首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
综合调查数据揭示南海域内发育大量海底滑坡,尤其是大陆坡区域。由海底滑坡触发的碎屑流、浊流和海啸等链生灾害,严重威胁深海基础设施及沿海地区人民生命财产安全,亟待进行研究。选取南海域内4处典型海底滑坡,研究其潜在的海啸灾害。在总结各滑坡构造背景和触发因素差异的基础上,提取各滑坡体的特征参数;使用NHWAVE与FUNWAVE-TVD模型组合模拟了滑坡体动态过程及海啸波的产生和传播过程。模拟结果显示,初始水深和坡度差异导致体积相近的白云滑坡和曾母暗沙滑坡触发海啸能力差异巨大。白云滑坡在源区可产生最高约12 m的海啸波,潜在灾害主要危及南海北部区域,尤其是华南沿海;位于较浅初始水深的曾母暗沙滑坡可产生高达约38 m的海啸波,危及整个南海中南部;中建南滑坡可产生近10 m的海啸波,影响范围主要局限于南海西部越南沿岸;西沙海槽北部陆坡滑坡产生的海啸波波高相对较小,约0.9 m。通过分析比较最大波高分布和海啸波传播特点等,发现海底滑坡触发海啸能力受到滑坡几何参数与运动学特性控制,复杂海底地形和海岸线改变了海啸波的能量分布,增加了沿岸海啸灾害评估难度。在南海开展典型滑坡—海啸模拟,建立滑坡—海啸数据库具...  相似文献   

2.
灾难性海啸有时由海底滑坡运动造成,海底滑坡的涌浪产生过程研究是海啸研究的关键。海啸形成主要受控于滑体的几何尺寸、滑动速度、水深、滑动角度等因素。基于这些因素,文章设计并实施了水下刚性滑块正交物理实验。试验中滑块的厚长比在0.035~0.180之间,斜坡滑道的倾角在10°~16°之间,Froude数处于0.18~0.70之间。试验分析表明初始涌浪形成早于滑块停止;初始波谷(最大波谷)是在滑动最大速度时产生的,波谷位置也是速度最大时滑块的质心位置。初始涌浪波的典型特征是大的波谷与小的波峰。利用试验的输入输出数据,回归推导形成了最大波谷和最大波峰计算公式。试验分析结果深化了对海底滑坡产生海啸的认识,为海底滑坡海啸预测提供了基础和技术支撑。  相似文献   

3.
我国海洋能源开发已步入深远海域,面临的深海地质灾害问题也日益凸显,尤以海底滑坡最为典型,一旦发生将会形成链式灾害,严重危害水下基础设施的安全。本文聚焦“滑坡形成→运动演化→冲击设施”这一链式灾害过程,首先梳理了不同触发因素作用下海底滑坡的形成机制,进而论述了海底滑坡的运动过程及不同演化阶段的判识标准,分析了滑坡运动演化过程中环境水与土体的耦合作用机理,提出了适用于中小尺度运动演化过程的流固耦合分析方法,并探讨了当前海底滑坡运动演化过程试验模拟技术和原位监测手段的适用范畴与技术瓶颈;进一步地,针对滑坡冲击海底管缆等水下基础设施问题,评析了海底滑坡冲击效应的量化评估方法和研究手段。最后,指出当前海底滑坡链式灾害研究存在的不足和未来的发展方向,以期为海底滑坡地质灾害链的模拟、预测和预警等提供重要参考。  相似文献   

4.
滑坡运动堆积特征及其冲击强度研究对滑坡风险定量评估具有重要意义。通过对四川乐山市马边滑坡基本特征调查,利用支持向量机模型(SVM)和颗粒流方法(PFC),对滑坡岩土体细观强度参数进行反演和标定,结合UAV数据生成滑坡区高精度DEM,在此基础上,重构马边滑坡三维颗粒流数值模型,模拟并研究滑坡的运动堆积和冲击过程。结果表明:马边滑坡运动时长32 s,主滑时间16 s,运动开始5 s后速度达到峰值,为10.2 m/s;滑坡中后部岩土体运动迹线为直线型,中前部运动迹线成扩散状态,最终呈扇形堆积;滑坡在坡脚处的冲击力可达1.5×109 N,并随着坡脚距的增大,冲击力呈现出指数衰减特征。研究结果与滑坡运动过程实际视频解译结果及堆积现状基本一致,相关研究方法为滑坡定量风险评估提供借鉴。   相似文献   

