首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
基于岩心、岩石薄片及元素分析等资料,通过偏光显微镜、定量矿物扫描(QemScan)、电子探针、能谱和流体包裹体分析等技术手段,探讨了二连盆地白音查干凹陷下白垩统腾格尔组热水沉积岩中热水沉积矿物的沉淀顺序。研究区热水沉积矿物主要为铝硅酸盐和碳酸盐,含少量黄铁矿、重晶石、萤石等矿物。这些矿物在空间上具有特定的先后关系或位置关系: (1)在纹层状岩层中,由下到上从铝硅酸盐过渡为碳酸盐。在铝硅酸盐矿物组合中,首先出现的是方沸石,其次是钠沸石,再次为钠长石;在碳酸盐矿物中,首先出现的是菱镁矿,其次是菱铁矿,再次为铁白云石,有时还可见到方解石,但其含量很低。(2)在凝絮状团块中,团块中心为黄铁矿,从中心向外依次过渡为方沸石、钠沸石、菱镁矿、菱铁矿,最外层为铁白云石。在纹层状岩层和凝絮状团块中,有时还能见到上述顺序的逆顺序。(3)在后期充填的裂缝中,边部为沸石或绿泥石等铝硅酸盐矿物,向中心逐渐过渡为铁白云石碳酸盐。综合研究区所有的矿物序列来看,最完整的序列应为黄铁矿—钾长石—方沸石—钠沸石—钠长石—菱镁矿—菱铁矿—白云石—方解石,但是这种完整的序列是不常见的,通常仅为其中某几种矿物的组合,然而不管是哪些矿物进行组合,其出现的顺序都不变。推测该矿物序列的类型受热液喷流和溢流阶段、时间、温度和热水化学性质控制,早期高温、高盐度条件下出现的铝硅酸盐矿物序列较多,而晚期主要形成碳酸盐矿物序列。  相似文献   

2.
为了查明火山碎屑岩中自生碳酸盐矿物的分布特征及对储层物性的影响,以海拉尔盆地贝尔凹陷火山碎屑岩为研究对象,调查火山碎屑岩中自生碳酸盐矿物的类型,并通过统计50余口探井的碳酸盐含量及储层物性数据,探讨其分布特征及对储层物性的影响。结果表明:海拉尔盆地贝尔凹陷火山碎屑岩中自生碳酸盐矿物主要为方解石和白云石,其次为菱铁矿、片钠铝石和铁白云石;纵向上随着埋藏深度增加出现两个碳酸盐含量高值带,分别出现在1 500~1 900m和2 200~2 700m深度,前者主要为以胶结作用为主的连生方解石和显晶方解石及菱铁矿,后者主要为以交代作用为主的晚期方解石、白云石、铁白云石和片钠铝石;湖底扇等分选较差的沉积相为碳酸盐矿物发育的有利相带,扇-辫状河三角洲相为次有利相带;靠近德尔布干深大断裂的井碳酸盐含量要高于远离该断裂的井,且在该断裂附近的德2、德6和德8等井中见片钠铝石自生矿物,这主要因为断层是CO2逸散的通道,断层处的富CO2流体能够与围岩反应生成碳酸盐矿物;熔结凝灰岩和凝灰岩中的碳酸盐矿物含量要高于沉凝灰岩、凝灰质砂岩及普通砂岩,这主要因为火山岩及火山碎屑物质中金属离子含量高,易于释放,从而结合CO23-形成碳酸盐矿物;贝尔凹陷内储层孔隙度和渗透率等参数与碳酸盐含量呈负相关关系,说明碳酸盐含量对储层物性主要起破坏作用。  相似文献   

