首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parameter identification is an essential step in constructing a groundwater model. The process of recognizing model parameter values by conditioning on observed data of the state variable is referred to as the inverse problem. A series of inverse methods has been proposed to solve the inverse problem, ranging from trial-and-error manual calibration to the current complex automatic data assimilation algorithms. This paper does not attempt to be another overview paper on inverse models, but rather to analyze and track the evolution of the inverse methods over the last decades, mostly within the realm of hydrogeology, revealing their transformation, motivation and recent trends. Issues confronted by the inverse problem, such as dealing with multiGaussianity and whether or not to preserve the prior statistics are discussed.  相似文献   

2.
Least-squares reverse time migration has the potential to yield high-quality images of the Earth. Compared with acoustic methods, elastic least-squares reverse time migration can effectively address mode conversion and provide velocity/impendence and density perturbation models. However, elastic least-squares reverse time migration is an ill-posed problem and suffers from a lack of uniqueness; further, its solution is not stable. We develop two new elastic least-squares reverse time migration methods based on weighted L2-norm multiplicative and modified total-variation regularizations. In the proposed methods, the original minimization problem is divided into two subproblems, and the images and auxiliary variables are updated alternatively. The method with modified total-variation regularization solves the two subproblems, a Tikhonov regularization problem and an L2-total-variation regularization problem, via an efficient inversion workflow and the split-Bregman iterative method, respectively. The method with multiplicative regularization updates the images and auxiliary variables by the efficient inversion workflow and nonlinear conjugate gradient methods in a nested fashion. We validate the proposed methods using synthetic and field seismic data. Numerical results demonstrate that the proposed methods with regularization improve the resolution and fidelity of the migration profiles and exhibit superior anti-noise ability compared with the conventional method. Moreover, the modified-total-variation-based method has marginally higher accuracy than the multiplicative-regularization-based method for noisy data. The computational cost of the proposed two methods is approximately the same as that of the conventional least-squares reverse time migration method because no additional forward computation is required in the inversion of auxiliary variables.  相似文献   

3.
Strong shaking of structures during large earthquakes may result in some cases in partial separation of the base of the structure from the foundation. A simplified problem of this type, the dynamic response of a rocking rigid block allowed to uplift, is examined here. Two foundation models are considered: the Winkler foundation and the much simpler ‘two-spring’ foundation. It is shown that an equivalence between these two models can be established, so that one can work with the much simpler two-spring foundation. Simple solutions of the equations of motion are developed and simplified methods of analysis are proposed. In general, uplift leads to a softer vibrating system which behaves non-linearly, although the response is composed of a sequence of linear responses. As a result the apparent rocking period increases with the amount of lift-off. The corresponding apparent ratio of critical damping decreases, in general, with the amplitude of the response. Compared to the case without lift-off, the response of the system may increase or decrease because of the uplift, depending on the excitation and the parameters of the system.  相似文献   

4.
Most groundwater models simulate stream‐aquifer interactions with a head‐dependent flux boundary condition based on a river conductance (CRIV). CRIV is usually calibrated with other parameters by history matching. However, the inverse problem of groundwater models is often ill‐posed and individual model parameters are likely to be poorly constrained. Ill‐posedness can be addressed by Tikhonov regularization with prior knowledge on parameter values. The difficulty with a lumped parameter like CRIV, which cannot be measured in the field, is to find suitable initial and regularization values. Several formulations have been proposed for the estimation of CRIV from physical parameters. However, these methods are either too simple to provide a reliable estimate of CRIV, or too complex to be easily implemented by groundwater modelers. This paper addresses the issue with a flexible and operational tool based on a 2D numerical model in a local vertical cross section, where the river conductance is computed from selected geometric and hydrodynamic parameters. Contrary to other approaches, the grid size of the regional model and the anisotropy of the aquifer hydraulic conductivity are also taken into account. A global sensitivity analysis indicates the strong sensitivity of CRIV to these parameters. This enhancement for the prior estimation of CRIV is a step forward for the calibration and uncertainty analysis of surface‐subsurface models. It is especially useful for modeling objectives that require CRIV to be well known such as conjunctive surface water‐groundwater use.  相似文献   

