首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During the total solar eclipse, 1965 May 30, a 25 cm aperturef/8.0 telescope and Fabry-Perot interferometer were operated aboard the USAF-AEC aircraft. High resolution spectra of the Fexiv emission line, 530.3 nm, were obtained. Deconvolved intensity vs wavelength profiles of the second order fringe overlay a helmet structure on the NM limb at out to 1.37R . The profiles yield coronal temperatures, absolute intensities and Doppler velocities in regions of apparently open magnetic field structure and within the closed field lines of the helmet. Together with white light intensities the observations are interpreted to provide temperatures and turbulent velocities in and around this coronal structure. Comparison is made with a model by Billings and Roberts. We suggest a model with radial flow (solar wind) velocities of 60 km s–1 satisfies the observations in the open field line region.Work performed under the auspices of the U.S. Atomic Energy Commission, and portions of the analysis at the National Center for Atmospheric Research, Boulder, Colo.  相似文献   

2.
K. P. Raju 《Solar physics》2009,255(1):119-129
Relative Doppler velocities and spectral linewidths in a coronal hole and in the quiet Sun region outside have been obtained from Solar and Heliospheric Observatory (SOHO)/Coronal Diagnostic Spectrometer (CDS) observations. Five strong emission lines in the CDS wavelength range (namely, O? iii 599 Å, O?v 630 Å, Ne?vi 562.8 Å, He?ii 304 Å, and Mg?ix 368 Å), whose formation temperatures represent different heights in the solar atmosphere from the lower transition region to the inner corona, have been used in the study. As reported earlier, relative velocities in the coronal hole are generally blueshifted with respect to the quiet Sun, and the magnitude of the blueshifts increases with height. It has been found that the polar coronal hole has larger relative velocities than the equatorial extension in the inner corona. Several localized velocity contours have been found mainly on network brightenings and in the vicinity of the coronal hole boundary. The presence of velocity contours on the network may represent network outflows whereas the latter could be due to localized jets probably arising from magnetic reconnection at the boundary. All spectral lines have larger widths in the coronal hole than in the quiet Sun. In O?v 630 Å an extended low-linewidth region is seen in the coronal hole?–?quiet Sun boundary, which may indicate fresh mass transfer across the boundary. Also polar coronal holes have larger linewidths in comparison with the equatorial extension. Together with larger relative velocities, this suggests that the solar wind emanating from polar hole regions is faster than that from equatorial hole regions.  相似文献   

3.
The relative Doppler velocities and linewidths in a polar coronal hole and the nearby quiet-Sun region have been obtained from the Solar and Heliospheric Observatory (SOHO)/Coronal Diagnostic Spectrometer (CDS) observations using emission lines originating at different heights in the solar atmosphere from the lower transition region (TR) to the low solar corona. The observed region is separated into the network and the cell interior, and the behavior of the above parameters were examined in the different regions. It has been found that the histograms of Doppler velocity and width are generally broader in the cell interior than in the network. The histograms of Doppler velocities of the network and cell interior do not show significant differences in most cases. However, in the case of the quiet Sun, the Doppler velocities of the cell interior are more blueshifted than those of the network for the lowermost line He?ii 304 Å, and an opposite behavior is seen for the uppermost line Mg?ix 368 Å. The linewidth histograms show that the network–cell difference is more prominent in the coronal hole. The network has a significantly larger linewidth than the cell interior for the lowermost TR line He?ii 304 Å for the quiet Sun. For the coronal hole, this is true for the three lower TR lines: He?ii 304 Å, O?iii 599 Å, and O?v 630 Å. We also obtained the correlations between the relative Doppler velocity and the width. A mild positive correlation is found for the lowermost transition-region line He?ii 304 Å, which decreases even more or become insignificant for the intermediate lines. For the low coronal line Mg?ix 368 Å, the correlation becomes strongly negative. This might be caused by standing waves or waves propagating from the lower to the upper solar atmosphere. The results may have implications for the generation of the fast solar wind and coronal heating.  相似文献   