3.
Carbonate concretions, lenses and bands in the Pleistocene, Palaeogene and Upper Triassic coalfields of Japan consist of various carbonate minerals with varied chemical compositions. Authigenic carbonates in freshwater sediments are siderite > calcite > ankerite > dolomite >> ferroan magnesite; in brackish water to marine sediments in the coal measures, calcite > dolomite > ankerite > siderite >> ferroan magnesite; and in the overlying marine deposits, calcite > dolomite >> siderite. Most carbonates were formed progressively during burial within a range of depths between the sediment-water interface and approximately 3 km. The mineral species and the chemical composition of the carbonates are controlled primarily by the initial sedimentary facies of the host sediments and secondarily by the diagenetic evolution of pore water during burial. Based on the regular sequence and burial depth of precipitation of authigenic carbonates in a specific sedimentary facies, three diagenetic stages of carbonates are proposed. Carbonates formed during Stage I (< 500 m) strongly reflect the initial sedimentary facies, e.g. low Ca-Mg siderite in freshwater sediments which are initially rich in iron derived from lateritic soil on the nearby landmass, and Mg calcite and dolomite in brackish-marine sediments whose pore waters abound in Ca2+ and Mg2+ originating in seawater and calcareous shells. Carbonates formed during Stage II (500–2000 m) include high Ca-Mg siderite, ankerite, Fe dolomite and Fe–Mg calcite in freshwater sediments. The assemblage of Stage II carbonates in brackish-marine sediments in the coal measures is similar to that in freshwater sediments. This suggests similar diagenetic environments owing to an effective migration and mixing of pore water due to the compaction of host sediments. Carbonates formed during Stage III (> 2000 m) are Fe calcite and extremely high Ca-Mg siderite; the latter is exclusively in marine mudstones. The supply of Ca is partly from the alteration of silicates in the sediments at elevated burial temperatures. After uplift, calcite with low Mg content precipitates from percolating groundwater and fills extensional cracks.  相似文献   

4.
Hydrothermal-metasomatic iron ores consisting mainly of siderite, ankerite and hematite are located in the Lower–Middle Cambrian limestone marbles of the Eastern Taurus Belt. The siderite, ankerite, hematite and host rock samples from the deposits have been investigated for major, trace, and rare-earth elements (REE) to evaluate the element mobility and mass transfer during fluid–rock interactions.  相似文献   

5.
The Ouenza siderite deposit is located proximal to evaporitic diapirs of Triassic age. Mineralization occurs mainly in Aptian neritic limestones which host important iron concentrations (120–150 MT) and minor Pb, Zn, Cu, Ba and F occurrences. The iron ore consists of iron carbonate minerals which have been oxidized partially to hematite. Fine-grained ankerite and siderite replace limestones, whereas sparry ankerite and siderite were emplaced in veins. Limited variation in the chemical and isotopic compositions of ankerite and siderite were observed, which indicate that they precipitated from the same fluid. Stable isotope compositions (δ18O and δ13C) of iron carbonates and limestones allow estimation of the isotopic composition of the mineralizing fluid and precipitation temperature: δ18O = 7.5‰ SMOW, T = 100–120 °C. Later deposition of Pb, Zn, Cu, Ba and F minerals is controlled by fractures oriented NE–SW and SE–NW. Fluid inclusion studies of quartz yield salinities of 18–22 wt.% equivalent NaCl and homogenization temperatures between 150 and 180 °C. These values are similar to those of Mississippi Valley type deposits which are associated with basinal brines. Received: 4 January 1996 / Accepted: 17 July 1996  相似文献   

