首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis of a generation or triggering of solar activity by the combined planetary tides on the solar surface is examined by a search for correlations between the sunspot numbers and the tidal amplitudes, using averaged values of several time scales (between one day and eleven years), and taking non-linear amplitude effects into account. The result is negative: There exist no detectable correlations.  相似文献   

2.
Ilgin Seker 《Solar physics》2013,286(2):303-314
We study whether the birthplaces of sunspots (defined as the location of first appearance in the photosphere) are related to the planetary tides on the Sun. The heliocentric longitudes of newly emerging sunspots are statistically compared to the longitudes of tidal peaks caused by the tidal planets Mercury, Venus, Earth, and Jupiter. The longitude differences between new sunspots and tidal planets (and their conjugate locations) as well as the magnitudes of the vertical and horizontal tidal forces at the birthplace of new sunspots are calculated. The statistical distributions are compared with simulation results calculated using a random sunspot distribution. The results suggest that the birthplaces of sunspots (in the photosphere) are independent of the positions of tidal planets and the strength of tidal forces caused by them. However, since the sunspots actually originate near the tachocline (well below the photosphere) and it takes considerable time for the disturbances to reach photosphere, we hesitate to conclude that the formation of sunspots are not related to planetary positions.  相似文献   

3.
Jean Meeus 《Icarus》1975,26(2):257-267
Several statements, on which the recent book The Jupiter Effect is based, are invalid: The planets will not be “aligned” in 1982, and such an alignment has no effect on solar activity; planetary tides on the Sun are negligible; tides raised on the Sun by Venus, Earth, and Jupiter have a period of 4 mo, not 11 yr, and Wood's curve has no physical justification; there are not more sunspots visible at the eastern limb of the Sun than at the western one; the mean number of sunspots is the same at Venus' inferior and superior conjunctions; the influence of solar flares on sudden changes in the Earth's rotation and on earthquakes is not proved. This leads to the conclusion that there is no evidence for a correlation between planetary positions and earthquakes. The “Jupiter effect” does not exist.  相似文献   

4.
本文计算了由太阳系大行星轨道运动引起的日心相对于太阳系质心的轨道运动角动量变化率j_⊙,在理论上对j_⊙作展开,表明它存在多项短周期变化,与太阳黑子资料的分析结果相比较,两者结果是符合的,它们具有一致的谱结构。因此,行星的轨道运动对太阳黑子活动存在动力作用的可能性又进一步得到了验证。  相似文献   

5.
We investigate the periodicity in the PMOD composite of the daily total solar irradiance (TSI) from 21 September 1978 to 9 June 2009. Besides the Schwabe cycle period (10.32 years), the quasi-rotation period is found to be statistically significant in TSI, whose value is about 32 days, longer than that in sunspot activity (27 days), and it intermittently appears around the sunspot maximum times. The quasi-rotation period in TSI is inferred to be mainly caused by sunspot activity, but to be modulated by bright features as well. It was previously found that variations of TSI over a Schwabe solar cycle mainly come from the combination of the sunspots’ blocking and the intensification due to bright faculae, plages, and network elements, with a slight dominance of the bright-feature effect during the maximum of the Schwabe cycle. For the sunspot-blocking and the bright-feature effect to contribute to TSI over a Schwabe solar cycle, the former is inferred to lead the latter by 29 days at least.  相似文献   

6.
This work investigates the solar quasi-periodic cycles with multi-timescales and the possible relationships with planetary motions. The solar cycles are derived from long-term observations of the relative sunspot number and microwave emission at frequency of 2.80 GHz. A series of solar quasi-periodic cycles with multi-timescales are registered. These cycles can be classified into three classes: (1) the strong PLC (PLC is defined as the solar cycle with a period very close to the ones of some planetary motions, named as planetary-like cycle) which is related strongly with planetary motions, including nine periodic modes with relatively short period (P<12 yr), and related to the motions of the inner planets and of Jupiter; (2) the weak PLC, which is related weakly to planetary motions, including two periodic modes with relatively long period (P>12 yr), and possibly related to the motions of outer planets; (3) the non-PLC, for which so far there has been found no clear evidence to show the relationship with any planetary motions. Among the planets, Jupiter plays a key role in most periodic modes due to its sidereal motion or spring tidal motions associated with other planets. Among planetary motions, the spring tidal motion of the inner planets and of Jupiter dominates the formation of most PLCs. The relationships between multi-timescale solar periodic modes and the planetary motions will help us to understand the essential nature and prediction of solar activities.  相似文献   

