首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
2.
Methods used previously to remove compositional modifications from volcanic gas analyses for Mount Etna and Erta'Ale lava lake have bean employed to estimate the gas phase composition at Nyiragongo lava lake, based on samples obtained in 1959. H2O data were not reported in 11 of the 13 original analyses. The restoration methods have been used to estimate the H2O contents of the samples and to correct the analyses for atmospheric contamination, loss of sulfur and for pre- and pest-collection oxidation of H2S, S2, and H2. The estimated gas compositions are relatively CO2-rich, low in total sulfur and reduced. They contain approximately 35–50% CO2 45–55% H2O, 1–2% SO2, 1–2% H2., 2–3% CO, 1.5–2.5% H2S, 0.5% S2 and 0.1% COS over,he collection temperature range 102° to 960° C. The oxygen fugacities of the gases are consistently about half an order of magnitude below quartz-magnetite-fayalite. The low total sulfur content and resulting low atomic S/C of the Nyiragongo gases appear to be related to the relatively low fO2 of the crystallizing lava. At temperatures above 800°C and pressures of 1–1.5 k bar, the Nyiragongo gas compositions resemble those observed in primary fluid inclusions believed to have formed at similar temperatures and pressures in nephelines of intrusive alkaline rocks. Cooling to 300°C, with fO2 buffered by the rock, results in gas compositions very rich in CH4 (50–70%) and resembling secondary fluid inclusions formed at 200–500°C in alkaline rocks. Below 600°C the gases become supersaturated in carbon as graphite. These inferences are corroborated by several reports of hydrocarbons in plutonic alkaline rocks, and by the presence of CH4-rich waters in Lake Kivu — a lake on the flanks of Nyiragongo volcano.  相似文献   

3.
After the March–April 1986 explosive eruption a comprehensive gas study at Augustine was undertaken in the summers of 1986 and 1987. Airborne COSPEC measurements indicate that passive SO2 emission rates declined exponentially during this period from 380±45 metric tons/day (T/D) on 7/24/86 to 27±6 T/D on 8/24/87. These data are consistent with the hypothesis that the Augustine magma reservoir has become more degassed as volcanic activity decreased after the spring 1986 eruption. Gas samples collected in 1987 from an 870°C fumarole on the andesitic lava dome show various degrees of disequilibrium due to oxidation of reduced gas species and condensation (and loss) of H2O in the intake tube of the sampling apparatus. Thermochemical restoration of the data permits removal of these effects to infer an equilibrium composition of the gases. Although not conclusive, this restoration is consistent with the idea that the gases were in equilibrium at 870°C with an oxygen fugacity near the Ni–NiO buffer. These restored gas compositions show that, relative to other convergent plate volcanoes, the Augustine gases are very HCl rich (5.3–6.0 mol% HCl), S rich (7.1 mol% total S), and H2O poor (83.9–84.8 mol% H2O). Values of D and 18O suggest that the H2O in the dome gases is a mixture of primary magmatic water (PMW) and local seawater. Part of the Cl in the Augustine volcanic gases probably comes from this shallow seawater source. Additional Cl may come from subducted oceanic crust because data by Johnston (1978) show that Cl-rich glass inclusions in olivine crystals contain hornblende, which is evidence for a deep source (>25km) for part of the Cl. Gas samples collected in 1986 from 390°–642°C fumaroles on a ramp surrounding the inner summit crater have been oxidized so severely that restoration to an equilibrium composition is not possible. H and O isotope data suggest that these gases are variable mixtures of seawater, FMW, and meteoric steam. These samples are much more H2O-rich (92%–97% H2O) than the dome gases, possibly due to a larger meteoric steam component. The 1986 samples also have higher Cl/S, S/C, and F/Cl ratios, which imply that the magmatic component in these gases is from the more degassed 1976 magma. Thus, the 1987 samples from the lava dome are better indicators than the 1986 samples of degassing within the Augustine magma reservoir, even though they were collected a year later and contain a significant seawater component. Future gas studies at Augustine should emphasize fumaroles on active lava domes. Condensates collected from the same lava-dome fumarole have enrichments ot 107–102 in Cl, Br, F, B, Cd, As, S, Bi, Pb, Sb, Mo, Zn, Cu, K, Li, Na, Si, and Ni. Lower-temperature (200°–650°C) fumaroles around the volcano are generally less enriched in highly volatile elements. However, these lower-termperature fumaroles have higher concentration of rock-forming elements, probably derived from the wall rock.  相似文献   