6.
The potential for incorporation of strontium (Sr) into biogenic Fe(II)-bearing minerals formed during microbial reduction of synthetic hydrous ferric oxide (HFO) was investigated in circumneutral bicarbonate-buffered medium containing SrCl2 at concentrations of 10 μM, 100 μM, or 1.0 mM. CaCl2 (10 mM) was added to some experiments to simulate a Ca-rich groundwater. In Ca-free systems, 89 to 100% of total Sr was captured in solid-phase compounds formed during reduction of 30 to 40 mmol Fe(III) L−1 over a 1-month period. A smaller fraction of total Sr (25 to 34%) was incorporated into the solid phase in cultures amended with 10 mM CaCl2. X-ray diffraction identified siderite and ferroan ankerite as major end products of HFO reduction in Ca-free and Ca-amended cultures, respectively. Scanning electron microscopy-energy dispersive x-ray spectroscopy revealed the presence of Sr associated with carbonate phases. Selective extraction of HFO reduction end products indicated that 46 to 100% of the solid-phase Sr was associated with carbonates. The sequestration of Sr into carbonate phases in the Ca-free systems occurred systematically according to a heterogeneous (Doerner-Hoskins) partition coefficient (DD-H) of 1.81 ± 0.15. This DD-H value was 2 to 10 times higher than values determined for incorporation of Sr (10 μM) into FeCO3(s) precipitated abiotically at rates comparable to or greater than rates observed during HFO reduction, and fivefold higher than theoretical partition coefficients for equilibrium Fe(Sr)CO3 solid solution formation. Surface complexation and entrapment of Sr by rapidly growing siderite crystals (and possibly other biogenic Fe(II) solids) provides an explanation for the intensive scavenging of Sr in the Ca-free systems. The results of abiotic siderite precipitation experiments in the presence and absence of excess Ca indicate that substitution of Ca for Sr at foreign element incorporation sites (mass action effect) on growing FeCO3(s) surfaces can account for the inhibition of Sr incorporation into the siderite component of ankerite formed in the Ca-amended HFO reduction experiments. Likewise, substitution of Fe(II) for Sr may explain the absence of major Sr partitioning into the calcite component of ankerite. The findings indicate that under appropriate conditions, sequestration of metals in siderite produced during bacterial Fe(III) oxide reduction may provide a mechanism for retarding the migration of Sr and other divalent metal contaminants in anaerobic, carbonate-rich sedimentary environments.  相似文献   

7.
The Ljubija siderite deposits, hosted by a Carboniferous sedimentary complex within the Inner Dinarides, occur as stratabound replacement-type ore bodies in limestone blocks and as siderite–sulfides veins in shale. Three principal types of ore textures have been recognized including massive dark siderite and ankerite, siderite with zebra texture, and siderite veins. The ore and host rocks have been investigated by a combination of inorganic (major, trace, and rare earth element concentrations), organic (characterization of hydrocarbons including biomarkers), and stable isotope geochemical methods (isotope ratios of carbonates, sulfides, sulfates, kerogen, and individual hydrocarbons). New results indicate a marine origin of the host carbonates and a hydrothermal–metasomatic origin of the Fe mineralization. The differences in ore textures (e.g., massive siderite, zebra siderite) are attributed to physicochemical variations (e.g., changes in acidity, temperature, and/or salinity) of the mineralizing fluids and to the succession and intensity of replacement of host limestone. Vein siderite was formed by precipitation from hydrothermal fluids in the late stage of mineralization. The equilibrium fractionation of stable isotopes reveals higher formation temperatures for zebra siderites (around 245°C) then for siderite vein (around 185°C). Sulfur isotope ratios suggest Permian seawater or Permian evaporites as the main sulfur source. Fluid inclusion composition confirms a contribution of the Permian seawater to the mineralizing fluids and accord with a Permian mineralization age. Organic geochemistry data reflect mixing of hydrocarbons at the ore site and support the hydrothermal–metasomatic origin of the Ljubija iron deposits.  相似文献   

8.
Historically, carbonate spots have been identified as an indicator of gold mineralization throughout central Victoria, Australia. However, the exact timing relationships between the growth of carbonates, development of deformation fabrics, and the introduction of gold has only been determined in more recent times through isolated studies on individual gold deposits. Detailed examination of the evolution of hydrothermal alteration associated with the Magdala gold deposit at Stawell recognized the fact that there were at least two generations of carbonate growth, an early rounded ankerite phase that predated gold mineralization and a later euhedral siderite phase coincident with gold mineralization. This pattern of carbonate growth is repeated in the majority of significant gold deposits, including Bendigo and Ballarat, throughout central Victoria. Timing relationships within the carbonates suggest that a fluid was introduced along bedding planes and early deformation fabrics prior to the main upright folding events that significantly modified the original sedimentary basin. It is suggested that the early rounded carbonates may have formed as a result of anaerobic oxidation of methane, derived from the sediments and advected along normal growth faults within the sedimentary basin, through interaction with downward diffusing seawater sulfate. Although the growth of the early carbonates is not related to gold mineralization, the change in the speciation of the carbonate during the later carbonate event is critical and can be tracked using a simple geochemical index that can be used not only in areas of outcrop but also in conjunction with exploration undercover.  相似文献   

