首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 197 毫秒
1.
Travel times and flow paths of groundwater from its recharge area to drinking-water production wells will govern how the quality of pumped groundwater responds to contaminations. Here, we studied the 180 km2 Ammer catchment in southwestern Germany, which is extensively used for groundwater production from a carbonate aquifer. Using a 3-D steady-state groundwater model, four alternative representations of discharge and recharge were systematically explored to understand their impact on groundwater travel times and flow paths. More specifically, two recharge maps obtained from different German hydrologic atlases and two plausible alternative discharge scenarios were tested: (1) groundwater flow across the entire streambed of the Ammer River and its main tributaries and (2) groundwater discharge via a few major springs feeding the Ammer River. For each of these scenarios, the groundwater model was first calibrated against water levels, and subsequently travel times and flow paths were calculated for production wells using particle tracking methods. These computed travel times and flow paths were indirectly evaluated using additional data from the wells including measured concentrations of major ions and environmental tracers indicating groundwater age. Different recharge scenarios resulted in a comparable fit to observed water levels, and similar estimates of hydraulic conductivities, flow paths and travel times of groundwater to production wells. Travel times calculated for all scenarios had a plausible order of magnitude which were comparable to apparent groundwater ages modelled using environmental tracers. Scenario with groundwater discharge across the entire streambed of the Ammer River and its tributaries resulted in a better fit to water levels than scenario with discharge at a few springs only. In spite of the poorer fit to water levels, flow paths of groundwater from the latter scenario were more plausible, and these were supported by the observed major ion chemistry at the production wells. We concluded that data commonly used in groundwater modelling such as water levels and apparent groundwater ages may be insufficient to reliably delineate capture zones of wells. Hydrogeochemical information relating only indirectly to groundwater flow such as the major ion chemistry of water sampled at the wells can substantially improve our understanding of the source areas of recharge for production wells.  相似文献   

2.
The hydrogeological conditions in Uludag (Nilufer River catchment, Bursa, Turkey) were assessed, using time-domain electromagnetic soundings, electrical resistivity and induced polarisation tomography, to detect the most promising zones for new water-well siting, in order to increase the quantity of water for bottling. The hydrogeological model is quite complex: deep mineral and thermal water rises from a main vertical fault which separates two lithological complexes. The highly mineralised (deep) water is naturally mixed with low mineralised water at a shallow depth, 30–40 m; the mixed mineral water is found in some surface springs and shallow wells, while the highly mineralised water is found at depth in some unused deep wells located close to the main fault. All the water points (springs and wells) are located inside a “mineral water belt” on the north side of the Nilufer River. The geophysical survey confirmed the hydrogeological model and highlighted four promising zones for well siting (zones with very low electrical resistivity and high induced polarisation anomalies, corresponding to the main water-bearing faults). One of the geophysical anomalies, the furthest from the exploited sources, was verified by means of a test well; the drilling results have confirmed the water mixing model.  相似文献   

3.
The groundwater reserves in Kharga Oases have been studied for the long-term socioeconomic development in the area. The Nubian Sandstone, which consists of a thick sequence of coarse clastic sediments of sandstone, sandy clay interbedded with shale, and clay beds, forms a complex aquifer system. The Nubian Aquifer has been providing water to artesian wells and springs in the Kharga Oases for several thousand years. Groundwater in the Kharga Oases is withdrawn from springs and shallow and deep artesian wells Nearly all the wells originally flowed, but with the exploitation of ground-water from deep wells for irrigation beginning about 1959. the natural flows declined as more and more closely spaced deep wells were drilled By 1975 many deep wells had ceased to flow The water demand in the area has been met by pumping both shallow and deep wells The total annual extraction from deep wells has fluctuated over the year, however, the annual withdrawal from deep wells has exceeded extraction from shallow wells About 17 billion m3 of water was withdrawn from the combination of shallow and deep wells during the period 1960–1980 The Nubian complex aquifer in the Kharga Oases has a very large groundwater potential that could be exploited and beneficially used for a long-term agricultural development in the area, provided proper well spacing and management are implemented Other major environmental considerations for which precise hydrogeologic data are needed include
  1. Determination of the long-term yield available from properly constructed and producing artesian wells that will support a planned migration of population from the overcrowded Nile delta and flood plain areas
  2. Development of an effective management program and adequate staff to maintain groundwater production over an extended period of years
  3. The impact on climate caused by extensive irrigation in the oases of the Western Desert of Egypt
  4. Protection against water logging of soils from irrigation practices
  5. Protection against salinization of soils from irrigation practices
  6. Development of effective surface and subsurface drainage practices
  7. The impact of farming and pest control practices on the shallow groundwater of the oases
  8. Determination of the long-term development of the artesian water on the quality of the water from the aquiter systems in the Western Desert
This paper addresses items 1, 2 and 8.  相似文献   