4.
Summary 1) It is confirmed that in filtered, nucleus-free air, in a polyethylene balloon, if irradiated by sunglight, an immediate large number of condensation nuclei appear. — 2) The nucleus count rises to about 35. 000/cm3 and if the irradiation is continued does not increase, but decreases. This decreased is accelerated in the dark. — 3) Less intensive sunlight as when the sun was covered by clouds, gives slower and smaller increases. — 4) The same was observed if, instead of air, inducstrial oxygen or nitrogen was used. — 5) Traces of H2S increase the sun effect enormously. — 6) Traces of NH3 also increase it, but less than H2S. — 7) SO2 filtered through cottonwool gave also in the dark nuclei, which then decreased in number. — 8) It is supposed that H2S is oxydized by the photochemical action of the sun's visible spectrum to SO2 SO3 SO4 which is a nucleus. With NH3 the formation of (NH3)2 SO4 is probable. But no direct proof is given that these are the actual impurities which explain the sun's action on air. It is calculated that dilutions of 10–15 of an impurity of the type of H2S can quantitatively explain the sun effect. — 9) The work ofAitken is extensively quoted, who noticed, 50 years ago, the «fog produced by sun».
Zusammenfassung 1) Es wird bestätigt, dass Sonnen-Bestrahlung von filtrierter kernfreier Luft, welche in einem Polyethylen-Ballon aufbewahrt ist, zum Entstehen einer hohen Zahl von Kondensations Kernen führt. — 2) Die Kernzahl steigt auf etwa 35 000/cm3. Wird die Bestrahlung fortgesetzt, dann steigt sie nicht weiter sondern nimmt ab. Die Abnahme wird im Dunkeln beschleunigt. — 3) Durch Wolken abgeschwächtes Sonnenlicht gibt eine langsamere, weniger grosse Kernbildung. — 4) Dieselben Beobachtungen wurden mit industriellem Sauerstroff und Stickstoff auch gemacht. — 5) Spuren von H2S verstärken den Sonneneffekt enorm. — 6) Spuren von NH3 verstärken ihn auch, jedoch weniger. — 7) SO2 Gas, gefiltert durch Baumwollfilter giebt auch im Dunkeln schon Kerne, deren Zahl dann wieder abnimmt. — 8) Es wird angenommen, das H2S durch photochemische Wirkung des sichtbaren Sonnenlichtes oxidiert wird zu SO2 SO3 SO4 welch letzteres bereits als H2HO4 ein Kondensationskern ist. Mit NH3)2 SO4 Kondensationskerne gebildet werden. Es sind jedoch keine direkten Beweise dafür vorhanden, dass diese Gase die Verunreinigungen der atmosphärischen Luft sind, welche den Sonnenffekt geben. Es wird aber berechnet, dass schon Verdünnungen von 10–15 eine Verunreinigung H2S den Sonnen-Effekt erklären. — 9)Aitken's Werk, der bereits vor 50 Jahren von « durch Sonne verursachten Nebel « sprach, wird gewürdigt.