4.
The conditions for accurate electron density diagnostics in the solar transition region are discussed, and result shows that lines from Si?viii can provide an excellent tool for electron density diagnostics of the emitting plasma. For the Si?viii 1440.50 Å and 1445.75 Å lines, the principle of the electron density diagnostics is discussed for any intensity ratio. By the observed intensity ratio, the diagnostic results of the electron density for the quiet sun and the active region are calculated, and results indicate that in the quiet sun, the averaged electron density is \(\log (N_{e}) = 8.63\); while in the active region, the averaged density gets the maximum \(\log (N_{e}) = 8.86\) in the active region (B), and gets the minimum \(\log (N_{e}) = 8.38\) in the active region (E), where the electron density is in the unit of cm?3. Finally, the relationship of intensity ratio and electron density is discussed, in the case of lower and higher electron density limits. This discussion is significant in the electron density diagnostics, which will be important for study on coronal heating and acceleration of solar wind.  相似文献   

5.
We develop a technique for the analysis of Hei 1083 nm spectra which addresses several difficulties through determination of a continuum background by comparison with a well-calibrated standard and through removal of nearby solar and telluric blends by differential comparison to an average spectrum. The method is compared with earlier analysis of imaging spectroscopy obtained at the National Solar Observatory/Kitt Peak Vacuum Telescope (NSO/KPVT) with the NASA/NSO Spectromagnetograph (SPM). We examine distributions of Doppler velocity and line width as a function of central intensity for an active region, filament, quiet Sun, and coronal hole. For our example, we find that line widths and central intensity are oppositely correlated in a coronal hole and quiet Sun. Line widths are comparable to the quiet Sun in the active region, are systematically lower in the filament, and extend to higher values in the coronal hole. Outward velocities of 2–4 km s–1 are typically observed in the coronal hole. The sensitivity of these results to analysis technique is discussed.  相似文献   

6.
A. G. Hearn 《Solar physics》1977,51(1):159-168
The main differences between a coronal hole and quiet coronal regions are explained by a reduction of the thermal conduction coefficient by transverse components of the magnetic field in the transition region of quiet coronal regions.Calculations of minimum flux coronae show that if the flux of energy heating the corona is maintained constant while the thermal conductivity in the transition region is reduced, the coronal temperature, the pressure in the transition region and the corona, and the temperature gradient in the transition region all increase. At the same time the intensities of lines emitted from the transition region are almost unchanged. Thus all the main spectroscopically observed differences between coronal holes and quiet coronal regions are explained.The flux of energy heating the corona in both coronal holes and quiet coronal regions is 3.0 × 105 erg cm-2 s-1.The energy lost from coronal holes by the high speed streams in the solar wind is not sufficient to explain the difference in the coronal temperature in coronal holes and quiet coronal regions. The most likely explanation of the high velocity streams in the solar wind associated with coronal holes is that of Durney and Hundhausen.  相似文献   

7.
We report on studies of the 1393 line of Si iv, formed in the transition region at about 80 000 K, made using the Colorado experiment on OSO-8. Results indicate that the line width is somewhat greater in coronal holes compared to the quiet Sun, implying a difference in the broadening mechanism. There is no evidence that the line is Doppler shifted in coronal holes relative to the quiet Sun implying there is no mass flow in holes, at the 80 000 K level, greater than 4.3 km s–1. Within the uncertainty of our experiment the integrated line intensities are the same in a coronal hole as in the quiet Sun.  相似文献   

8.
To gain insight into the relationships between solar activity, the occurrence and variability of coronal holes, and the association of such holes with solar wind features such as high-velocity streams, a study of the period 1963–1974 was made. This period corresponds approximately with sunspot cycle 20. The primary data used for this work consisted of X-ray and XUV solar images obtained from rockets. The investigation revealed that:
  1. The polar coronal holes prominent at solar minimum, decreased in area as solar activity increased and were small or absent at maximum phase. This evolution exhibited the same phase difference between the two hemispheres that was observed in other indicators of activity.
  2. During maximum, coronal holes occurred poleward of the sunspot belts and in the equatorial region between them. The observed equatorial holes were small and persisted for one or two solar rotations only; some high latitude holes had lifetimes exceeding two solar rotations.
  3. During 1963–74 whenever XUV or X-ray images were available, nearly all recurrent solar wind streams of speed ?500 km s?1 were found associated with coronal holes at less than 40° latitude; however some coronal holes appeared to have no associated wind streams at the Earth.
  相似文献   

