首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synchrotron radio maps of supernova remnants (SNRs) in a uniform interstellar medium and interstellar magnetic field (ISMF) are analysed, allowing for different 'sensitivity' of the injection efficiency to the obliquity of the shock. The very-high-energy γ-ray maps arising from inverse Compton processes are also synthesized. The properties of images in these different wavelength bands are compared, with particular emphasis on the location of the bright limbs in bilateral SNRs. Recent High-Energy Stereoscopic System (HESS) observations of SN 1006 show that the radio and inverse Compton γ-ray limbs coincide, and we found that this may happen if (i) injection is isotropic but the variation of the maximum energy of electrons is rather fast to compensate for differences in the magnetic field, or (ii) the obliquity dependence of injection (either quasi-parallel or quasi-perpendicular) and the electron maximum energy are strong enough to dominate the magnetic field variation. In the latter case, the obliquity dependences of the injection and the maximum energy should not be opposite. We argue that the position of the limbs alone, and even their coincidence in radio, X-rays and γ-rays, as discovered by HESS in SN 1006, cannot be conclusive as regards the dependence of the electron injection efficiency, the compression/amplification of the ISMF and the electron maximum energy on the obliquity angle.  相似文献   

2.
We study the emission from an old supernova remnant (SNR) with an age of around 105 yr and that from a giant molecular cloud (GMC) encountered by the SNR. When the SNR age is around 105 yr, proton acceleration is efficient enough to emit TeV γ-rays both at the shock of the SNR and that in the GMC. The maximum energy of primarily accelerated electrons is so small that TeV γ-rays and X-rays are dominated by hadronic processes,  π0  -decay and synchrotron radiation from secondary electrons, respectively. However, if the SNR is older than several 105 yr, there are few high-energy particles emitting TeV γ-rays because of the energy-loss effect and/or the wave-damping effect occurring at low-velocity isothermal shocks. For old SNRs or SNR–GMC interacting systems capable of generating TeV γ-ray emitting particles, we calculated the ratio of TeV γ-ray (1–10 TeV) to X-ray (2–10 keV) energy flux and found that it can be more than  ∼102  . Such a source showing large flux ratio may be a possible origin of recently discovered unidentified TeV sources.  相似文献   

3.
HESS J1616−508 is one of the brightest emitters in the TeV sky. Recent observations with the IBIS/ISGRI telescope onboard the INTEGRAL spacecraft have revealed that a young, nearby and energetic pulsar, PSR J1617−5055, is a powerful emitter of soft γ-rays in the 20–100 keV domain. In this paper, we present an analysis of all available data from the INTEGRAL , Swift , BeppoSAX and XMM–Newton telescopes with a view to assessing the most likely counterpart to the High Energy Stereoscopic System (HESS) source. We find that the energy source that fuels the X/γ-ray emissions is derived from the pulsar, both on the basis of the positional morphology, the timing evidence and the energetics of the system. Likewise the 1.2 per cent of the pulsar's spin-down energy loss needed to power the 0.1–10 TeV emission is also fully consistent with other HESS sources known to be associated with pulsars. The relative sizes of the X/γ-ray and very high energy sources are consistent with the expected lifetimes against synchrotron and Compton losses for a single source of parent electrons emitted from the pulsar. We find that no other known object in the vicinity could be reasonably considered as a plausible counterpart to the HESS source. We conclude that there is good evidence to assume that the HESS J1616−508 source is driven by PSR J1617−5055 in which a combination of synchrotron and inverse-Compton processes combine to create the observed morphology of a broad-band emitter from keV to TeV energies.  相似文献   