4.
山区河流的河床结构是来水来沙与河床相互作用的产物,对河床阻力及输沙率的计算具有重要意义。为更科学地表征河床结构的细节特征,采用2017年2次考察金沙江小江流域干支流7个河段的地形测量数据,提出河床结构表征的4个新量纲一数(凹凸数、平均凹度、平均凸度和凹凸度)及其计算方法。新参数的计算原理简单而直观,能够从多角度表征河床结构发育程度及其形态特征,而且当河床结构发育程度较低时,凹凸度的表征结果更具有区分度。结果表明:新参数表征结果与前人单一参数的计算结果具有一致性;吊嘎河下游、陶家小河和清水沟的河床结构凹凸程度大,河床凸起"高凸",凹陷"深陡",河床阻力大,输沙率低;吊嘎河上游、小江、蒋家沟和蓝泥坪沟的河床结构凹凸程度小,河床凸起"低平",凹陷"浅缓",河床阻力小,输沙率大。  相似文献   

5.
李娜  周训  郭娟  拓明明  徐艳秋 《现代地质》2020,34(1):177-188
研究天然盐泉的形成有助于揭示陆地水文循环过程中的物质迁移。采用水文地球化学的方法,分析四川省盐源县的9个泉水和卤水水样的水化学特征和同位素特征,探讨盐泉的溶质来源,总结盐泉的成因模式。水样可以分为TDS为311.69 g/L的Cl-Na型卤水、TDS为55.77~89.43 g/L的Cl-Na型盐泉、TDS为1.17 g/L的Cl-Na型微咸泉和TDS为0.26~0.56 g/L的以HCO3-Ca、HCO3·SO4-Ca·Mg型为主的淡水泉。泉水和卤水的氢氧同位素显示其来源于大气降水;水样的特征系数显示盐泉和卤水都属于溶滤型,且指示研究区基本不具有找钾前景。泉水的盐分主要来源于石盐、方解石、石膏和白云石等矿物的溶滤。盐泉的形成模式可以概括为:在山区获得大气降水入渗补给后,地下水经历较浅和较深的地下径流并且溶滤含盐地层或者盐矿,使其矿化度升高,在地形较低处汇集出露地表成泉。  相似文献   

6.
The southern Mudug region of Somalia has been without coherent national government and an international non-governmental organisation (NGO)/UN presence in recent years. Despite this, a functioning water economy can be found, with supply elements based on rainwater harvesting (berkads), shallow wells, motorised deep borehole systems and water tankering. The author argues that this is partly because groundwater has a clear economic value to villages (they can sell it to nomads) and to nomads (without it they will lose the capital that is their livestock), and because there is a revenue collection structure at motorised borehole systems. The ability to understand the economic value of water from the perspective of the user community is a key ingredient in a successful water-supply project in impoverished rural areas.  相似文献   

7.
青海省柴达木盆地是著名的钾肥生产基地,也是中国盐类矿产的主要产地.以往盐类矿产勘查主要针对第四纪浅部盐类矿产,对第四纪深部及古近纪-新近纪卤水钾矿工作程度较低,资源勘查情况不明.由于盐湖区浅部卤水矿化度较高,会对电阻率类方法造成严重的低阻屏蔽效应,从而影响其探测深度,对于应用地球物理方法造成了极大的局限性.为查明该区深部卤水钾矿资源情况,采用对低阻异常敏感、信号强度大、纵横向分辨率高的瞬变电磁法(TEM),并结合勘探深度较大的大地电磁测深法(MT)对深层卤水钾矿进行探测.勘查结果识别出了相对低阻异常区,经后期钻孔验证,显示探测结果较为可靠,表明TEM、MT两种物探方法应用于盐湖区深层卤水钾矿探测是有效的,揭示了TEM、MT综合物探方法在盐湖区探测深层钾盐资源的良好应用前景.  相似文献   