9.
We examine the propagation of Alfvén waves in the solar atmosphere. The principal theoretical virtues of this work are: (i) The full wave equation is solved without recourse to the small-wavelength eikonal approximation (ii) The background solar atmosphere is realistic, consisting of an HSRA/VAL representation of the photosphere and chromosphere, a 200 km thick transition region, a model for the upper transition region below a coronal hole (provided by R. Munro), and the Munro-Jackson model of a polar coronal hole. The principal results are:
  1. If the wave source is taken to be near the top of the convection zone, where n H = 5.2 × 1016 cm?3, and if B = 10.5 G, then the wave Poynting flux exhibits a series of strong resonant peaks at periods downwards from 1.6 hr. The resonant frequencies are in the ratios of the zeroes of J 0, but depend on B , and on the density and scale height at the wave source. The longest period peaks may be the most important, because they are nearest to the supergranular periods and to the observed periods near 1 AU, and because they are the broadest in frequency.
  2. The Poynting flux in the resonant peaks can be large enough, i.e. P ≈ 104–105 erg cm?2s?1, to strongly affect the solar wind.
  3. ¦δv¦ and ¦δB¦ also display resonant peaks.
  4. In the chromosphere and low corona, ¦δv ≈ 7–25 kms?1 and ¦δB¦ ≈0.3–1.0 G if P ≈104-105 erg cm?2s?1.
  5. The dependences of ¦δv¦ and ¦δB¦ on height are reduced by finite wavelength effects, except near the wave source where they are enhanced.
  6. Near the base, ¦δB¦ ≈ 350–1200 G if P ~- 104–105. This means that nonlinear effects may be important, and that some density and vertical velocity fluctuations may be associated with the Alfvén waves.
  7. Below the low corona most wave energy is kinetic, except near the base where it becomes mostly magnetic at the resonances.
  8. ?0 < δv 2 > v A or < δB 2 > v A/4π are not good estimators of the energy flux.
  9. The Alfvén wave pressure tensor will be important in the transition region only if the magnetic field diverges rapidly. But the Alfvén wave pressure can be important in the coronal hole.
  相似文献   

10.
The energy balance of open-field regions of the corona and solar wind and the influence of the flow geometry in the corona upon the density and temperature, are analyzed. It is found that the energy flux arriving at the corona is constant for the corona's open regions with different flow geometries. For the waves heating the corona and solar wind, the dependence of the absorption coefficient on the corona's plasma density is found to be within the range of distances r=1.05–1.5R . It is shown that the wave absorption is more dependent on electron density than the coronal emission. It is this difference that causes lower-density coronal holes to be colder than quiet regions. It is found that the additional energy flux necessary for providing energy balance of the corona and for producing solar wind is a flux of Alfvén waves, which can provide the energy needed for producing quasi-stationary high-speed solar wind streams. Theoretical models of coronal holes and the question of why the high-speed solar wind streams are precisely flowing out of coronal holes, are discussed.  相似文献   

11.

Observations of the solar photosphere show spatially compact large-amplitude Doppler velocity events with short lifetimes. In data from the Imaging Magnetograph eXperiment (IMaX) on the first flight of the Sunrise balloon in 2009, events with velocities in excess of 4\(\sigma \) from the mean can be identified in both intergranular downflow lanes and granular upflows. We show that the statistics of such events are consistent with the random superposition of strong convective flows and p-mode coherence patches. Such coincident superposition complicates the identification of acoustic wave sources in the solar photosphere, and may be important in the interpretation of spectral line profiles formed in solar photosphere.