From the Clima-physiological Laboratory of St. Moritz-Bad.  相似文献   

5.
Summary Effects of mechanical shocks of about 0.5 msec in duration on the remanent magnetization of igneous rocks are experimentally studied. The remanent magnetization acquired by applying a shock (S) in the presence of a magnetic field (H), which is symbolically expressed asJ R (H+S Ho), is very large compared with the ordinary isothermal remanent magnetization (IRM) acquired in the same magnetic field.J R (H+S Ho) is proportional to the piezo-remanent magnetization,J R (H+P+Po Ho).The effect of applyingS in advance of an acquisition of IRM is represented symbolically byJ R (S H+ Ho).J R (S H+ Ho) can become much larger than the ordinary IRM, and is proportional to the advance effect of pressure on IRM,J R(P+ P0 H+ H0).The effect of shockS applied on IRM in non-magnetic space is represented by the shock-demagnetization effect,J R(H+ H0 S), which also is proportional toJ R(H+ H0 P+ P0).Because, the duration of a shock is very short, a single shock effect cannot achieve the final steady state. The effect ofn-time repeated shocks, is represented byJ 0+J *(n), whereJ 0 means the immediate effect and J *(n) represent the resultant effect of repeating, which is of mathematical expression proportional to [1–exp {–(n–1)}].
Zusammenfassung Die Effekte des mechanischen Stosses mit der Dauer von etwa 0.5 ms auf der remanenten Magnetisierung wurden experimentell nachgesucht. Das erworbene Remanenz der Magnetisierung nach dem Stoss (S) unter dem magnetischen Feld (H), das hier symbolisch alsJ R(H+ SH0) bezechnet wird, ist sehr stark im Vergleich mit der normalen isothermischen remanenten Magnetisierung (IRM) unter demselben magnetischen Feld.J R(H+ S H0) ist im Verhältnis zur piezoremanenten Magnetisierung,J R(H+ P+ P0 H0).Der Effekt vom Stoss vor der Erwerbung von IRM wird symbolisch alsJ R(S H+ H0) bezeichnet.J R(S H+ H0) kann viel stärker als die normale IRM werden, im verhältnis zum Effekt des vorausgegebenen Drucks auf IRMJ R(P+ P0 H+ H0).Der Effekt des Stosses auf IRM im Raum ohne magnetisches Feld wird mit dem Stossentmagnetisierungseffekt dargestellt,J R(H+ H0 S), der auch proportional zuJ R(H+ H0 P+ P0) ist.Da die Dauer einzelnen Stosses sehr kurz ist, kann der Effekt des einmaligen Stosses den endgültigen stabilen Zustand nicht erreichen. Der Effekt nachn-maligen wiederholten Stossen wird alsJ 0+J *(n) bezeichnet, wobeiJ 0 den unverzüglichen Effekt bedeutet, und J *(n) beschreibt den resultanten Effekt der Stosswiederholung, dessen mathematische Darstellung proporational zu [1–exp {–(n–1)}] ist.
  相似文献   

6.
Samples from Kawah Ijen crater lake, spring and fumarole discharges were collected between 1990 and 1996 for chemical and isotopic analysis. An extremely low pH (<0.3) lake contains SO4–Cl waters produced during absorption of magmatic volatiles into shallow ground water. The acidic waters dissolve the rock isochemically to produce “immature” solutions. The strong D and 18O enrichment of the lake is mainly due to enhanced evaporation at elevated temperature, but involvement of a magmatic component with heavy isotopic ratios also modifies the lake D and 18O content. The large ΔSO4–S0 (23.8–26.4‰) measured in the lake suggest that dissolved SO4 forms during disproportionation of magmatic SO2 in the hydrothermal conduit at temperatures of 250280°C. The lake δ18OSO4 and δ18OH2O values may reflect equilibration during subsurface circulation of the water at temperatures near 150°C. Significant variations in the lake's bulk composition from 1990 to 1996 were not detected. However, we interpret a change in the distribution and concentration of polythionate species in 1996 as a result of increased SO2-rich gas input to the lake system.Thermal springs at Kawah Ijen consist of acidic SO4–Cl waters on the lakeshore and neutral pH HCO3–SO4–Cl–Na waters in Blawan village, 17 km from the crater. The cation contents of these discharges are diluted compared to the crater lake but still do not represent equilibrium with the rock. The SO4/Cl ratios and water and sulfur isotopic compositions support the idea that these springs are mixtures of summit acidic SO4–Cl water and ground water.The lakeshore fumarole discharges (T=170245°C) have both a magmatic and a hydrothermal component and are supersaturated with respect to elemental sulfur. The apparent equilibrium temperature of the gas is 260°C. The proportions of the oxidized, SO2-dominated magmatic vapor and of the reduced, H2S-dominated hydrothermal vapor in the fumaroles varied between 1979 and 1996. This may be the result of interaction of SO2-bearing magmatic vapors with the summit acidic hydrothermal reservoir. This idea is supported by the lower H2S/SO2 ratio deduced for the gas producing the SO4–Cl reservoir feeding the lake compared with that observed in the subaerial gas discharges. The condensing gas may have equilibrated in a liquid–vapor zone at about 350°C.Elemental sulfur occurs in the crater lake environment as banded sediments exposed on the lakeshore and as a subaqueous molten body on the crater floor. The sediments were precipitated in the past during inorganic oxidation of H2S in the lake water. This process was not continuous, but was interrupted by periods of massive silica (poorly crystallized) precipitation, similar to the present-day lake conditions. We suggest that the factor controlling the type of deposition is related to whether H2S- or silica-rich volcanic discharges enter the lake. This could depend on the efficiency with which the lake water circulates in the hydrothermal cell beneath the crater. Quenched liquid sulfur products show δ34S values similar to those found in the banded deposits, suggesting that the subaqueous molten body simply consists of melted sediments previously accumulated at the lake bottom.  相似文献   