5.
高速远程滑坡颗粒流研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
颗粒流是高速远程滑坡物质演化过程的一个重要阶段,也是从细观角度揭示其超常运动特性的重要手段.颗粒流所采用的主要研究方法以及取得的重要理论成果,可以为高速远程滑坡动力学机理的研究提供重要的技术手段和理论支持.本文聚焦颗粒流研究进展,从颗粒流基本概念、流态特征及流变本构模型、颗粒流粒径分选机制等方面进行了系统梳理;进而,从理论、实验及数值计算模型3个方面对高速远程滑坡研究中颗粒流理论及方法的应用进行了系统性述评;在此基础上,提出了从颗粒流角度研究高速远程滑坡动力学机理涉及的关键科学问题:高速远程滑坡高流动性的起源涉及哪些物理过程?如何量化和模拟其多分散性和破碎过程?如何量化描述颗粒尺寸分布的时空演变及其与流动的耦合?如何从其沉积特征中探究流动的传播机制?针对这些问题,从基于沉积学特征的颗粒流物理力学过程、考虑尺度效应的颗粒流动力学特性研究、基于颗粒流力学过程的滑坡运动机理及其本构模型、新技术新方法的应用4个方面提出下一步应重点开展的研究工作.   相似文献   

6.
以颗粒流离散元为研究方法对勉县杨家湾十组堆积层滑坡破坏方式与运动过程进行数值模拟研究。通过PFC2D双轴模拟试验所标定的岩土体宏观模拟参数与室内试验所获取的宏观实测参数进行对比,确定堆积层滑坡所需的颗粒细观参数,然后将标定的细观参数代入堆积层滑坡模型,对滑坡破坏方式及运动过程进行模拟研究。结果表明:滑坡破坏在初始阶段蠕滑变形累积,滑坡体挤压坡脚,直至坡脚产生剪切破坏,并向上牵引发展,使得滑坡整体顺接触面破坏下滑并堆积于坡脚,表现为典型的牵引式渐进破坏,结果与实际情况基本吻合。研究认为,采用颗粒流方法对堆积层滑坡破坏与运动过程的模拟研究具有较高的适用性,对该类滑坡防治具有一定的参考意义。   相似文献   

7.
坡顶堆载是人类工程活动诱发滑坡的主因之一。物质点法(MPM)属于一种无网格数值计算方法,它能够有效模拟滑坡大变形全过程物质行为与运动特征。文章基于线性形函数离散方法、MUSL求解格式及Drucker-Prager屈服准则,建立了可用于滑坡全过程模拟的单套单相物质点模型;通过对比干燥铝棒堆积物模拟砂堆失稳过程的基准试验结果,对模型有效性进行了验证。对堆载诱发型土质滑坡典型工况进行了物质点法全过程模拟,获得了滑坡全过程中典型时刻坡体形态、塑性应变分布以及控制点滑速演化趋势。结果表明:算例堆载诱发型土质滑坡属推移型滑坡,具有渐进性破坏特征,可分为坡顶压缩、局部蠕滑、加速滑动与减速滑动等四个阶段。参数分析结果亦表明,堆载诱发型土质滑坡前缘物质运动特征量均与堆载量间存在强正相关性、而与土体黏聚力及内摩擦角存在强负相关性。统计29种典型工况,分别建立了峰值滑动加速度、最大滑速、最大滑距及坡体最大动能等运动特征量与堆载量、土体黏聚力及内摩擦角之间的线性回归方程,可用于堆载诱发型土质滑坡致灾行为预测。  相似文献   