9.
Short-wave infrared reflectance spectra obtained from a Portable Infrared Mineral Analyser (PIMA) have been used to define alteration zones adjacent to base metal sulfide ore bodies at the Elura Mine, Cobar, Australia. The spectroscopic work identified white mica (sericite), chlorite and carbonates of hydrothermal origin in the alteration zones associated with the ore bodies. Weathering, alteration and ore zones can be discriminated by variations in the intensity and wavelength of relevant absorption features. Hydrothermal alteration is classified into four principal types, namely sericitic, silicic, chloritic and carbonate alteration. The first three types comprise overprinting hydrothermal assemblages of quartz, sericite, chlorite, ankerite, siderite, calcite and sulfides developed in strongly altered metasiltstone and slate of Early Devonian age, adjacent to the zinc–lead–silver mineralisation. An extensive zone of carbonate alteration, manifested as porphyroblasts of siderite in the host metasediments, is recognised beyond the zones of strong alteration. Spectral analysis is consistent with the mineralogical data obtained from XRD and XRF analyses and defines the limits of the alteration zones to distances of about 80 m around the ore bodies. The study demonstrates the potential for spectral analysis to assist with drill hole logging and the identification of alteration zones as part of mineral exploration and development programs.  相似文献   

10.
11.
Stratiform sediment hosted Zn–Pb–Ag deposits, often referred to as SEDEX deposits, represent an economically important class of ore, that have received relatively little attention in terms of defining lithochemical halos and geochemical vectors useful to exploration. This study concentrates on the Lady Loretta deposit which is a typical example of the class of Proterozoic SEDEX deposits in northern Australia. We examined the major and trace element chemistry of carbonate-bearing sediments surrounding the deposit and defined a series of halos which extend for several hundred metres across strike and up to 1.5 km along strike. The stratiform ore lens is surrounded by an inner sideritic halo [Carr, G.R., 1984. Primary geochemical and mineralogical dispersion in the vicinity of the Lady Loretta Zn–Pb–Ag deposit, North Queensland. J. Geochem. Expl. 22, 217–238], followed by an outer ankerite/ferroan dolomite halo which merges with low iron dolomitic sediments representative of the regional background compositions. Carbonate within the inner siderite halo varies in composition from siderite to pistomesite (Fe0.6Mg0.4CO3), whereas carbonate in the outer ankerite halo varies from ferroan dolomite to ankerite (Ca0.5Mg0.3Fe0.2CO3). Element dispersion around the stratiform ore lens is variable with Pb, Cu, Ba and Sr showing very little dispersion (<50 m across strike), Zn and Fe showing moderate dispersion (<100 m) and Mn and Tl showing broad dispersion (<200 m). Within the siderite halo Cu, Mg and Na show marked depletion compared to the surrounding sediments. The magnitude of element dispersion and change in carbonate chemistry around the Lady Loretta orebody has enabled the development of three geochemical vectors applicable to exploration. Whole rock analyses are used to calculate the three vector quantities as follows: (1) SEDEX metal index = Zn + 100Pb + 100Tl; (2) SEDEX alteration index = (FeO + 10MnO)100/(FeO + 10MnO + MgO); (3) manganese content of dolomite: MnOd = (MnO × 30.41)/CaO. All three vectors increase to ore both across strike and along strike. The manganese content of dolomite (MnOd) exhibits the most systematic pattern increasing from background values of about 0.2 wt% to a maximum of around 0.6 wt% at the boundary between the ankerite and siderite halos. Siderite within the inner halo contains considerably more Mn with MnO values of 0.4 to 4.0 wt%. It is suggested here that the basket of indices defined at Lady Loretta (Zn, Tl, metal index, alteration index, MnOd and MnOs) is applicable in the exploration for stratiform Zn–Pb–Ag deposits in dolomite-rich sedimentary basins generally. The indices defined can firstly assist in the identification of sedimentary units favourable for SEDEX mineralisation, and secondly provide vectors along these units to ore. The alteration index and MnOd, however, should only be used for exploration dolomitic sequences; they are not recommended for exploration in clastic sequences devoid of carbonates.  相似文献   