5.
ABSTRACT

The problem of estimation of suspended load carried by a river is an important topic for many water resources projects. Conventional estimation methods are based on the assumption of exact observations. In practice, however, a major source of natural uncertainty is due to imprecise measurements and/or imprecise relationships between variables. In this paper, using the Multivariate Adaptive Regression Splines (MARS) technique, a novel fuzzy regression model for imprecise response and crisp explanatory variables is presented. The investigated fuzzy regression model is applied to forecast suspended load by discharge based on two real-world datasets. The accuracy of the proposed method is compared with two well-known parametric fuzzy regression models, namely, the fuzzy least-absolutes model and the fuzzy least-squares model. The comparison results reveal that the MARS-fuzzy regression model performs better than the other models in suspended load estimation for the particular datasets. This comparison is done based on four goodness-of-fit criteria: the criterion based on similarity measure, the criterion based on absolute errors and the two objective functions of the fuzzy least-absolutes model and the fuzzy least-squares model. The proposed model is general and can be used for modelling natural phenomena whose available observations are reported as imprecise rather than crisp.
Editor D. Koutsoyiannis; Associate editor H. Aksoy  相似文献   

6.
The paper deals with the topic of analyses performed according to modern code provisions, in particular Eurocode 8 (EC8) rules. Non linear static and non linear dynamic analyses of a plan irregular multi-storey r/c frame building designed according to Eurocode 2 (EC2) and EC8 provisions are carried out.The extension of the N2 method to torsionally flexible structures, as applied in previous papers, does not consider the accidental eccentricity, which is prescribed by EC8 also in the case of non linear static analysis. In this paper, three methods combining the accidental eccentricity prescribed by EC8 to the procedure which extends the N2 method to torsionally flexible structures are proposed and discussed. Each of them provides four modal response spectrum analyses (one for each model, corresponding to each position of centre of mass) and eight non linear static analyses (two signs for four models). NLSA(meth. n.2) seems to be the more reliable method of the three proposed, because it better fits absolute displacements obtained by non linear dynamic analysis.In the paper it is also observed that the value of the behaviour factor assigned by EC8 to torsionally flexible systems seems too conservative.  相似文献   

7.
 Regional flood analysis is formulated as a physical-modelling problem consisting in the inference of meaningful physical models for a set of observable uncertain quantities representing floods, given the observed data separately associated with them. It is argued that physical modelling suitable for representing causality relationships should involve the use of models comprising functional dependences of the observable uncertain quantities with regard to other quantities which are unobservable. The regional physical-modelling problem becomes the selection, from any proposed space of candidate models, of a probability distribution for the unobservable uncertain quantities together with a functional-dependence model connecting the observable to the unobservable uncertain quantities. Due to the need to coherently represent observational data and to express precisely the available evidences, the physical modelling problem is formalized in a plausible logic language, within the logical probability framework. A logical inference procedure called the relative entropy method with fractile constraints (REF) is formulated within this framework and extended to solve the regional physical-modelling problem. Contrary to the current statistical methods, it allows the selection and validation of inferred models and can be applied whatever it is the number of observational data. The complete solution to the problem using the relative entropy procedure is presented. This method is applied to the regional modelling of annual maximum floods of a set of separate rivers in the Iberian Peninsula. For this application the space of candidate models includes several types of two-parameter probability distributions for the unobservable uncertain quantities and the class of linear homogeneous functional-dependence models connecting the observable to the unobservable quantities.  相似文献   

8.
In this paper we present a novel method for deseasonalizing TOC data using non-linear models, with evolutionary computation techniques, and its performance with a neural network as regression approach. Specifically, the proposed deseasonalization method uses an evolutionary programming (EP) approach to carry out a curve fitting problem, where a given function model is optimized to be as similar as possible to an objective curve (a real TOC measurement in this case). Different non-linear models are proposed to be optimized with the EP algorithm. In addition, we test the possibility of deseasonalizing the TOC measurement and also the meteorological input data. The deseasonalized series is then used to train a neural network (multi-layer perceptron). We test the proposed models in the prediction of several TOC series in the Iberian Peninsula, where we carry out a comparison against a reference deseasonalizing model previously proposed in the literature. The results obtained show the good performance of some of the deseasonalizing models proposed in this paper.  相似文献   

9.
针对基于数字图像的大尺度三维结构模型建模时间过长的问题,提出了利用图像压缩算法对震损结构三维模型快速重建的方法.首先,拍摄得到结构的原始图像;其次,利用主成分分析算法压缩图像;最后,基于处理后的图像对结构三维模型进行重建.为验证提出方法的有效性,对一个混凝土试块,受损的剪力墙试验模型和实际单体建筑进行图像采集,利用论文...  相似文献   

