和全日面SDO/HMI连续谱图像进行配准,拟合结果的偏差在0.25″以内。  相似文献   

17.
利用色球Hα线心像、TRACEUV和SOHO/EITEUV单色像、SOHO/LASCO白光日冕观测、SOHO/MDI光球磁图以及Nobeyama射电观测,对2004年1月8日日面边缘δ位形黑子群AR10537内发生的一个M1.3耀斑及相关的CME进行了初步的分析。该耀斑除了位于反极性磁场区域、覆盖部分黑子半影的两个主耀斑带外,还伴随有一个明显的远距离耀斑带,这表明有扰动能量沿大尺度日冕结构从耀斑源区向外传播。这一远区增亮处随后有EITdimming出现,表明色球蒸发导致的物质损失可能是产生日冕dimming的重要因素。另外,位于远距离耀斑带南面的一个大宁静暗条在耀斑发生后有部分消失,这可能与该耀斑导致的大尺度日冕磁场重构有关。该耀斑爆发与LASCO观测到的一个快速partialhaloCME在空间和时间上具有密切的关系,它们极可能是相同磁场过程在日冕的不同表现,故我们将此耀斑及与之伴随的日冕dimming认证为这一CME的日面源区。  相似文献   

18.
太阳表面和大气层中的活动现象,诸如太阳黑子、耀斑和日冕物质抛射等,会使太阳风大大增强,造成许多地球物理现象,例如极光增多、电离层暴和地磁暴等。太阳活动的突然剧增的结果会严重干扰地球上无线电通讯及航天设备的正常工  相似文献   

19.
太阳耀斑是太阳表面最为剧烈的太阳活动现象经典的太阳耀斑被定义为色球谱斑的突然增亮现象。后来人们又在光球层的太阳黑子群中或周围观测到突然增亮现象,人们称它们为白光耀斑。随着科学技术的发展,太阳观测设备也不断改进和更新,对太阳  相似文献   

20.
本文主要介绍了1989年8月16、17日用本台太阳光谱仪的狭缝监视装置拍摄的AR5629活动区边缘Hα色球局部放大像系列资料概况。 16日拍摄到2N级耀斑的初相、极大以及耀斑冲浪,冲浪以50—180km/s的速度将物质抛出日面之外。随着耀斑面积增大,其形状也随着变化,可以看到有多层次环状  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号