8.
A density-dependent numerical groundwater model was applied to study the climate change impact in a shallow aquifer in the Mediterranean coast of Morocco, the Saïdia aquifer. The stresses imposed to the model were derived from the IPCC emission scenarios and included recharge variation and sea level rise. The main effect of the climate change in the Saïdia aquifer will be a decrease in renewable resources, which in the worst-case scenario may decrease to 50–60% of present-day values, due to the decline in recharge and to a reduced inflow from the adjacent Triffa aquifer. The water quality will be affected mostly in the area immediately adjacent to the seashore, where salinity may increase up to 30 g/l. Localised areas may see a decrease in salinity due to the induced freshwater recharge from Oued Moulouya River and diminished inflow from high-salinity springs.  相似文献   

9.
To study arsenic(As) content and distribution patterns as well as the genesis of different kinds of water, especially the different sources of drinking water in Guanzhong Basin, Shaanxi province, China, 139 water samples were collected at 62 sampling points from wells of different depths, from hot springs, and rivers. The As content of these samples was measured by the intermittent flowhydride generation atomic fluorescence spectrometry method(HG-AFS). The As concentrations in the drinking water in Guanzhong Basin vary greatly(0.00–68.08 μg/L), and the As concentration of groundwater in southern Guanzhong Basin is different from that in the northern Guanzhong Basin. Even within the same location in southern Guanzhong Basin, the As concentrations at different depths vary greatly. As concentration of groundwater from the shallow wells(50 m deep, 0.56–3.87 μg/L) is much lower than from deep wells(110–360 m deep, 19.34–62.91 μg/L), whereas As concentration in water of any depth in northern Guanzhong Basin is 10 μg/L. Southern Guanzhong Basin is a newly discovered high-As groundwater area in China. The high-As groundwater is mainly distributed in areas between the Qinling Mountains and Weihe River; it has only been found at depths ranging from 110 to 360 m in confined aquifers, which store water in the Lishi and Wucheng Loess(Lower and Middle Pleistocene) in the southern Guanzhong Basin. As concentration of hot spring water is 6.47–11.94 μg/L; that of geothermal water between 1000 and 1500 m deep is 43.68–68.08 μg/L. The high-As well water at depths from 110 to 360 m in southern Guanzhong Basin has a very low fluorine(F) value, which is generally 0.10 mg/L. Otherwise, the hot springs of Lintong and Tangyu and the geothermal water in southern Guanzhong Basin have very high F values(8.07–14.96 mg/L). The results indicate that highAs groundwater in depths from 110 to 360 m is unlikely to have a direct relationship with the geothermal water in the same area. As concentration of all reservoirs and rivers(both contaminated and uncontaminated) in the Guanzhong Basin is 10 μg/L. This shows that pollution in the surface water is not the source of the high-As in the southern Guanzhong Basin. The partition boundaries of the high- and low-As groundwater area corresponds to the partition boundaries of the tectonic units in the Guanzhong Basin. This probably indicates that the high-As groundwater areas can be correlated to their geological underpinning and structural framework. In southern Guanzhong Basin, the main sources of drinking water for villages and small towns today are wells between 110–360 m deep. All of their As contents exceed the limit of the Chinese National Standard and the International Standard(10 μg/L) and so local residents should use other sources of clean water that are 50 m deep, instead of deep groundwater(110 to 360 m) for their drinking water supply.  相似文献   

10.
A comparative study of the standing crop of marsh vegetation was made of the Patuxent River and Parker Creek, two tributaries of Chesapeake Bay. The biomass of marsh vegetation in the tidal freshwater and brackish regions of the Patuxent was relatively uniform with regard to salinity, seasonally high concentrations of dissolved nitrogen, and phosphorus and nutrient gradient. Maximum values of biomass occurred in the tidal freshwater and slightly brackish water region of Parker Creek, a system whose nutrient concentrations approximated 20% of those of Patuxent River. Biomass values for the Patuxent River and Parker Creek averaged about 1417 and 895 g m?2 dry weight, respectively. Estimates of total annual marsh production based on the maximum standing crop was 27×103 and 519 metric tons, respectively, for the Patuxent River and Parker Creek.  相似文献   