10.
Producing accurate spatial predictions for wind power generation together with a quantification of uncertainties is required to plan and design optimal networks of wind farms. Toward this aim, we propose spatial models for predicting wind power generation at two different time scales: for annual average wind power generation, and for a high temporal resolution (typically wind power averages over 15-min time steps). In both cases, we use a spatial hierarchical statistical model in which spatial correlation is captured by a latent Gaussian field. We explore how such models can be handled with stochastic partial differential approximations of Matérn Gaussian fields together with Integrated Nested Laplace Approximations. We demonstrate the proposed methods on wind farm data from Western Denmark, and compare the results to those obtained with standard geostatistical methods. The results show that our method makes it possible to obtain fast and accurate predictions from posterior marginals for wind power generation. The proposed method is applicable in scientific areas as diverse as climatology, environmental sciences, earth sciences and epidemiology.  相似文献   

11.
地球物理反演是获取地球信息的重要手段,其求解具有严重的不适定性.为获得稳定的反问题结果,通常需要在目标泛函中加入正则化约束项.正确地估计正则化参数一直是地球物理反问题中的难点.目前存在的选取方法需要根据大量的试验来确定正则化参数,工作量十分巨大,并且存在很大的经验性,很难得到最优的正则化参数.针对这个问题,本文提出了一种基于广义Stein无偏风险估计的正则化参数求取方法.该方法的具体思路是通过求解模型参数均方误差的广义Stein无偏风险估计函数,在反问题求解过程中自动求取正则化参数.本文模型测试结果表明,相比于目前常用的方法,通过该方法得到的正则化参数是最优的.  相似文献   

12.
13.
利用谱元法的规则六面体单元进行网格剖分时,界面起伏较大处会出现阶梯状网格而导致模拟时产生数值散射.为消除阶梯状网格对起伏界面地震动模拟计算的影响,本文基于TrueGrid软件编写了应用程序,提出了起伏界面处六面体单元网格剖分方式,通过该程序可快速建立起伏界面处均匀的六面体网格模型.本文采取了删除四纵列拐角单元、删除一纵...  相似文献   

14.
During the last decade, a number of models have been developed to consider the conflict in dynamic reservoir operation. Most of these models are discrete dynamic models which are developed based on game theory. In this study, a continuous model of dynamic game and its corresponding solutions are developed for reservoir operation. Two solution methods are used to solve the model of continuous dynamic game, namely the Ricatti equations and collocation methods. The Ricatti equations method is a closed form solution, requiring less computational efforts compared with discrete models. The collocation solution method applies Newton's method or a quasi-Newton method to find the problem solution. These approaches are able to generate operating policies for dynamic reservoir operation. The Zayandeh-Rud river basin in central Iran is used as a case study and the results are compared with alternative water allocation models. The results show that the proposed solution methods are quite capable of providing appropriate reservoir operating policies, while requiring rather short computational times due to continuous formulation of state and decision variables. Reliability indices are used to compare the overall performance of the proposed models. Based on the results from this study, the collocation method leads to improved values of the reliability indices for total reservoir system and utility satisfaction of water users, compared to the Ricatti equations method. This is attributed to the flexible structure of the collocation model. When compared to alternative water allocation models, lower values of reliability indices are achieved by the collocation method.  相似文献   

15.
In the analysis of structural foundations for seismic loads, it is customary to distinguish two types of soil-structure interaction effect: kinematic interaction (or wave passage), and inertial interaction. The former refers to the phenomenon of wave scattering, which occurs because the foundation is much stiffer than the surrounding soil and cannot accommodate to its distortions. Inertial interaction, on the other hand, is caused by feedback of kinetic energy of the structure into the soil. This paper is concerned only with the first phenomenon. The rigorous analysis of rigid, embedded foundations subjected to seismic disturbances requires, in general, substantial computational effort. Indeed, a typical analysis would normally require models with finite elements and/or boundary elements. Although such methods may be used to find an accurate solution to the problem of kinematic interaction, their use is not always warranted, given the many uncertainties involved and the multitude of assumptions that must be considered. Hence, approximate solutions are attractive for this problem. One such approximate method is the remarkably simple algorithm proposed by Iguchi.3 This paper presents first an appraisal of this method by way of a comparison with accurate numerical solutions for cylindrical foundations; next the algorithm is applied to rectangular (prismatic) foundations. It is found that Iguchi's method gives results that are adequate for engineering purposes, even if not entirely accurate.  相似文献   