7.
An SO2 flux of 1170±400 (1) tonnes per day was measured with a correlation spectrometer (COSPEC) in October and November 1986 from the continuous, nonfountaining, basaltic East Rift Zone eruption (episode 48A) of Kilauea volcano. This flux is 5–27 times less than those of highfountaining episodes, 3–5 times greater than those of contemporaneous summit emissions or interphase Pu'u O'o emissions, and 1.3–2 times the emissions from Pu'u O'o alone during 48A. Calculations based on the SO2 emission rate resulted in a magma supply rate of 0.44 million m3 per day and a 0.042 wt% sulfur loss from the magma upon eruption. Both of these calculated parameters agree with determinations made previously by other methods.  相似文献   

8.
Kawah Putih is a summit crater of Patuha volcano, West Java, Indonesia, which contains a shallow, 300 m-wide lake with strongly mineralized acid–sulfate–chloride water. The lake water has a temperature of 26–34°C, pH=<0.5–1.3, Stot=2500–4600 ppm and Cl=5300–12 600 ppm, and floating sulfur globules with sulfide inclusions are common. Sulfur oxyanion concentrations are unusually high, with S4O62−+S5O62−+S6O62−=2400 – 4200 ppm. Subaerial fumaroles (<93°C) on the lake shore have low molar SO2/H2S ratios (<2), which is a favorable condition to produce the observed distribution of sulfur oxyanion species. Sulfur isotope data of dissolved sulfate and native sulfur show a significant 34S fractionation (ΔSO4–Se of 20‰), probably the result of SO2 disproportionation in or below the lake. The lake waters show strong enrichments in 18O and D relative to local meteoric waters, a result of the combined effects of mixing between isotopically heavy fluids of deep origin and meteoric water, and evaporation-induced fractionation at the lake surface. The stable-isotope systematics combined with energy-balance considerations support very rapid fluid cycling through the lake system. Lake levels and element concentrations show strong seasonal fluctuations, indicative of a short water residence time in the lake as well.Thermodynamic modeling of the lake fluids indicates that the lake water is saturated with silica phases, barite, pyrite and various Pb, Sb, Cu, As, Bi-bearing sulfides when sulfur saturation is assumed. Precipitating phases predicted by the model calculations are consistent with the bulk chemistry of the sulfur-rich bottom sediments and their identified mineral phases. Much of the lake water chemistry can be explained by congruent rock dissolution in combination with preferential enrichments from entering fumarolic gases or brines and element removal by precipitating mineral phases, as indicated by a comparison of the fluids, volcanic rocks and lake bed sediment.Flank springs on the mountain at different elevations vary in composition, and are consistent with local rock dissolution as a dominant factor and pH-dependent element mobility. Discharges of warm sulfate- and chloride-rich water at the highest elevation and a near-neutral spring at lower level may contain a small contribution of crater-lake water. The acid fluid-induced processes at Patuha have led to the accumulation of elements that are commonly associated with volcano-hosted epithermal ore deposits. The dispersal of heavy metals and other potentially toxic elements from the volcano via the local drainage system is a matter of serious environmental concern.  相似文献   

9.
Summary Auroral spectra taken from within the auroral zone reveal H-emission as not limited to the magnetic zenith but as extending over the sky. The surface brightness forH andH may tentatively be estimated to a few airglows. The assumption is made that some of this emission may extend to the very low gm latitudes and be practically universal and the possible mode of excitation of neutral hydrogen in space is speculated upon. At the earth's orbit the density number of the cosmic, infalling, hydrogen accreted from beyond the solar system towards the sun is about 102 neutral atoms cm–3 and coronal plasma contributions cannot encrease this number by more than a factor of two. If an exceptionally violent solar disturbance ejects stream-electrons attaining velocities-of 2,200 km sec–1 corresponding to the threshold energy forH excitation of 12.8 eV and if these electrons, at the earth's orbit, have a density number of 103 cm–3, then a shell about 100,000 km thick may contributeH emission having a surface brightness of about 0.1 airglow this being the higher probable value. Such anH-emission could be detectable from all latitudes during, or, most probably, just before the occurence of an auroral storm.  相似文献   