8.
金坪子滑坡是一个位于金沙江右岸、上距乌东德水电站约900 m、总体积约6.25×108 m3的具有典型蠕滑特点的滑坡。为了进一步弄清控制该滑坡活动模式的内在机理,通过不同黏粒含量下滑带土的反复剪切试验,研究了滑坡滑带土的残余、峰值强度特性,以期为同类滑坡的防护和治理提供参考依据。研究结果显示,随着黏粒含量的增加,滑带土应变软化现象更加明显;而滑带土残余强度、峰值强度随着黏粒含量的增加,呈现非线性降低规律,但降低幅度随正压力的增大而增大;同时,残余内摩擦角、峰值内摩擦角与黏粒含量存在良好线性负相关关系,而残余黏聚力与峰值黏聚力随黏粒含量增加呈波动性增大,但在黏粒含量40%处出现一定降低幅度。关于黏聚力的波动性降低趋势,究其原因可能在于黏粒周围强结合水的分布对滑带土强度特性,尤其是黏聚力存在临界影响。本文数据和结论对金坪子滑坡的防护和治理以及不同粒径下蠕滑滑坡失稳演化进程有重要的借鉴意义。  相似文献   

9.
滑坡-碎屑流物理模型试验及运动机制探讨   总被引:3,自引:0,他引:3  
郝明辉  许强  杨磊  杨兴国  周家文 《岩土力学》2014,35(Z1):127-132
滑坡-碎屑流由于高速、远程的特点常常引发灾难性事故,其复杂的运动机制导致预测致灾范围非常困难。通过开展室内模型试验,研究了碎屑粒径、滑床糙率和挑坎对运动特性的影响。试验结果发现,滑坡碎屑运动距离受控于前端碎屑,且随着碎屑的粒径增大而增加,增加滑床糙率、挑坎均可使碎屑的运动距离减小。在前人研究成果的基础上结合碎屑材料的力学特性探讨了滑坡-碎屑流出现流态化的原因和高速远程机制,即高速运动中颗粒间的作用力远小于完整岩体,因此颗粒间的“黏聚力”不能维持滑坡体的整体性,同时致使滑坡体与滑床接触的过程中传递至滑坡体内部的摩阻力减少,从而导致碎屑滑坡的远程结果。  相似文献   

10.
以陕西省洛南县刘涧滑坡为研究对象,采用颗粒流离散元法对其破坏运动过程进行数值模拟。首先通过双轴数值试验对滑坡饱和土体进行细观参数标定,并与室内试验中饱和土体宏观力学参数进行对比,经验证该细观参数能应用到滑坡的破坏运动分析中,进而引入颗粒流(PFC2D)程序中平行黏结模型,采用ball-wall建模方法建立滑坡模型,对滑坡不同关键部位颗粒进行位移、速度监测,阐明其破坏运动特征。模拟结果表明,降雨为刘涧滑坡的直接诱发因素,斜坡变形破坏模式为由坡脚开挖引起的自前缘向后部牵引-孔隙水压力诱发的后部向前缘推移式滑塌。总体特征为上部推移,中部剪切,下部牵引;滑坡滑动最高时速13.4 m/s,最大滑移170 m,滑动阶段持续25 s。利用颗粒流法对滑坡的破坏运动过程模拟具有较好的适用性,可为工程决策提供依据。   相似文献   

11.
A numerical model has been developed using the finite element method for the simulation of impulse waves generated by landslides. The fluid-like landslide is modeled as a generalized non-Newtonian visco-plastic fluid. A three-phase flow model based on the incompressible viscous Navier–Stokes equations is solved using the finite element method to describe the motion of the three types of fluid in landslide. The conservative level set method is expanded to n-phase flow cases and employed to capture the interface of the three phases: air, water, and the landslide. The overall performance of the approach is checked by a number of validation cases: a Rayleigh–Taylor instability problem to illustrate the capability of the proposed method to deal with interface capturing, a benchmark test of a subaerial landslide generated by an impulse wave is carried out and compared with the published experimental data and numerical results, and finally, the 1958 Lituya Bay landslide generated impulse wave, and its results are compared against a scaled-down experiment and other published numerical results. It can be noted that the current model has an excellent ability to capture the complex phenomena that occurs during the whole process of the landslide-generated impulse wave, and considering the simplified treatment of the landslide and the numerical model, fairly good agreement between computed and experimental results has been observed for all simulation cases.  相似文献   