12.
Iron and Sr bearing phases were thoroughly investigated by means of spectrometric and microscopic techniques in Callovian–Oxfordian (COX) samples originating from the ANDRA Underground Research Laboratory (URL) in Bure (France). Strontium was found to be essentially associated with celestite, whereas Fe was found to be distributed over a wide range of mineral phases. Iron was mainly present as Fe(II) in the studied samples (∼93% from Mössbauer results). Most of the Fe(II) was found to be in pyrite, sideroplesite/ankerite and clay minerals. Iron(III), if present, was associated with clay minerals (probably illite, illite-smectite mixed layer minerals and chlorite). No Fe(III) oxy(hydro)xide could be detected in the samples. Strontianite was not observed either. Based on these observations, it is likely that the COX porewater is in equilibrium with the following carbonate minerals, calcite, dolomite and ankerite/sideroplesite, but not with strontianite. It is shown that this equilibrium information can be combined with clay cation exchange composition information in order to give direct estimates or constraints on the solubility products of the carbonate minerals dolomite, siderite and strontianite. As a consequence, an experimental method was developed to retrieve the cation exchanged Fe(II) in very well preserved COX samples.  相似文献   

13.
由雪莲  贾文强  徐帆  刘仪 《地球科学》2018,43(11):4046-4055
长期以来,铁白云石的命名划分标准混乱,一直被当成高温及次生的产物.综述了国内外铁白云石的研究进展,详细探讨了铁白云石的矿物学特征,特别在其成因中加入了微生物因素,运用地质微生物学探讨原生铁白云石的成因机制.研究认为:(1)铁白云石命名划分依据应遵照国际矿物学会的原则,以铁是否替代白云石晶格中半数镁的位置为标准,分为白云石和铁白云石;(2)详述铁白云石矿物学及其晶体特征;(3)铁白云石成因分为原生沉淀及次生两种,微生物介导形成原生白云石的过程中,有助于铁进入到白云石晶格中,增加晶格中铁的含量.   相似文献   

14.
The fluid flow history during diagenesis of sandstones in the Upper Permian Black Jack Formation of the Gunnedah Basin has been investigated through integrated petrographic observations, fluid inclusion investigations and stable isotope analyses. The early precipitation of mixed-layer illite/smectite, siderite, calcite, ankerite and kaolin proceeded at the presence of Late Permian connate meteoric waters at temperatures of up to 60℃. These evolved connate pore waters were also parental to quartz, which formed at temperatures of up to 87℃. The phase of maximum burial was characterized by development of filamentous illite and late calcite at temperatures of up to -90℃. Subsequent uplifting and cooling led to deep meteoric influx from surface, which in turn resulted in dissolution of labile grains and carbonate cements, and formation of second generation of kaolin. Dawsonite was the last diagenetic mineral precipitated and its formation is genetically related to deep-seated mamagtic sourced CO2.  相似文献   

15.
The St. Lawrence Iroquoians built villages in southwestern Quebec (Canada) along the St. Lawrence River. They left behind longhouses, hearths, middens, and storage pits like those discovered at the Mailhot‐Curran archaeological site in Saint‐Anicet. Here, we contrast the properties of Iroquoian features with undisturbed soil to define the chemical and mineralogical signature of hearths, middens, and pits. The native soil has a neutral pH and consists of an Ah horizon overlaying a Bm horizon dominated by quartz and feldspars. In the hearths, ashes are characterized by neoformed calcite and apatite with carbonates, higher total P, and enrichment in amorphous inorganic Al, Fe, and Si. The rubified layer of hearths contain poorly crystallized Fe oxides. The mineralogy of the rubified layer is dominated by authigenetic ankerite, an Fe‐carbonate mineral identified here for the first time in Iroquoian hearths. Middens have the highest organic matter content and contain more organically complexed Al and Fe than the soil. The storage pits have low pH values and carbonate content and contain high levels of amorphous Si and total P. Our work establishes the pedologic signature of three Iroquoian features despite significant alteration of their properties by post‐occupational biogeochemical processes.  相似文献   