7.
T. W. Cole 《Solar physics》1973,30(1):103-110
The techniques of power spectral analysis are used to determine significant periodicities in the annual mean relative sunspot numbers. The main conclusion is that a period of 10.45 yr is very basic and can be associated with an excitation of new solar cycles. When combined with a period of 11.8 yr, associated here with the free-running length of a solar cycle, the mean cycle length of 11.06 yr and a phase variation of 190 yr are explained. Similarly the amplitude variations with periods 88 and 59 yr (previously described as the 80-yr cycle) are due to an amplitude modulation of the solar cycle by a period of 11.9±0.3 yr. The results dispute several associations of planetary position and solar activity.Radiophysics Publication RPP 1647, January, 1973.  相似文献   

8.
R. Arlt 《Solar physics》2008,247(2):399-410
Original drawings by J.C. Staudacher made in the period of 1749 – 1796 were digitized. The drawings provide information about the size of the sunspots and are therefore useful for analyses sensitive to sunspot area rather than Wolf numbers. The total sunspot area as a function of time is shown for the observing period. The sunspot areas measured do not support the proposition of a weak, “lost” cycle between cycles 4 and 5. We also evaluate the usefulness of the drawings for the determination of sunspot positions for future studies.  相似文献   

9.
Recently, the origin of the solar cycle is considered to be rooted in the dynamics of the solar core (Grandpierre, 1996). The dynamic solar core model requires macroscopic flow and magnetic field as basic inputs. The macroscopic flow cannot be generated by the quasistatic solar structure and it has to reach a larger than critical size (Grandpierre, 1984) in order to survive dissipation. Therefore the flow must be generated by outer agents. The most significant outer agents to the Sun are the planets of the Solar System. These theoretical arguments are supported by observations showing that planetary tides follow a pattern correlating with the solar cycle in the last three and a half centuries (Wood, 1972; Desmoulins, 1995). Therefore the pulsating-ejecting solar core model gives a firm theoretical basis for the interpretation of these largely ignored observations. In this paper a new and simple calculation is presented which enlightens the planetary origin of the eleven-year period and gives a physical basis for a detailed modelling of the dynamo and the solar cycle.  相似文献   

10.
We derive a perturbation inside a rotating star that occurs when the star is accelerated by orbiting bodies. If a fluid element has rotational and orbital components of angular momentum with respect to the inertially fixed point of a planetary system that are of opposite sign, then the element may have potential energy that could be released by a suitable flow. We demonstrate the energy with a very simple model in which two fluid elements of equal mass exchange positions, calling to mind a turbulent field or natural convection. The exchange releases potential energy that, with a minor exception, is available only in the hemisphere facing the barycenter of the planetary system. We calculate its strength and spatial distribution for the strongest case (“vertical”) and for weaker horizontal cases whose motions are all perpendicular to gravity. The vertical cases can raise the kinetic energy of a few well positioned convecting elements in the Sun’s envelope by a factor ≤7. This is the first physical mechanism by which planets can have a nontrivial effect on internal solar motions. Occasional small mass exchanges near the solar center and in a recently proposed mixed shell centered at 0.16R s would carry fresh fuel to deeper levels. This would cause stars like the Sun with appropriate planetary systems to burn somewhat more brightly and have shorter lifetimes than identical stars without planets. The helioseismic sound speed and the long record of sunspot activity offer several bits of evidence that the effect may have been active in the Sun’s core, its envelope, and in some vertically stable layers. Additional proof will require direct evidence from helioseismology or from transient waves on the solar surface.  相似文献   