4.
Some massive binaries should contain energetic pulsars which inject relativistic leptons from their inner magnetospheres and/or pulsar wind regions. If the binary system is compact enough, then these leptons can initiate inverse Compton (IC) e± pair cascades in the anisotropic radiation field of a massive star. γ-rays can be produced in the IC cascade during its development in a pulsar wind region and above a shock in a massive star wind region where the propagation of leptons is determined by the structure of a magnetic field around the massive star. For a binary system with specific parameters, we calculate phase-dependent spectra and fluxes of γ-rays escaping as a function of the inclination angle of the system and for different assumptions on injection conditions of the primary leptons (their initial spectra and location of the shock inside the binary). We conclude that the features of γ-ray emission from such massive binaries containing energetic pulsars should allow us to obtain important information on the acceleration of particles by the pulsars, and on interactions of a compact object with the massive star wind. Predicted γ-ray light curves and spectra in the GeV and TeV energy ranges from such binary systems within our Galaxy and Magellanic Clouds should be observed by future AGILE and GLAST satellites and low-threshold Cherenkov telescopes, such as MAGIC, HESS, VERITAS or CANGAROO III.  相似文献   

5.
A number of important processes taking place around strong shocks in supernova remnants (SNRs) depend on the shock obliquity. The measured synchrotron flux is a function of the aspect angle between interstellar magnetic field (ISMF) and the line of sight. Thus, a model of non-thermal emission from SNRs should account for the orientation of the ambient magnetic field. We develop a new method for the estimation of the aspect angle, based on the comparison between observed and synthesized radio maps of SNRs, making different assumptions about the dependence of electron injection efficiency on the shock obliquity. The method uses the azimuthal profile of radio surface brightness as a probe for orientation of ambient magnetic field because it is almost insensitive to the downstream distribution of magnetic field and emitting electrons. We apply our method to a new radio image of SN 1006 produced on the basis of archival Very Large Array and Parkes data. The image recovers emission from all spatial structures with angular scales from a few arcsec to 15 arcmin. We explore different models of injection efficiency and find the following best-fitting values for the aspect angle of SN 1006:  φo= 70o± 4.2o  if the injection is isotropic,  φo= 64o± 2.8o  for quasi-perpendicular injection (SNR has an equatorial belt in both cases) and  φo= 11o± 0.8o  for quasi-parallel injection (polar-cap model of SNR). In the last case, SN 1006 is expected to have a centrally peaked morphology contrary to what is observed. Therefore, our analysis provides some indication against the quasi-parallel injection model.  相似文献   

6.
PSR B1259−63 is a 48-ms radio pulsar in a highly eccentric 3.4-yr orbit with a Be star SS 2883. Unpulsed γ-ray, X-ray and radio emission components are observed from the binary system. It is likely that the collision of the pulsar wind with the anisotropic wind of the Be star plays a crucial role in the generation of the observed non-thermal emission. The 2007 periastron passage was observed in unprecedented details with Suzaku , Swift , XMM–Newton and Chandra missions. We present here the results of this campaign and compare them with previous observations. With these data we are able, for the first time, to study the details of the spectral evolution of the source over a 2-month period of the passage of the pulsar close to the Be star. New data confirm the pre-periastron spectral hardening, with the photon index reaching a value smaller than 1.5, observed during a local flux minimum. If the observed X-ray emission is due to the inverse Compton (IC) losses of the 10-MeV electrons, then such a hard spectrum can be a result of Coulomb losses, or can be related to the existence of the low-energy cut-off in the electron spectrum. Alternatively, if the X-ray emission is a synchrotron emission of very high-energy electrons, the observed hard spectrum can be explained if the high-energy electrons are cooled by IC emission in Klein–Nishina regime. Unfortunately, the lack of simultaneous data in the TeV energy band prevents us from making a definite conclusion on the nature of the observed spectral hardening and, therefore, on the origin of the X-ray emission.  相似文献   

7.
This paper focuses on neutron stars (NS) of the magnetar type inside massive binary systems. We determine the conditions under which the matter from the stellar wind can penetrate the inner magnetosphere of the magnetar. At a certain distance from the NS surface, the magnetic pressure can balance the gravitational pressure of the accreting matter, creating a very turbulent, magnetized transition region. It is suggested that this region provides good conditions for the acceleration of electrons to relativistic energies. These electrons lose energy due to the synchrotron process and inverse Compton (IC) scattering of the radiation from the nearby massive stellar companion, producing high-energy radiation from X-rays up to ∼TeV γ-rays. The primary γ-rays can be further absorbed in the stellar radiation field, developing an IC  e±  pair cascade. We calculate the synchrotron X-ray emission from primary electrons and secondary  e±  pairs and the IC γ-ray emission from the cascade process. It is shown that quasi-simultaneous observations of the TeV γ-ray binary system LSI +61 303 in the X-ray and TeV γ-ray energy ranges can be explained with such an accreting magnetar model.  相似文献   