12.
Zhenzhu Meng 《Landslides》2018,15(6):1173-1182
This experimental study provides insight into impulse waves generated by a viscoplastic material. The viscoplastic material chosen is a stable polymeric gel called Carbopol Ultrez 10, which is approximately modeled as Herschel–Bulkley model. As observed from high-speed cameras, the viscoplastic material such as Carbopol moves as a long and thin train of material along the slope, and only a fraction of the sliding mass is engaged in generating the leading wave. Therefore, our primary objective is to study how much of the initial slide mass is able to contribute to the leading wave formation. For the sake of distinguishing the actual slide mass acting on the leading wave formation with the initial mass, we define the submarine slide mass when the leading wave reaches its maximum wave height as “effective mass”. In this work, we held the still water depth and slope angle constant, and varied the initial slide mass and slope length. Then, we measured the slide velocity, slide thickness, and slide mass at impact, as well as the wave amplitude and wave height. The results indicate that the effective mass is dependent on both the initial slide mass and the slope length. The ratio of the effective mass to the initial slide mass is less than 20% in our experimental range, and the ratio increases with larger initial mass. In addition, we also examined our experimental data with previous empirical equations developed from granular slides. By considering the effective mass instead of the initial slide mass, the prediction of impulse waves generated by viscoplastic material is significantly improved.  相似文献   

13.
Landslide-generated waves (LGWs) are among natural hazards that have stimulated attentions and concerns of engineers and researchers during the past decades. At the same period, the application of numerical modeling has been progressively increased to assess, control, and manage the risks of such hazards. This paper represents an overview of numerical studies on LGWs to explore associated recent advances and future challenges. In this review, the main landslide events followed by an LGW hazard are scrutinized. The uncertainty regarding landslide characteristics and the lack of data concerning generated tsunami properties highlights the necessity of probabilistic analysis and numerical modeling. More than 53 % of landslides show the slide length larger than about 20 times of the slide thickness. This fact justifies the popular application of depth-averaged equations (DAEs) for landslides’ motion simulations. Such models are reviewed and tabulated based on their mathematical, numerical, and conceptual approaches. A landslide is generally treated as a homogeneous, mixture, or a multi-phase fluid with different rheologies. The Coulomb type rheology is the most-used rheology applied in more than 70 % of landslide models. Some of the recent studies are considering the effects of multi-phase nature, dynamic changes of rheological parameters, and grain-size segregation of the landslide on its deformations. The numerical tools that model LGWs are also reviewed, categorized, and examined. These models conceptualize a landslide as a general rigid LGW (R-LGW) or deformable LGW (D-LGW) mass. The rigid slide assumption is mainly applied in the LGW models with a focus on the accurate simulation of the wave propagation stage, particularly by means of higher order Boussinesq-type wave equations (BWEs). The majority of D-LGW models solve either the Navier–Stokes equations (NSEs) for a multi-phase (landslide material, water, and air) flow or the shallow water equations (SWEs) for a two-layer (a layer of granular material moving beneath a layer of water) flow. NSEs are more comprehensive models but less robust than DAEs. The key effect of dispersion in LGWs, which are typically important in intermediate and even deep water wave domains, challenges researchers to apply higher order BWEs instead of SWEs in two-layer models. Regarding numerical approaches, Lagrangian’s are more robust than Eulerian’s, but they have been rarely applied due to their high computational demands for real cases. The remaining challenges are reviewed as the necessity of probabilistic analysis to assess the risk of the related hazards more accurately for both past and potential LGW hazards; further thorough laboratory-scale experiments and field data measurements to have accurate and detailed benchmark data; providing RS/GIS-based worldwide hazard map for potential LGWs and compiled database for occurred events; extending BWEs for granular flows and DAEs with non-hydrostatic corrections; and economizing the computational costs of models by advanced techniques like parallel processing and GPU accelerators.  相似文献   