11.
Vernova  E.S.  Mursula  K.  Tyasto  M.I.  Baranov  D.G. 《Solar physics》2004,221(1):151-165
We study the longitudinal distribution of sunspot activity in 1917–1995 using vector sums of sunspot areas. The vector sum of sunspots of one solar rotation gives a total vector whose amplitude characterizes the size of longitudinal asymmetry and whose phase describes the location of the momentarily dominating longitude. We find that when the phase distributions are calculated separately for the ascending phase and maximum (AM) on the one hand and for the declining phase and minimum (DM) on the other hand, they behave differently and depict broad maxima around roughly opposite longitudes. While the maximum of the phase distribution for the AM period is found around the Carrington longitude of 180°, the maximum for the DM period is at the longitude of about 0°. This difference can be seen in both solar hemispheres, but it is more pronounced in the southern hemisphere where the phase distribution has a particularly clear pattern. No other division of data into two intervals leads to similar systematic differences.  相似文献   

12.
In this paper, we used the same four-parameter function as Hathaway, Wilson, and Reichmann (1994) proposed and studied the temporal behavior of sunspot cycles 12–22. We used the monthly averages of sunspot areas and their 13-point smoothed data. Our results show the following. (1) The four-parameter function may reduce to a function of only two parameters. (2) As a cycle progresses, the two-parameter function can be accurately determined after 4–4.5 years from the start of the cycle. A good prediction can be made for the timing and size of the sunspot maximum and for the behavior of the remaining 5–10 years of the cycle. (3) The solar activity in the remaining and forthcoming years of cycle 23 is predicted. (4) The smoothed monthly sunspot areas are more suitable to be employed for prediction at the maximum and the descending period of a cycle, whereas at the early period of a cycle the (un-smoothed) monthly data are more suitable.  相似文献   

13.
Brajša  R.  Wöhl  H.  Vršnak  B.  Ruždjak  D.  Sudar  D.  Roša  D.  Hržina  D. 《Solar physics》2002,206(2):229-241
Stable recurrent sunspot groups from the Greenwich data set which were identified in at least two subsequent solar rotations were traced. The solar rotation was determined by the period method from the time difference of the two central meridian passages of each of the 327 identified groups. Sidereal rotation periods were calculated from the synodic ones by a seasonal-dependent procedure taking into account the details of the Earth's motion around the Sun. Growing recurrent sunspot groups rotate on the average faster than decaying recurrent sunspot groups, while sunspot groups of all types taken together rotate faster than both growing and decaying recurrent sunspot groups. A north–south rotational asymmetry and a cycle-dependence of rotational velocity of recurrent sunspot groups were analyzed. Positive rotation velocity deviations are larger, but less numerous than the negative ones. Signatures of torsional oscillations were not found analyzing the rotation velocity residual of recurrent sunspot groups as a function of the distance from the average latitude of activity.  相似文献   

14.
In two previous papers (Zafiropoulos and Kopal, 1983a, b; hereafter referred to as Papers I and II) we have investigated the effects of rotational and tidal distortion (for non-lagging tides) on the orbital elements of a close binary system. The present paper deals with secular and periodic perturbations caused by dynamical tides. The componentsR, S, andW of disturbing accelerations for tidal lag have been substituted in the Gaussian form of Lagrange's planetary equations to give the first-order approximation. The results obtained have been expressed by means of Hansen coefficients and include the effects produced by the second, third and fourth harmonic dynamical tides.  相似文献   

15.
We processed magnetograms that were obtained with the Michaelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO/MDI). The results confirm the basic properties of long-period oscillations of sunspots that have previously been established and also reveal new properties. We show that the limiting (lowest) eigenmode of low-frequency oscillations of a sunspot as a whole is the mode with a period of 10?–?12 up to 32?–?35 hours (depending on the sunspot’s magnetic-field strength). This mode is observed consistently throughout an observation period of 5?–?7 days, but its amplitude is subject to quasi-cyclic changes, which are separated by about 1.5?–?2 days. As a result, the lower mode with a period of about 35?–?48 hours appears in the power spectrum of sunspot oscillations. But this lowest mode is apparently not an eigenmode of a sunspot because its period does not depend on the magnetic field of the sunspot. Perhaps the mode reflects the quasi-periodic sunspot perturbations caused by supergranulation cells that surround it. We also analyzed SOHO/MDI artifacts, which may affect the low-frequency power spectra of sunspots.  相似文献   