8.
The HESS experiment (High Energy Stereoscopic System), consisting of four imaging atmospheric Cherenkov telescopes (IACTs) in Namibia, has observed many extragalactic objects in the search for very high energy (VHE) γ-ray emission. These objects include active galactic nuclei (AGN), notably Blazars, Seyferts, radio galaxies, starburst galaxies and others. Beyond the established sources, γ-ray emission has been detected for the first time from several of these objects by HESS, and their energy spectra and variability characteristics have been measured. Multi-wavelength campaigns, including X-ray satellites, radio telescopes, and optical observations, have been carried out for AGNs, in particular for PKS 2155-304, H 2356-309 and 1ES 1101-232, for which the implications concerning emission models are presented. Also results from the investigations of VHE flux variability from the giant radio galaxy M 87 are shown. For the HESS Collaboration.  相似文献   

9.
A unifying view of the spectral energy distributions of blazars   总被引:3,自引:0,他引:3  
We collect data at well-sampled frequencies from the radio to the γ-ray range for the following three complete samples of blazars: the Slew survey, the 1-Jy samples of BL Lacs and the 2-Jy sample of flat-spectrum radio-loud quasars (FSRQs). The fraction of objects detected in γ-rays ( E  ≳ 100 MeV) is ∼ 17, 26 and 40 per cent in the three samples respectively. Except for the Slew survey sample, γ-ray detected sources do not differ either from other sources in each sample, or from all the γ-ray detected sources, in terms of the distributions of redshift, radio and X-ray luminosities or of the broad-band spectral indices (radio to optical and radio to X-ray). We compute average spectral energy distributions (SEDs) from radio to γ-rays for each complete sample and for groups of blazars binned according to radio luminosity, irrespective of the original classification as BL Lac or FSRQ. The resulting SEDs show a remarkable continuity in that (i) the first peak occurs in different frequency ranges for different samples/luminosity classes, with most luminous sources peaking at lower frequencies; (ii) the peak frequency of the γ-ray component correlates with the peak frequency of the lower energy one; (iii) the luminosity ratio between the high and low frequency components increases with bolometric luminosity. The continuity of properties among different classes of sources and the systematic trends of the SEDs as a function of luminosity favour a unified view of the blazar phenomenon: a single parameter, related to luminosity, seems to govern the physical properties and radiation mechanisms in the relativistic jets present in BL Lac objects as well as in FSRQs. The general implications of this unified scheme are discussed while a detailed theoretical analysis, based on fitting continuum models to the individual spectra of most γ-ray blazars, is presented in a separate paper.  相似文献   

10.
At least one massive binary system containing an energetic pulsar, PSR B1259−63/SS2883, has been recently detected in the TeV γ-rays by the HESS telescopes. These γ-rays are likely produced by particles accelerated in the vicinity of the pulsar and/or at the pulsar wind shock, in comptonization of soft radiation from the massive star. However, the process of γ-ray production in such systems can be quite complicated due to the anisotropy of the radiation field, complex structure of the pulsar wind termination shock and possible absorption of produced γ-rays which might initiate leptonic cascades. In this paper, we consider in detail all these effects. We calculate the γ-ray light curves and spectra for different geometries of the binary system PSR B1259−63/SS2883 and compare them with the TeV γ-ray observations. We conclude that the leptonic inverse-Compton model, which takes into account the complex structure of the pulsar wind shock due to the aspherical wind of the massive star, can explain the details of the observed γ-ray light curve.  相似文献   