16.
In recent years sampling approaches have been used more widely than optimization algorithms to find parameters of conceptual rainfall–runoff models, but the difficulty of calibration of such models remains in dispute. The problem of finding a set of optimal parameters for conceptual rainfall–runoff models is interpreted differently in various studies, ranging from simple to relatively complex and difficult. In many papers, it is claimed that novel calibration approaches, so-called metaheuristics, outperform the older ones when applied to this task, but contradictory opinions are also plentiful. The present study aims at calibration of two simple lumped conceptual hydrological models, HBV and GR4J, by means of a large number of metaheuristic algorithms. The tests are performed on four catchments located in regions with relatively similar climatic conditions, but on different continents. The comparison shows that, although parameters found may somehow differ, the performance criteria achieved with simple lumped models calibrated by various metaheuristics are very similar and differences are insignificant from the hydrological point of view. However, occasionally some algorithms find slightly better solutions than those found by the vast majority of methods. This means that the problem of calibration of simple lumped HBV or GR4J models may be deceptive from the optimization perspective, as the vast majority of algorithms that follow a common evolutionary principle of survival of the fittest lead to sub-optimal solutions.  相似文献   

17.
The construction of flow-duration curves is a fundamental task for several activities related to water resources management. The scarcity of observed streamflow data is a diffuse problem in the real world, and flow-duration curves often need to be constructed for ungauged basins. We address this problem by regionalising the stochastic index-flow model of flow-duration curves proposed by Castellarin et al. [Castellarin A, Vogel RM, Brath A. A stochastic index flow model of flow-duration curves. Water Resour Res 2004;40:W03104. doi:10.1029/2003WR002524]. The index-flow model differs from any other stochastic model of flow-duration curves proposed in the literature because it can be used for deriving long-term as well as annual flow-duration curves. The former are constructed on the basis of several years of streamflow data, whereas the latter refer to a given water or calendar year (a typical hydrologic year or a particularly wet or dry year). We apply an extensive cross-validation procedure to quantify the uncertainty of the proposed regional model and to compare it with the uncertainty of traditional regional models of flow-duration curves proposed in the literature. The results of the study indicate that the regional index-flow model is as reliable as or more reliable than traditional regional models for estimating long-term flow-duration curves. Also, the proposed model is more versatile than previous regional models as it can be used for estimating long-term and annual flow-duration curves and for reproducing the variance of annual flow-duration curves.  相似文献   

18.
The problem of determining optimal power spectral density models for earthquake excitation which satisfy constraints on total average power, zero crossing rate and which produce the highest response variance in a given linear system is considered. The solution to this problem is obtained using linear programming methods. The resulting solutions are shown to display a highly deterministic structure and, therefore, fail to capture the stochastic nature of the input. A modification to the definition of critical excitation is proposed which takes into account the entropy rate as a measure of uncertainty in the earthquake loads. The resulting problem is solved using calculus of variations and also within linear programming framework. Illustrative examples on specifying seismic inputs for a nuclear power plant and a tall earth dam are considered and the resulting solutions are shown to be realistic.  相似文献   

19.
Marine magnetic anomalies of the tiny wiggles (TW) type can be used to solve geohistorical and paleomagnetic problems. The model fields corresponding to Paleocene–Eocene anomalies in the northwestern Indian Ocean, which were formed during the fast-spreading stage, were studied. For these fields, widely used interpretation methods were compared with a method proposed previously by the authors. The testing was performed with first the classical block model and then more complex models reflecting actual processes of oceanic accretion and magnetic field variations in the past. It was shown that the proposed method has advantages for this problem; it gives an error close to the minimum possible error and can adequately be used in interpretations. Spectral and statistical methods are used to estimate the magnetic anomaly resolving power and to study some factors that can exert a distorting influence. In addition, model examples have been used to indicate how the TW determination accuracy is affected by diurnal variations in the main magnetic field (MMF) and by ancient magnetization vector determination errors.  相似文献   

20.
一种新的地球物理反演方法——模拟原子跃迁反演法   总被引:17,自引:5,他引:12       下载免费PDF全文
详细研究了一般地球物理反问题的迭代优化求解过程与物理学中原子跃迁过程的对应关系,建立了反演问题中模型空间、初始模型、局部极值模型、最优化模型等与原子的态空间、定态、激发态、基态等的对应关系. 在此基础上,模拟了物理学中原子从激发态向基态跃迁的物理过程,建立了一种与原子跃迁过程相对应的非线性随机跃迁数学模型和模型解跃迁搜索准则,导出了适用于一般地球物理资料的模拟原子跃迁的非线性反演算法. 用理论测试函数对这种新的反演方法进行了数值试验,结果表明该方法具有解不依赖于初始模型、收敛速度快等优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号