  相似文献   

12.
Numerous mass ejections from the Sun have been detected with orbiting coronagraphs. Here for the first time we document and discuss the direct association of a coronagraph observed mass ejection, which followed a 2B flare, with a large interplanetary shock wave disturbance observed at 1 AU. Estimates of the mass (2.4 × 1016 g) and energy content (1.1 × 1032 erg) of the coronal disturbance are in reasonably good agreement with estimates of the mass and energy content of the solar wind disturbance at 1 AU. The energy estimates as well as the transit time of the disturbance are also in good agreement with numerical models of shock wave propagation in the solar wind.  相似文献   

13.
Ryutova  M.  Habbal  S.  Woo  R.  Tarbell  T. 《Solar physics》2001,200(1-2):213-234
We propose a mechanism for the formation of a magnetic energy avalanche based on highly dynamic phenomena within the ubiquitous small-scale network magnetic elements in the quiet photosphere. We suggest that this mechanism may provide constant mass and energy supply for the corona and fast wind. Constantly emerging from sub-surface layers, flux tubes collide and reconnect generating magneto-hydrodynamic shocks that experience strong gradient acceleration in the sharply stratified photosphere/chromosphere region. Acoustic and fast magnetosonic branches of these waves lead to heating and/or jet formation due to cumulative effects (Tarbell et al., 1999). The Alfvén waves generated by post-reconnection processes have quite a restricted range of parameters for shock formation, but their frequency, determined by the reconnection rate, may be high enough (0.1–2.5 s–1) to carry the energy into the corona. We also suggest that the primary energy source for the fast wind lies far below the coronal heights, and that the chromosphere and transition region flows and also radiative transient form the base of the fast wind. The continuous supply of emerging magnetic flux tubes provides a permanent energy production process capable of explaining the steady character of the fast wind and its energetics.  相似文献   

14.
E. Hiei  T. Okamoto  K. Tanaka 《Solar physics》1983,86(1-2):185-191
Flare activity was observed near the limb with two coronagraphs at the Norikura Solar Observatory and the Soft X-ray Crystal Spectrometer (SOX) aboard HINOTORI. A prominence activation occurred and then Hα brightenings were seen on the disk near the prominence. The prominence became very bright and its electron density increased to 1012.8 cm?3 in 1/2 hour. Loop prominence systems appeared above the Hα brightenings about half an hour after the onset of the flare, and were observed in the coronal lines CaXV 5694Å, FeXIV 5303Å, and FeX 6374Å. Shifted and asymmetric profiles of the emission line of 5303Å were sometimes observed, and turbulent phenomena occurred even in the thermal phase. The energy release site of the flare at the onset would be lower than 20 000 km above the solar limb.  相似文献   

15.
Coronal Faraday rotation of the linearly polarized carrier signals of the HELIOS spacecraft was recorded during the regularly occurring solar occultations over almost a complete solar cycle from 1975 to 1984. These measurements are used to determine the average strength and radial variation of the coronal magnetic field at solar minimum at solar distances from 3–10 solar radii, i.e., the range over which the complex fields at the coronal base are transformed into the interplanetary spiral. The mean coronal magnetic field in 1975–1976 was found to decrease with radial distance according to r , where α = 2.7 ± 0.2. The mean field magnitude was 1.0 ± 0.5 × 10 ?5 tesla at a nominal solar distance of 5 solar radii. Possibly higher magnetic field strengths were indicated at solar maximum, but a lack of data prevented a statistical determination of the mean coronal field during this epoch.  相似文献   

16.
It is proposed that the solar flare phenomenon can be understood as a manifestation of the electrodynamic coupling process of the photosphere-chromosphere-corona system as a whole. The system is coupled by electric currents, flowing along (both upward and downward) and across the magnetic field lines, powered by the dynamo process driven by the neutral wind in the photosphere and the lower chromosphere. A self-consistent formulation of the proposed coupling system is given. It is shown in particular that the coupling system can generate and dissipate the power of 1029 erg s#X2212;1 and the total energy of 1032 erg during a typical life time (103 s) of solar flares. The energy consumptions include Joule heat production, acceleration of current-carrying particles along field lines, magnetic energy storage and kinetic energy of plasma convection. The particle acceleration arises from the development of field-aligned potential drops of 10–150 kV due to the loss-cone constriction effect along the upward field-aligned currents, causing optical, X-ray and radio emissions. The total number of precipitating electrons during a flare is shown to be of order 1037–1038.  相似文献   