10.
Summary Based on the qualitative microspectrophotometric analysis of 287 atmospheric dust samples taken within the surface boundary layer over south central New Mexico, U.S.A. from May 1966 through October 1967, a representative infrared absorption spectrum from 4000 to 250 cm–1 (2.5 to 40 m) is presented. The strongest absorption band is centered at 1027 cm–1 (9,7 m), within the 1250 to 770 cm–1 (8 to 13 m) atmospheric window, and is silicate induced. Two other strong broad absorption bands are the carbonate band at 1425 cm–1 (7.0 m) and the silicate band at 468 cm–1 (21.4 m). Temporal variations in the absorption spectra of the dust are observed primarily in the varying relative intensities of the 1027 and 1425 cm–1 (9.7 and 7.0 m) absorption bands and in the occasional enhancement of the 1027 cm–1 (9.7 m) band caused by sulfates in the dust. This study indicates that there is a close similarity between the absorption spectra of the atmospheric dust and the spectra of the small particle fraction of area soils, and between the representative dust spectrum and a spectrum of a synthetic mixture (by weight) of 80% silicates, 16% carbonates, and 4% nitrates.  相似文献   

11.
Among the series of eruptions at Miyakejima volcano in 2000, the largest summit explosion occurred on 18 August 2000. During this explosion, vesiculated bombs and lapilli having cauliflower-like shapes were ejected as essential products. Petrological observation and chemical analyses of the essential ejecta and melt inclusions were carried out in order to investigate magma ascent and eruption processes. SEM images indicate that the essential bombs and lapilli have similar textures, which have many tiny bubbles, crystal-rich and glass-poor groundmass and microphenocrysts of plagioclase, augite and olivine. Black ash particles, which compose 40% of the air-fall ash from the explosion, also have similar textures to the essential bombs. Whole-rock analyses show that the chemical composition of all essential ejecta is basaltic (SiO2=51–52 wt%). Chemical analyses of melt inclusions in plagioclase and olivine phenocrysts indicate that melt in the magma had 0.9–1.9 wt% H2O, <0.011 wt% CO2, 0.04–0.17 wt% S and 0.06–0.1 wt% Cl. The variation in volatile content suggests degassing of the magma during ascent up to a depth of about 1 km. The ratio of H2O and S content of melt inclusions is similar to that of volcanic gas, which has been intensely and continuously emitted from the summit since the end of August 2000, indicating that the 18 August magma is the source of the gas emission. Based on the volatile content of the melt inclusions and the volcanic gas composition, the initial bulk volatile content of the magma was estimated to be 1.6–1.9 wt% H2O, 0.08–0.1 wt% CO2, 0.11–0.17 wt% S and 0.06–0.07 wt% Cl. The basaltic magma ascended from a deeper chamber (10 km) due to decrease in magma density caused by volatile exsolution with pressure decrease. The highly vesiculated magma, which had at least 30 vol% bubbles, may have come into contact with ground water at sea level causing the large explosion of 18 August 2000.Editorial responsibility: S. Nakada, T. DuittAn erratum to this article can be found at  相似文献   

12.
A critical evaluation of literature values for the solubility products, K sp NBS = [Fe2+][HS] Fe2+ HS (H NBS + )–1, of various iron sulphide phases results in consensus values for the pKs of 2.95 ± 0.1 for amorphous ferrous sulphide, 3.6 ± 0.2 for mackinawite, 4.4 ± 0.1 for greigite, 5.1 ± 0.1 for pyrrhotite, 5.25 ± 0.2 for troilite and 16.4 ± 1.2 for pyrite.Where the analogous ion activity products have been measured in anoxic freshwaters in which there is evidence for the presence of solid phase FeS, the values lie within the range of 2.6–3.22, indicating that amorphous iron sulphide is the controlling phase. The single value for a groundwater of 2.65 (2.98 considering carbonate complexation) agrees. In seawater four values range between 3.85 to 4.2, indicating that mackinawite or greigite may be the controlling phase. The single low value of 2.94 is in a situation where particularly high fluxes of Fe (II) and S (–II) may result in the preferential precipitation of amorphous iron sulphide. Formation of framboidal pyrite in these sulphidic environments may occur in micro-niches and does not appear to influence bulk concentrations. Calculations show that the formation of Fe2S2 species probably accounts for very little of the iron or sulphide in most natural waters. Previously reported stability constants for the formation of Fe (HS)2 and (Fe (HS)3) are shown to be suspect, and these species are also thought to be negligible in natural waters. In completely anoxic pore waters polysulphides also have a negligible effect on speciation, but in tidal sediments they may reach appreciable concentrations and lead to the direct formation of pyrite. Concentrations of iron and sulphide in pore waters can be controlled by the more soluble iron sulphide phase. The change in the IAP with depth within the sediment may reflect ageing of the solid phase or a greater flux of Fe (II) and S (–II) nearer the sediment surface. This possible kinetic influence on the value of IAPs has implications for their use in geochemical studies involving phase formation.  相似文献   