11.
We present a calculation of a three-dimensional pulsar magnetosphere model to explain high-energy emission from the Geminga pulsar with a thick outer gap. High-energy γ -rays are produced by primary accelerated particles with a power-law energy distribution through curvature radiation inside the outer gap. We also calculate the emission pattern, pulse profile and phase-resolved spectra of high-energy γ -rays of the Geminga pulsar, and find that its pulse profile is consistent with the observed one if the magnetic inclination and viewing angle are ∼50° and ∼86° respectively. We describe the relative phases among soft (thermal) X-rays, hard (non-thermal) X-rays, and γ -rays. Our results indicate that X-ray and γ -ray emission from the Geminga pulsar may be explained by the single thick outer gap model. Finally, we discuss the implications of the radio and optical emission of the Geminga pulsar.  相似文献   

12.
We show that the relativistic wind of the Crab pulsar, which is commonly thought to be invisible in the region upstream of the termination shock at r r S∼0.1 pc, in fact could be directly observed through its inverse Compton (IC) γ -ray emission. This radiation is caused by illumination of the wind by low-frequency photons emitted by the pulsar, and consists of two, pulsed and unpulsed , components associated with the non-thermal (pulsed) and thermal (unpulsed) low-energy radiation of the pulsar, respectively. These two components of γ -radiation have distinct spectral characteristics, which depend essentially on the site of formation of the kinetic-energy-dominated wind, as well as on the Lorentz factor and the geometry of propagation of the wind. Thus, the search for such specific radiation components in the spectrum of the Crab Nebula can provide unique information about the unshocked pulsar wind that is not accessible at other wavelengths. In particular, we show that the comparison of the calculated flux of the unpulsed IC emission with the measured γ -ray flux of the Crab Nebula excludes the possibility of formation of a kinetic-energy-dominated wind within 5 light-cylinder radii of the pulsar, R w5 R L. The analysis of the pulsed IC emission, calculated under reasonable assumptions concerning the production site and angular distribution of the optical pulsed radiation, yields even tighter restrictions, namely R w30 R L.  相似文献   

13.
Several BL Lac objects are confirmed sources of variable and strongly Doppler-boosted TeV emission produced in the nuclear portions of their relativistic jets. It is more than probable that also many of the Fanaroff–Riley type I (FR I) radio galaxies, believed to be the parent population of BL Lacs, are TeV sources, for which Doppler-hidden nuclear γ-ray radiation may be only too weak to be directly observed. Here we show, however, that about 1 per cent of the total time-averaged TeV radiation produced by the active nuclei of low-power FR I radio sources is inevitably absorbed and re-processed by photon–photon annihilation on the starlight photon field, and the following emission of the created and quickly isotropized electron–positron pairs. In the case of the radio galaxy Centaurus A, we found that the discussed mechanism can give a distinctive observable feature in the form of an isotropic γ-ray halo. It results from the electron–positron pairs injected to the interstellar medium of the inner parts of the elliptical host by the absorption process, and upscattering starlight radiation via the inverse-Compton process mainly to the GeV–TeV photon energy range. Such a galactic γ-ray halo is expected to possess a characteristic spectrum peaking at ∼0.1 TeV photon energies, and the photon flux strong enough to be detected by modern Cherenkov Telescopes and, in the future, by GLAST. These findings should apply as well to the other nearby FR I sources.  相似文献   

14.
The few known γ-ray binary systems are all associated with variable radio and X-ray emission. The TeV source HESS J0632+057, apparently associated with the Be star MWC 148, is plausibly a new member of this class. Following the identification of a variable X-ray counterpart to the TeV source we conducted Giant Metrewave Radio Telescope (GMRT) and Very Large Array (VLA) observations in 2008 June–September to search for the radio counterpart of this object. A point-like radio source at the position of the star is detected in both 1280-MHz GMRT and 5-GHz VLA observations, with an average spectral index, α, of ∼0.6. In the VLA data there is significant flux variability on ∼month time-scales around the mean flux density of ≈0.3 mJy. These radio properties (and the overall spectral energy distribution) are consistent with an interpretation of HESS J0632+057 as a lower power analogue of the established γ-ray binary systems.  相似文献   