17.
The High-Resolution Coronal Imager (Hi-C) was flown on a NASA sounding rocket on 11 July 2012. The goal of the Hi-C mission was to obtain high-resolution (≈?0.3?–?0.4′′), high-cadence (≈?5 seconds) images of a solar active region to investigate the dynamics of solar coronal structures at small spatial scales. The instrument consists of a normal-incidence telescope with the optics coated with multilayers to reflect a narrow wavelength range around 19.3 nm (including the Fe xii 19.5-nm spectral line) and a 4096×4096 camera with a plate scale of 0.1′′?pixel?1. The target of the Hi-C rocket flight was Active Region 11520. Hi-C obtained 37 full-frame images and 86 partial-frame images during the rocket flight. Analysis of the Hi-C data indicates the corona is structured on scales smaller than currently resolved by existing satellite missions.  相似文献   

18.
We have analyzed Interface Region Imaging Spectrograph (IRIS) spectral and slit-jaw observations of a quiet region near the South Pole. In this article we present an overview of the observations, the corrections, and the absolute calibration of the intensity. We focus on the average profiles of strong (Mg?ii h and k, C?ii and Si?iv), as well as of weak spectral lines in the near ultraviolet (NUV) and the far ultraviolet (FUV), including the Mg?ii triplet, thus probing the solar atmosphere from the low chromosphere to the transition region. We give the radial variation of bulk spectral parameters as well as line ratios and turbulent velocities. We present measurements of the formation height in lines and in the NUV continuum from which we find a linear relationship between the position of the limb and the intensity scale height. We also find that low forming lines, such as the Mg?ii triplet, show no temporal variations above the limb associated with spicules, suggesting that such lines are formed in a homogeneous atmospheric layer and, possibly, that spicules are formed above the height of \(2''\). We discuss the spatio-temporal structure of the atmosphere near the limb from images of intensity as a function of position and time. In these images, we identify p-mode oscillations in the cores of lines formed at low heights above the photosphere, slow-moving bright features in O?i and fast-moving bright features in C?ii. Finally, we compare the Mg?ii k and h line profiles, together with intensity values of the Balmer lines from the literature, with computations from the PROM57Mg non-LTE model, developed at the Institut d’ Astrophysique Spatiale, and estimated values of the physical parameters. We obtain electron temperatures in the range of \({\sim}\, 8000~\mbox{K}\) at small heights to \({\sim}\, 20\,000~\mbox{K}\) at large heights, electron densities from \(1.1\times 10^{11}\) to \(4\times 10^{10}~\mbox{cm}^{-3}\) and a turbulent velocity of \({\sim}\, 24~\mbox{km}\,\mbox{s}^{-1}\).  相似文献   

19.
Based on the developed method of jointly using data on the magnetic fields and brightness of filaments and coronal holes (CHs) at various heights in the solar atmosphere as well as on the velocities in the photosphere, we have obtained the following results:
  • The upward motion of matter is typical of filament channels in the form of bright stripes that often surround the filaments when observed in the HeI 1083 nm line.
  • The filament channels observed simultaneously in Hα and HeI 1083 nm differ in size, emission characteristics, and other parameters. We conclude that by simultaneously investigating the filament channels in two spectral ranges, we can make progress in understanding the physics of their formation and evolution.
  • Most of the filaments observed in the HeI 1083 nm line consist of dark knots with different velocity distributions in them. A possible interpretation of these knots is offered.
  • The height of the small-scale magnetic field distribution near the individual dark knots of filaments in the solar atmosphere varies between 3000 and 20000 km.
  • The zero surface separating the large-scale magnetic field structures in the corona and calculated in the potential approximation changes the inclination to the solar surface with height and is displaced in one or two days.
  • The observed formation of a filament in a CH was accompanied by a significant magnetic field variation in the CH region at heights from 0 to 30000 km up to the change of the predominant field sign over the entire CH area. We assume that this occurs at the stage of CH disappearance.
  •   相似文献   

    20.
    We propose a simple method that allows the density fields of solar wind protons and heavy ions of cometary origin (“loaded” ions) in the solar wind-cometary ionosphere interaction region to be separated from the general density field calculated within the framework of a single-fluid model. The method is based on the assumption that the velocities of both components are identical. We analyze the density fields in the solar wind obtained in this way before and after the passage of the bow shock ahead of the cometary ionosphere and make a comparison with the distributions measured with various instruments onboard the Giotto spacecraft when it flew past Comet Halley and calculated on the basis of more complex multi-fluid models.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号