14.
After the Gongjiafang tsunami incident, the China Geological Survey recognized the extreme importance of subaerial landslide-generated tsunamis (SLGT) in the Three Gorges Reservoir, western China. The experimental models presented in the present paper were rooted in two common failure types of high, steep slopes in the Three Gorges Reservoir. One model represents a rigid rock plunging into the water and the other is a granular cluster sliding into the water. A wide range of effective parameters were considered and studied by performing 74 laboratory tests. The effects of bed slope angle, water depth, slide impact velocity, geometry (three-dimensional size of the rigid block and grain size of the granular cluster), and volume on impulse wave characteristics were examined. Slide kinematics and impulsive wave features, such as wave shape, amplitude, run-up, and run-down, were studied and compared. Experiments showed that the failure type of the rock mass plays a key role in SLGT and strongly influences air–fluid–solid interaction. Thus, to forecast SLGT rapidly, the zone of complicated air–solid–fluid interaction can be treated as a “black box” whose output is a water wave with definable characteristics, such as amplitude. Based on the experimental results, two dimensionless equations for the estimation of primary wave maximum amplitude were developed and successfully verified for the two failure types. The study provides basic information needed to forecast tsunamis generated by slopes with the potential to fail in other reservoirs around the world. These data can also be a very useful resource for theoretical analysis or numerical model validation.  相似文献   

15.
This paper presents a new landslide-generated wave (LGW) model based on incompressible Euler equations with Savage-Hutter assumptions. A two-layer model is developed including a layer of granular-type flow beneath a layer of an inviscid fluid. Landslide is modeled as a two-phase Coulomb mixture. A well-balanced second-order finite volume formulation is applied to solve the model equations. Wet/dry transitions are treated properly using a modified non-linear method. The numerical model is validated using two sets of experimental data on subaerial and submarine LGWs. Impulsive wave characteristics and landslide deformations are estimated with a computational error less than 5 %. Then, the model is applied to investigate the effects of landslide deformations on water surface fluctuations in comparison with a simpler model considering a rigid landslide. The model results confirm the importance of both rheological behavior and two-phase nature of landslide in proper estimation of generated wave properties and formation patterns. Rigid slide modeling often overestimates the characteristics of induced waves. With a proper rheological model for landslide, the numerical prediction of LGWs gets more than 30 % closer to experimental measurements. Single-phase landslide results in relative errors up to about 30 % for maximum positive and about 70 % for maximum negative wave amplitudes. Two-phase constitutive structure of landslide has also strong effects on landslide deformations, velocities, elongations, and traveling distances. The complex behaviors of landslide and LGW of the experimental data are analyzed and described with the aid of the robust and accurate finite volume model. This can provide benchmark data for testing other numerical methods and models.  相似文献   

16.
Most tsunamis are generated by earthquakes, with secondary, less frequent, mechanisms including subaerial and submarine landslides, volcanic eruptions and (extra‐terrestrial) bolide impacts. Different mechanisms generate tsunamis with different magnitudes, travel distances and impacts. Submarine landslides had been mapped and studied for decades but records suggested that only a few had generated tsunamis, and that these were minor. It was not until 1998, when a slump on the seabed offshore of northern Papua New Guinea caused a tsunami wave up to 15 m high that killed over 2200 people, was the significance of submarine landslides in tsunami generation realised. A combination of new (multibeam) seabed mapping technology and the development of improved numerical tsunami models for tsunami generation led to the recognition of the landslide tsunami mechanism of the PNG event. As a result the hazard from submarine landslides in tsunami generation is now recognized and better understood. Extensive mapping of ocean margins reveals that submarine landslides are common. Although many of these probably generated tsunamis, few have been identified, so their hazard remains uncertain. This article describes how the hazard from submarine landslide tsunamis was first recognized, how submarine landslides generate tsunamis, why they were previously discounted as a major hazard, and their potential hazards. An important aspect of the recognition of the tsunami hazard from submarine landslides has been the significance of geology, which has contributed to a subject previously dominated by seismologists.  相似文献   