13.
The Mt. Amiata volcano in central Italy is intimately related to the post-orogenic magmatic activity which started in Pliocene times. Major, trace elements, and isotopic composition of thermal and cold spring waters and gas manifestations indicate the occurrence of three main reservoir of the thermal and cold waters in the Mt. Amiata region. The deepest one is located in an extensive carbonate reservoir buried by thick sequences of low-permeability allochthonous and neo-autochthonous formations. Thermal spring waters discharging from this aquifer have a neutral Ca-SO4 composition due to the presence of anhydrite layers at the base of the carbonate series and, possibly, to absorption of deep-derived H2S with subsequent oxidation to SO42− in a system where pH is buffered by the calcite–anhydrite pair (Marini and Chiodini, 1994). Isotopic signature of these springs and N2-rich composition of associated gas phases suggest a clear local meteoric origin of the feeding waters, and atmospheric O2 may be responsible for the oxidation of H2S. The two shallower aquifers have different chemical features. One is Ca-HCO3 in composition and located in several sedimentary formations above the Mesozoic carbonates. The other one has a Na-Cl composition and is hosted in marine sediments filling many post-orogenic NW–SE-trending basins. Strontium, Ba, F, and Br contents have been used to group waters associated with each aquifer. Although circulating to some extent in the same carbonate reservoir, the deep geothermal fluids at Latera and Mt. Amiata and thermal springs discharging from their outcropping areas have different composition: Na-Cl and Ca-SO4 type, respectively. Considering the high permeability of the reservoir rock, the meteoric origin of thermal springs and the two different composition of the thermal waters, self-sealed barriers must be present at the boundaries of the geothermal systems. The complex hydrology of the reservoir rocks greatly affects the reliability of geothermometers in liquid phase, which understimate the real temperatures of the discovered geothermal fields. More reliable temperatures are envisaged by using gas composition-based geothermometers. Bulk composition of the 67 gas samples studied seems to be the result of a continuous mixing between a N2-rich component of meteoric origin related to the Ca-SO4 aquifer and a deep CO2-rich component rising largely along the boundaries of the geothermal systems. Nitrogen-rich gas samples have nearly atmospheric N2/Ar (=83) and

/

(δ=0‰) ratios whereas CO2-rich samples show anomalously high

values (up to +6.13 ‰), likely related to N2 from metamorphic schists lying below the carbonate formations. On the basis of average

/

isotopic ratio (

around 0‰), CO2 seems to originate mainly from thermometamorphic reactions in the carbonate reservoir and/or in carbonate layers embedded in the underlying metamorphic basement. Distribution of

/

isotopic ratios indicates a radiogenic origin of helium in a tectonic environment that, in spite of the presence of many post-orogenic basins and mantle-derived magmatics, can presently be considered in a compressive phase.  相似文献   

14.
A relatively simple indentation technique for the rapid measurement of fracture surface energy, , of small samples is described. The reliability of this technique is assessed by testing soda-lime glass for which there are good independent fracture mechanics determinations of fracture surface energy. The indentation technique gives a value for of 4.33 J m–2 which compares favourably with the accepted value of 3.8 J m–2. Fracture surface energies of the {010} and {001} cleavage planes of single crystal olivine (modal composition Fo88Fa12) are then determined and compared with theoretical estimates of the thermodynamic surface energy, , calculated from atomistic parameters ( is equal to in the absence of dissipative processes during crack extension). The experimental values for {010} and {001} are respectively 0.98 J m–2 and 1.26 J m–2. The calculated values of {010} and {001} are respectively in the range from 0.37 J m–2 to 8.63 J m–2 and 12.06 J m–2. The particular advantages of the indentation technique for the study of the fracture surface energies of geological materials are outlined.  相似文献   