16.
含片钠铝石砂岩的基本特征及地质意义   总被引:7,自引:1,他引:7       下载免费PDF全文
高玉巧  刘立 《地质论评》2007,53(1):104-111
含片钠铝石砂岩是一种含片钠铝石自生矿物的砂岩,一般为富含长石的砂岩,与片钠铝石稳定共生的自生矿物主要为铁白云石、菱铁矿等碳酸盐矿物。砂岩中片钠铝石的含量变化较大,其存在与否不受砂岩结构的制约。含片钠铝石砂岩往往分布在断裂和岩浆岩体附近,既可以作为CO2气储层,又可以作为油气储层。含片钠铝石砂岩是一种具有特殊地质意义的砂岩,表现为:①含片钠铝石砂岩记录了深、浅部层圈之间及烃源岩—储层之间的物质转移;②在含油CO2气藏和油藏中,含片钠铝石砂岩记录了CO2与油气双重充注,其中含油CO2气藏中的含片钠铝石砂岩记录了CO2充注驱油现象;③含片钠铝石砂岩是进行CO2地下储存研究的理想的天然实验室。  相似文献   

17.
Rapid characterisation of carbonate phases in hyperspectral reflectance spectra acquired from drill core material has important implications for mineral exploration and resource modelling. Major infrared active features of carbonates lie in the thermal region around 6500 nm, 11 300 nm and 14 000 nm, with the latter two features being most useful for differentiating mineral species. A scatter diagram of the wavelength of the 14 000 nm feature vs that of the 11 300 nm feature, powerfully differentiates carbonates. Although the wavelength of the 11 300 nm peak is easily measured, the 14 000 nm trough and peak are commonly weak and their wavelengths can confidently be used only after filtering the spectra, e.g. selecting only those with the trough and peak separated by 175–230 nm, typical of common carbonates. The method is demonstrated with drillhole 120R from the Rosebery polymetallic VHMS deposit in western Tasmania, which has been scanned with the HyLogger-3 system. A 14 000–11 300 plot shows a high degree of clustering of the drillhole 120R data close to the library spectra of calcite, dolomite, Fe-dolomite, ankerite, kutnohorite, rhodochrosite, Fe-rhodochrosite and siderite. The interpreted compositions of the carbonate spectral populations strongly correlate with the chemical populations of 144 analysed carbonates and provide a highly resolved spatial framework for interpreting carbonate alteration.  相似文献   

18.
安徽庐江龙桥铁矿层新资料及成矿作用多阶段演化模式   总被引:10,自引:0,他引:10  
倪若水  汪祥云 《地质论评》1994,40(6):565-575
根据龙桥铁矿层位岩性,地球化学特征及其与南京地区中三叠世周冲村期含膏岩系的对比,结合含矿层位的展布与区域构造及火山岩盆地的构造分析。论证龙桥铁矿含矿层位是中三叠世东马鞍山期(周冲村期)萨布哈-泻湖沉积环境下,含铁沉积(菱铁矿,铁白云石,磁铁矿及赤铁)矿源层。经燕夺浆侵入的热变质和热液叠加构造,成矿作用经历多阶段演化。  相似文献   