17.
Landslides of subaerial and submarine origin may generate tsunamis with locally extreme amplitudes and runup. While the landslides themselves are dangerous, the hazards are compounded by the generation of tsunamis along coastlines, in enclosed water bodies, and off continental shelves and islands. Tsunamis generated by three-dimensional deformable granular landslides were studied on planar and conical hill slopes in the three-dimensional NEES tsunami wave basin at Oregon State University based on the generalized Froude similarity. A unique pneumatic landslide tsunami generator (LTG) was deployed to control the kinematics and acceleration of the naturally rounded river gravel and cobble landslides to simulate broad ranges of landslide shapes and velocities along the slope. Lateral and overhead cameras are used to measure the landslide shapes and kinematics, while acoustic transducers provide the shape of the subaqueous deposits. The subaerial landslide shape is extracted from the camera images as the landslide propagates under gravity down the hill slope, and surface reconstruction of the landslide is conducted using the stereo particle image velocimetry (PIV) system on the conical hill slope. Subaerial landslide surface velocities are measured with a planar PIV system on the planar hill slope and stereo PIV system on the conical hill slope. The submarine deposits are characterized by the runout distances and the deposit thickness distributions. Larger cobbles are observed producing hummock type features near the maximum runout length. These unique laboratory landslide experiments serve to validate deformable landslide models as well as provide the source characteristics for tsunami generation.  相似文献   

18.
By combining landslide dynamics research and tsunami research, we present an integrated series of numerical models quantitatively simulating the complete evolution of a landslide-induced tsunami. The integrated model simulating the landslide initiation and motion uses measured landslide dynamic parameters from a high-stress undrained dynamic-loading ring shear apparatus. It provides the numerical data of a landslide mass entering and moving under water to the tsunami simulation model as the trigger of tsunami. The series of landslide and tsunami simulation models were applied to the 1792 Unzen-Mayuyama megaslide and the ensuing tsunami disaster, which is the largest landslide disaster, the largest volcanic disaster, and the largest landslide-induced tsunami disaster to have occurred in Japan. Both the 1792 megaslide and the tsunami portions of the disaster are well documented, making this an excellent test of the reliability and precision of the new simulation model. The simulated tsunami heights at the coasts well match the historical tsunami heights recorded by “Tsunami-Dome-Ishi” (a stone showing the tsunami reaching point) and memorial stone pillars.  相似文献   

19.
At about 8:30 p.m. on 27 August 2014, a catastrophic rock avalanche suddenly occurred in Fuquan, Yunnan, southwestern China. This landslide and related impulse water waves destroyed two villages and killed 23 persons. The impulse waves occurred after initiation of the landslide, caused by the main part of the slide mass rapidly plunging into a water-filled quarry below the source area. The wave, comprising muddy water and rock debris, impacted the opposite slope of the quarry on the western side of the runout path and washed away three homes in Xinwan village. Part of the displaced material traveled a horizontal distance of about 40 m from its source and destroyed the village of Xiaoba. To provide information for potential landslide hazard zonation in this area, a combined landslide–wave simulation was undertaken. A dynamic landslide analysis (DAN-W) model is used to simulate the landslide propagation before entering the quarry, while Fluent (Ansys Inc., USA) is used to simulate the impulse wave generation and propagation. Output data from the DAN-W simulation are used as input parameters for wave modeling, and there is good agreement between the observed and simulated results of the landslide propagation. Notably, the locations affected by recordable waves according to the simulation correspond to those recorded by field investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号