15.
Summary Studies of various fluxes, namely net radiation, soil heat, sensible heat and latent heat observed at a tropical station are presented in this paper. The time variation of these fluxes are examined in relation to various meteorological parameters and atmospheric conditions. The turbulent transfer coefficients have been evaluated to examine the applicability of the classical theory or the non-equivalence theory for eddy transport in the lower layers of the atmosphere. The energy balance at a tropical station is evaluated. It is found over year there is a net surplus of 94,000 ly. A detailed discussion of the disposal of this energy by various consuming processes is given.Symbols and notation All the quantities represented by symbols in the text of the paper are defined below C p specific heat at constant pressure in cal. g–1 °K - E evaporation in g cm–2 hr–1 - E * evaporative heat flux cal. cm–2 sec–1 (in Eq. 10) - e vapour pressure in millibars - e z ,e 2z vapour pressure at heightsz and 2z - g acceleration due to gravity - H sensible heat flux cal cm–2 sec–1 (in Eq. 12) - K M ,K H ,K W coefficients of eddy diffusivities of momentum, heat, and water vapour respectively in cm2 sec–1 - k von Karman' constant=0.4 - L Monin-Obukhov length (according to Monin and Obukhov [53] the structure of the turbulent boundary layer is determined by the non-dimensional variableZ/L whereL is defined byL=–(u * 3 C p T)/(kgH) - ly langleys - Q c Q—sensible heat flux in langleys (in Eqs. 3 and 4) - Q e E—latent heat flux in langleys (in Eqs. 3 and 4) - Q s S—soil heat flux in langleys (in Eqs. 3 and 4) - Q i Q c +Q e +Q s whenK M K H K W , (in Eq. 6) - Q' i Q' c +Q' e +Q s whenK M =K H =K W (in Eq. 7) - qq mean specific humidity g kg–1  相似文献   

16.
Major and trace element and Sr–Nd–Hf–Pb isotopic data for the most primitive Tertiary lavas from the Veneto region (South-Eastern Alps, Italy) show the typical features of HIMU hotspot volcanism, variably diluted by a depleted asthenospheric mantle component (87Sr/86Sri=0.70306–0.70378; Ndi=+3.9 to +6.8; Hfi=+6.4 to +8.1, 206Pb/204Pbi=18.786–19.574). P-wave seismic tomography of the mantle below the Veneto region shows the presence of low-velocity anomalies at depth, which is consistent with possible upwellings of plume material. Between the depths of 100–250 km the velocity anomalies are approximately 2–2.5% slower than average, implying a temperature excess of about 220–280 K, in agreement with estimates for other mantle plumes in the world. In this context, the Veneto volcanics may represent the shallow expression of a mantle upflow. The presence of a HIMU-DM component in a collision environment has significant geodynamic implications. Slab detachment and ensuing rise of deep mantle material into the lithospheric gap is proposed to be a viable mechanism of hotspot magmatism in a subduction zone setting.  相似文献   

17.
Hydrogeochemical investigations along an E–W transect in the middle Meghna basin show groundwater chemistry and redox condition vary considerably with the change in geology. Groundwater in the Holocene shallow (<150 m bgl) alluvial aquifer in western part of the transect is affected by high arsenic concentration (As > 10 μg/l) and salinity. On the other hand, groundwater from the Pliocene Dupi Tila sandy aquifer in the eastern part is fresh and low in As (<10 μg/l). The Holocene shallow aquifers are high in dissolved As, , Fe and dissolved organic carbon (DOC), but generally low in and . High concentrations (250–716 mg/l) together with high DOC concentrations (1.4–21.7 mg/l) in these aquifers reflect active sources of degradable natural organic matter that drives the biogeochemical process. There is generally de-coupling of As from other redox-sensitive elements. In contrast, the Pliocene aquifers are low in As, and DOC. Molar ratio of /H4SiO4 suggests that silicate weathering is dominant in the deeper Holocene aquifers and in the Pliocene aquifers. Molar ratios of Cl/ and Na+/Cl suggest mixing of relict seawater with the fresh water as the origin of groundwater salinity. Speciation calculations show that saturation indices for siderite and rhodochrosite vary significantly between the Holocene and Pliocene aquifers. Stable isotopes (δ2H and δ18O) in groundwater indicate rapid infiltration without significant effects of evaporation. The isotopic data also indicates groundwater recharge from monsoonal precipitation with some impact of altitude effect at the base of the Tripura Hills in the east. The results of the study clearly indicate geological control (i.e. change in lithofacies) on groundwater chemistry and distribution of redox-sensitive elements such as As along the transect.  相似文献   