19.
Near the Ontario—Minnesota boundary, the middle Precambriansedimentary Gunflint Iron Formation has been contact metamorphosedby the Duluth Complex to the pyroxene hornfels facies. Threemetamorphic zones have been recognized based on mineralogicalchanges observed within the aureole; a fourth zone correspondsto essentially unmetamorphosed iron formation. Each zone maybe recognized by the dominant iron silicate present: zone 1—greenalitezone (unmetamorphosed), zone 2—minnesotaite zone (slightlymetamorphosed), zone 3—grunerite zone (moderately metamorphosed),zone4—ferrohypersthene zone (highly metamorphosed). Granule bearing cherty rocks of zone 2 are characterized bythe reduction of hematite to magnetite and reaction of greenaliteand siderite to minnesotaite ± magnetite. Relict texturesare well preserved in zone 2 and retrograde reactions are minimal.Grunerite first appears in banded slaty rocks of zone 3. ‘Slaty’grunerite formed principally by reaction between carbonate andstilpnomelane, while in cherty rocks grunerite formed by reactionbetween greenalite and silica. Original bulk chemical differencesbetween cherty and slaty iron formation is reflected by amphibolechemistry as shown by the higher Al content and lower Fe/Fe+ Mg ratio of slaty grunerite, and by the greater ahundanceof Na, Al-bearing amphiboles such as ferrotschermakite in slatyrocks. Hedenbergite and fayalite appear in the upper part ofzone 3; both formed by silication of carbonates and both arepartially retrograded to amphibole. Prograde grunerite-cummingtoniteis partially replaced by minnesotaite in cherty rocks of zones3 and 4. In zone 4, greenalite and siderite-bearing assemblagesreacted to ferrohypersthene, fayalite (±quartz), pigeoniteand grunerite-cummingtonite. Retrogradation is widespread andresulted mainly in the formation of grunerite. Primary textureswere destroyed in slaty rocks but are still recognizable incherty rocks. Preservation of sedimentary textures within the contact aureoleis a characteristic feature of cherty rocks. In zone l theserocks typically consist of the following textural-mineralogicalassociation: granules (greenalite, quartz, hematite), cement(quartz, siderite, ankerite, calcite) and mottles (various carbonates).Retention of these textural elements, combined with compositionaldata for assemblages in the low to moderate grade rocks, enablesidentification of numerous metamorphic reactions. In the absenceof relict phases or relict textures sedimentary assemblagescan sometimes be inferred from abundances of minor elementssuch as Al and Mn. In some slaty rocks the presence of carbonaceous or graphiticmaterial has preserved perfectly premetamorphic structures suchas siderite spherules and ankerite rhombs, enabling the recognitionof several amphibole-forming reactions. Chemographic analysis of simplified subsystems for cherty rocksof zone 1, zone 2, and the lower part of zone 3, are consistentwith observed assemblages and reactions.  相似文献   

20.
The El Berrocal granite/U-bearing quartz vein system has been studied as a natural analogue of a high-level radioactive waste repository. The main objective is to understand the geochemical behaviour of natural radionuclides occurring under natural conditions. In this framework, the carbonatation processes have been studied from a mineralogical and isotopic ( and ) point of view, since carbonate anions are powerful complexing agents for U(VI) under both low-temperature hydrothermal and environmental conditions. The carbonatation processes in the system are identified by the presence of secondary ankerite, with minor calcite, scattered in the hydrothermally altered granite, and Mn calcite in fracture filling materials. The isotopic signatures of these carbonates lead us to conclude that ankerite and calcite from the former were formed at the end of the same hydrothermal process that altered the granite, at a temperature range of between 72° and 61°C for ankerite, and between 52° and 35°C for calcite. The effect of edaphic CO2 on both carbonates, greater on calcite than on ankerite, is demonstrated. Calcites from fracture fillings are, at least, binary mixtures, in different proportions, of hydrothermal calcite, formed between 25° and <100°C, and supergenic calcite, formed at ≤25°C. According to their signatures, the effect of edaphic CO2 in both calcites is also evident. It is assumed that: (i) hydrothermal calcite from fracture fillings and ankerite from the hydrothermally altered granite are the result of the same hydrothermal process, their chemical differences being due to the intensity of the water/rock interaction which was stronger in the altered granite than in the fractures; and (ii) all of these carbonatation processes are responsible for ancient and recent migration/retention of uranium observed in the hydrothermally altered granite and fracture fillings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号