11.
Degradation of groundwater quality by human activities is a widespread environmental problem in Vietnam. Groundwater there is a major source of water for domestic and industrial purposes. This paper reviews, compiles, and comprehensively analyzes spatiotemporal variations of hydrological and hydrogeological characteristics of shallow and deep groundwater aquifers in northern Hanoi industrial zones and in nearby Red River water. Groundwater level, electrical conductivity, and water temperature were measured in six monitoring wells, complemented by anion, cation, and stable isotope analyses of ground and surface water. The results show that the groundwater in both shallow and deep aquifers was fresh, but mainly calcium-bicarbonate type contaminants and human activities affect groundwater and surface water composition. With the goal of devising sustainable water use regulations, more research must be directed toward long-term monitoring of groundwater and surface water quality, as well as toward detailed investigation of the hydraulic characteristics of local aquifers in the study area.  相似文献   

12.
In the Western Canadian Sedimentary Basin, the petroleum industry handles two geochemically distinctive brines that are traceable in the environment: formation brines extracted along with hydrocarbons from the basin, and salt-dissolution brines, produced by dissolving deep halite formations to create caverns for petroleum product storage. The concentrations of the conservative ions chloride (Cl) and bromide (Br) in many formation brines plot closely to the seawater evaporation trajectory of previous studies. These brines contain Cl/Br mass ratios of around 300, while salt-dissolution brines are relatively Br depleted, having Cl/Br mass ratios in excess of 20,000. An oilfield site in central Alberta had experienced nearby releases of both salt-dissolution and formation brines. Geochemical mixing trends were defined by theoretically mixing samples of local salt-dissolution and formation brine sources with background shallow groundwater. Most site monitoring wells and local surface water samples plotted directly on a salt-dissolution brine dilution trend, while results from four monitoring wells, all located directly downgradient of formation brine spills, suggested the mixing of formation brines into shallow groundwater. This work indicates that there is a large-scale salt-dissolution brine plume beneath the site and reinforces the use of Cl and Br concentrations and mass ratios as environmental tracers.  相似文献   

13.
《Applied Geochemistry》2000,15(1):51-65
The Po Valley brines represent the base level of the Quaternary aquifer located in a thick clay-sands sedimentary sequence. Geochemistry indicates that these are marine waters, evaporated to the stage of gypsum precipitation and trapped at the bottom of the basin in the late Messinian. Most of the groundwater samples collected from different springs and wells in the plain result from a mixture of these Na–Cl brines and shallow groundwaters laterally recharged by the Alpine and Apennine chains.Natural outflows of brackish waters are associated with major tectonic features. Mud volcanoes, located in the eastern sector of the Po plain, are constantly monitored as sudden chemical changes are significant precursors of seismic activity. In the western sector, calcite-filled veins isotopically record different degrees of water-rock interaction. These are outcropping fossil conduits, where mixing between shallow groundwaters and deep seated brines has occurred. The temporal continuity of the hydrological circuits allows the reconstruction of past and present groundwater circulation patterns.This paper summarises and integrates the geochemical data produced over many years in order to obtain a regional picture of brine origins and the natural mechanisms of groundwater flow.  相似文献   

14.
Saline groundwater and drainage effluent from irrigation are commonly stored in some 200 natural and artificial saline-water disposal basins throughout the Murray-Darling Basin of Australia. Their impact on underlying aquifers and the River Murray, one of Australia's major water supplies, is of serious concern. In one such scheme, saline groundwater is pumped into Lake Mourquong, a natural groundwater discharge complex. The disposal basin is hydrodynamically restricted by low-permeability lacustrine clays, but there are vulnerable areas in the southeast where the clay is apparently missing. The extent of vertical and lateral leakage of basin brines and the processes controlling their migration are examined using (1) analyses of chloride and stable isotopes of water (2H/1H and 18O/16O) to infer mixing between regional groundwater and lake water, and (2) the variable-density groundwater flow and solute-transport code SUTRA. Hydrochemical results indicate that evaporated disposal water has moved at least 100 m in an easterly direction and that there is negligible movement of brines in a southerly direction towards the River Murray. The model is used to consider various management scenarios. Salt-load movement to the River Murray was highest in a "worst-case" scenario with irrigation employed between the basin and the River Murray. Present-day operating conditions lead to little, if any, direct movement of brine from the basin into the river. Electronic Publication  相似文献   