18.
Sulfur isotope effects during the SO2 disproportionation reaction to form elemental sulfur (3SO2+3H2O→2HSO4+S+2H+) at 200–330°C and saturated water vapor pressures were experimentally determined. Initially, a large kinetic isotopic fractionation takes place between HSO4 and S, followed by a slow approach to equilibrium. The equilibrium fractionation factors, estimated from the longest run results, are expressed by 1000 ln αHSO4S=6.21×106/T2+3.62. The rates at which the initial kinetic fractionation factors approach the equilibrium ones were evaluated at the experimental conditions.δ34S values of HSO4 and elemental sulfur were examined for active crater lakes including Noboribetsu and Niseko, (Hokkaido, Japan), Khloridnoe, Bannoe and Maly Semiachik (Kamchatka), Poás (Costa Rica), Ruapehu (New Zealand) and Kawah Ijen and Keli Mutu (Indonesia). ΔHSO4S values are 28‰ for Keli Mutu, 26‰ for Kawah Ijen, 24‰ for Ruapehu, 23‰ for Poás, 22‰ for Maly Semiachik, 21‰ for Yugama, 13‰ for Bannoe, 9‰ for Niseko, 4‰ for Khloridonoe, and 0‰ for Noboribetsu, in the decreasing order. The SO2 disproportionation reaction in the magmatic hydrothermal system below crater lakes where magmatic gases condense is responsible for high ΔHSO4S values, whereas contribution of HSO4 produced through bacterial oxidation of reduced sulfur becomes progressively dominant for lakes with lower ΔHSO4S values. Currently, Noboribetsu crater lake contains no HSO4 of magmatic origin. A 40-year period observation of δ34SHSO4 and δ34SS values at Yugama indicated that the isotopic variations reflect changes in the supply rate of SO2 to the magmatic hydrothermal system. This implies a possibility of volcano monitoring by continuous observation of δ34SHSO4 values. The δ18O values of HSO4 and lake water from the studied lakes covary, indicating oxygen isotopic equilibration between them. The covariance gives strong evidence that lake water circulates through the sublimnic zone at temperatures of 140±30°C.  相似文献   

19.
Summary This study is a follow up of the investigation of some magnetic properties and metastability of greigite in samples obtained from Miocene claystones in the Kruné hory (Erzgebirge) Piedmont basins (Bohemia). Three different methods of upgrading the smythite were applied; the magnetic properties of the concentrates are compared. The thermal conversion of smythite sets in at 200°C while greigite converts at 250°C. The first intermediate products to be formed are iron sulphides, marcasite clearly dominating over pyrite and pyrrhotite. Apart from a Fe3+ sulphate with a composition of Fe2(SO4)3, oxidation of these sulphides gives rise to -Fe2O3. The result of the subsequent decomposition of the mentioned sulphate is the formation of -Fe2O3, which retains the sulphate structure. The final product of the thermal decomposition at 800°C is -Fe2O3. In the smythite concentrate the conversion to Fe3+ sulphate and -Fe2O3 is about twice as intensive as in greigite. No direct conversion to -Fe2O3 was found. During the thermal process self-reversals of remanence were observed, in various samples as many as four reversals in the temperature interval from 340 to 590°C. The occurrences of self-reversals of remanence were only observed at high degrees of thermal demagnetization, of the order of 10–2 down to 10–3 in the temperature interval of sulphide origin (below 400°C), and of the order of 10–4 down to 10–6 in the temperature interval of Fe-oxides origin (above 400°C).Presented at the 3rd Conference on New Trends in Geomagnetism, Castle of Smolenice, Czechoslovakia, June 22–29, 1992  相似文献   

20.
The chemical composition and D/H, and ratios have been determined for the acid hot waters and volcanic gases discharging from Zaō volcano in Japan. The thermal springs in Zaō volcano issue acid sulfate-chloride type waters (Zaō) and acid sulfate type waters (Kamoshika). Gases emitted at Kamoshika fumaroles are rich in CO2, SO2 and N2, exclusive of H2O. Chloride concentrations and oxygen isotope data indicate that the Zaō thermal waters issue a fluid mixture from an acid thermal reservoir and meteoric waters from shallow aquifers. The waters in the Zaō volcanic system have slight isotopic shifts from the respective local meteoric values. The isotopic evidence indicates that most of the water in the system is meteoric in origin. Sulfates in Zaō acid sulfate-chloride waters with δ34S values of around +15‰, are enriched in 34S compared to Zaō H2S, while the acid sulfate waters at Kamoshika contain supergene light sulfate (δ34S = + 4‰) derived from volcanic sulfur dioxide from the volcanic exhalations. The sulfur species in Zaō acid waters are lighter in δ34S than those of other volcanic areas, reflecting the difference in total pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号