15.
We discuss the contribution of the blazar population to the extragalactic background radiation across the electromagnetic (e.m.) spectrum with particular reference to the microwave, hard-X-ray and γ-ray bands. Our estimates are based on a recently derived blazar radio LogN-LogS that was built by combining several radio and multi-frequency surveys. We show that blazar emission integrated over cosmic time gives rise to a considerable broad-band non-thermal cosmic background that dominates the extragalactic brightness in the high-energy part of the e.m. spectrum. We also estimate the number of blazars that are expected to be detected by future planned or hypothetical missions operating in the X-ray and γ-ray energy bands.  相似文献   

16.
Within the framework of the internal–external shocks model for γ -ray bursts, we study the various mechanisms that can give rise to quiescent times in the observed γ -ray light curves. In particular, we look for the signatures that can provide us with evidence as to whether or not the central engine goes dormant for a period of time comparable to the duration of the gaps. We show that the properties of the prompt γ -ray and X-ray emission can, in principle, determine whether the quiescent episodes are caused by a modulated relativistic wind or a switching off of the central engine. We suggest that detailed observations of the prompt afterglow emission from the reverse shock will strongly constrain the possible mechanisms for the production of quiescent times in γ -ray bursts.  相似文献   

17.
We discuss the implications of the recent X-ray and TeV γ-ray observations of the PSR B1259–63 system (a young rotation powered pulsar orbiting a Be star) for the theoretical models of interaction of pulsar and stellar winds. We show that previously considered models have problems to account for the observed behaviour of the system. We develop a model in which the broad band emission from the binary system is produced in result of collisions of GeV–TeV energy protons accelerated by the pulsar wind and interacting with the stellar disk. In this model the high energy γ-rays are produced in the decays of secondary neutral pions, while radio and X-ray emission are synchrotron and inverse Compton emission produced by low-energy (≤100 MeV) electrons from the decays of secondary charged π ± mesons. This model can explain not only the observed energy spectra, but also the correlations between TeV, X-ray and radio emission components.   相似文献   

18.
We calculate the high-energy (sub-GeV to TeV) prompt and afterglow emission of GRB 080319B that was distinguished by a naked-eye optical flash and by an unusual strong early X-ray afterglow. There are three possible sources for high-energy emission: the prompt optical and γ-ray photons IC scattered by the accelerated electrons, the prompt photons IC scattered by the early external reverse-forward shock electrons, and the higher band of the synchrotron and the synchrotron self-Compton emission of the external shock. There should have been in total hundreds of high-energy photons detectable for the Large Area Telescope onboard the Fermi satellite, and tens of photons of those with energy >10 GeV. The >10 GeV emission had a duration about twice that of the soft γ-rays. Astro-rivelatore Gamma a Immagini Leggero (AGILE) could have observed these energetic signals if it was not occulted by the Earth at that moment. The physical origins of the high-energy emission detected in GRB 080514B, GRB 080916C and GRB 081024B are also discussed. These observations seem to be consistent with the current high-energy emission models.  相似文献   

19.
We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind–wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called 'pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf–Rayet stars.
As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.  相似文献   

20.
We present a geometric study of the radio and γ-ray pulsar B1055−52 based on recent observations at the Parkes radio telescope. We conclude that the pulsar's magnetic axis is inclined at an angle of 75° to its rotation axis and that both its radio main pulse and interpulse are emitted at the same height above their respective poles. This height is unlikely to be higher or much lower than 700 km, a typical value for radio pulsars.
It is argued that the radio interpulse arises from emission formed on open fieldlines close to the magnetic axis which do not pass through the magnetosphere's null (zero-charge) surface. However, the main pulse emission must originate from fieldlines lying well outside the polar cap boundary beyond the null surface, and farther away from the magnetic axis than those of the outer gap region where the single γ-ray peak is generated. This casts doubt on the common assumption that all pulsars have closed, quiescent, corotating regions stretching to the light cylinder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号