16.
R. P. Kane 《Solar physics》2006,236(1):207-226
After increasing almost monotonically from sunspot minimum, sunspot activity near maximum falters and remains in a narrow grove for several tens of months. During the 2–3 years of turmoil near sunspot maximum, sunspots depict several peaks (Gnevyshev peaks). The spaces between successive peaks are termed as Gnevyshev Gaps (GG). An examination showed that the depths of the troughs varied considerably from one GG to the next in the same cycle, with magnitudes varying in a wide range (<1% to ∼20%). In any cycle, the sunspot patterns were dissimilar to those of other solar parameters, qualitatively as well as quantitatively, indicating a general turbulence, affecting different solar parameters differently. The solar polar magnetic field reversal does not occur at the beginning of the general turmoil; it occurs much later. For cosmic ray (CR) modulation which occurs deep in the heliosphere, one would have thought that the solar open magnetic field flux would play a crucial role, but observations show that the sunspot GGs are not reflected well in the solar open magnetic flux, where sometimes only one peak occurred (hence no GG at all), not matching with any sunspot peak and with different peaks in the northern and southern hemispheres (north – south asymmetry). Gaps are seen in interplanetary parameters but these do not match exactly with sunspot GGs. For CR data available only for five cycles (19 – 23), there are CR gaps in some cycles, but the CR gaps do not match perfectly with gaps in the solar open magnetic field flux or in interplanetary parameters or with sunspot GGs. Durations are different and/or there are variable delays, and magnitudes of the sunspot GGs and CR gaps are not proportional. Solar polar magnetic field reversal intervals do not coincide with either sunspot GGs or CR gaps, and some CR gaps start before magnetic field reversals, which should not happen if the magnetic field reversals are the cause of the CR gaps.  相似文献   

17.
We suggest the concept of the Earth’s lithosphere as a geocosmic system of mobile lithospheric plates affected by both external astronomical influences (solar radiation, tides) and planetary factors—the Earth’s atmosphere, hydrosphere, and mantle convection. The annual period in seismicity is shown to have a clear cosmic origin related to the seasonal periodicity of solar radiation in the northern and southern hemispheres. The atmosphere can act as a transmitter of the annual periodicity to the lithospheric plates. The formulated concept of the lithosphere has led us to put forward testable hypotheses about the dynamical atmospherelithosphere relationship. These hypotheses form the basis for the next program of research on the Earth’s lithosphere as a geocosmic system.  相似文献   

18.
In a previous paper (Zafiropoulos and Kopal, 1982; hereafter referred to as Paper I) we have studies the effects of rotational distortion on the orbital elements. The aim of the present paper is to investigate the secular and periodic perturbations of the orbital elements due to tidal distortion. For tidal distortion when tides do not lag, the Gaussian form of Lagrange's planetary equations has been employed to yield the first- and second-order approximations. The results obtained include the effects produced by the second, third and fourth harmonic distortions. The first order approximation for non-lagging tides has been expressed by means of Hansen coefficients.  相似文献   

19.
We use the recently presented group sunspot number series to show that a persistent 22-year cyclicity exists in sunspot activity throughout the entire period of about 400 years of direct sunspot observations. The amplitude of this cyclicity is about 10% of the present sunspot activity level. A 22-year cyclicity in sunspot activity is naturally produced by the 22-year magnetic polarity cycle in the presence of a relic dipole magnetic field. Accordingly, a persistent 22-year cyclicity in sunspot activity gives an evidence for the existence of such a relic magnetic field in the Sun. The stable phase and the roughly constant amplitude of this cyclicity during times of very different sunspot activity level strongly support this interpretation.  相似文献   

20.
对紫金山天文台(简称紫台)自1954年至2011年共55 yr的手描黑子图进行了数字化.将紫台太阳黑子相对数(PRSN)和黑子群数(PGSN)与国际太阳影响数据分析中心(SIDC)中的对应数据(月平均太阳黑子相对数(IRSN)和月平均黑子群数(IGSN))进行对比研究,发现:(1)紫台黑子数据与SIDC黑子数据有很强的正相关性,说明紫台黑子数据的可靠性;(2) PRSN和IRSN、PGSN和IGSN的系统偏差分别处于7%左右、5%左右,紫台数据与SIDC数据在活动周的极小期的差异性显著大于极大期;(3)紫台的视宁度从1995年开始变差,直接导致了PRSN (PGSN)与IRSN (IGSN)的比值明显变大,表明视宁度的变化影响了紫台黑子的观测质量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号