15.
王宇  张华  张贵  蓝芙宁  王秀艳  万龙  刘宏 《中国岩溶》2021,40(4):644-653
在调查研究典型喀斯特断陷盆地水文地质特征、地表水文过程、“五水”转换及水资源均衡,研发地下水高效开发利用、地表水调蓄、水污染风险评估与水质修复、农田节水灌溉及土壤保墒、水资源优化调控等系列技术的基础上,以可持续发展和系统科学理论为指导,构建了喀斯特断陷盆地水资源高效开发利用模式,包括理论与技术支撑体系和开发利用工程体系两个层次。前者的基本构成及内涵为:水资源高效开发利用工作流程、理论依据及技术支撑,是模式的理论与技术内涵;后者为沿着盆地地表、地下水的形成、运动和转换过程,从上游山区到下游河谷区,逐级分区部署的水资源开发利用工程体系,工程布局做到因地制宜、科学合理,大、中、小、微型并举,集中供水与分散供水兼顾,同时系统推进水质修复、水循环利用、节约用水等措施,实现水资源的高效和可持续开发利用。   相似文献   

16.
The deep wells drilled along the eastern escarpment of the Jordan Valley penetrate confined aquifers that produce thermal and mineralized artesian water. Uncontrolled flows from poorly constructed and uncapped artesian wells over the last 30 years have caused the deterioration of the quality of shallow groundwater and surface water. They also have been accelerating the discharge of saline water from deep aquifers and have caused the loss of shallow fresh groundwater resources through the downward percolation of fresh water to replace the extracted deep salty groundwater. A lack of adequate controls on the construction and maintenance of artesian wells is leading to widespread water quality problems in the region, which limits the ability of future generations to access high-quality water, a clear breach of the principle of intergenerational equity.  相似文献   

17.
During the summer of 1976 waters from tributaries, rivers, springs and wells were sampled in the Walker River Basin. Snow and sediments from selected sites were also sampled. All samples were analyzed for uranium and other elements. The resulting data provide an understanding of the transport of uranium within a closed hydrologic basin as well as providing a basis for the design of geochemical reconnaissance studies for the Basin and Range Province of the Western United States.Spring and tributary data are useful in locating areas containing anomalous concentrations of uranium. However, agricultural practices obscure the presence of known uranium deposits and render impossible the detection of other known deposits.Uranium is extremely mobile in stream waters and does not appear to sorb or precipitate. Uranium has a long residence time (2500 years) in the open waters of Walker Lake; however, once it crosses the sediment-water interface, it is reduced to the U(IV) state and is lost from solution.Over the past two million years the amount of uranium transported to the terminal point of the Walker River system may have been on the order of 4 × 108kg. This suggests that closed basin termini are sites for significant uranium accumulations and are, therefore, potential sites of uranium ore deposits.  相似文献   

18.
介绍了垦利东兴地区深层卤水普查井的基本概况,从井身结构、钻具组合、钻探设备、钻头和钻进参数、钻井液、完井、洗井等方面对钻井设计进行了阐述,着重总结了钻井液的性能参数、处理剂配比及维护处理方法等方面的经验,分析了施工中出现的主要问题,介绍了处理方法。  相似文献   

19.
源汇系统(Source- to- sink system)是将物源区的构造剥蚀、沉积物输送区的沉积物搬运和沉积区的沉积物堆积等视为一个完整系统。沉积物的源区恢复和附近水系重建是源汇研究的热点问题,沉积物碎屑锆石U- Pb定年是源汇系统研究的有效方法之一。南海北部与其周边地区构成了一个完整的源汇系统,通过源汇分析可获得南海北部各盆地沉积物来源及周边主要河流的演化历史。本文通过总结前人在南海北部主要盆地新生代沉积物碎屑锆石U- Pb研究成果,探讨珠江、红河和昆莺琼古河的新生代演化历史。珠江最早的支流北江和东江形成于早渐新世,晚渐新世溯源到西江上游的红水河、左江和右江,中新世溯源到西江中游柳江、桂江和上游的北盘江、南盘江。在晚白垩世—古近纪红河属于青藏高原东缘大型向东南或向南流河流的一部分,之后由于地貌变化形成现今红河。昆莺琼古河在早渐新世开始发育影响到珠江口盆地,在晚渐新世昆莺琼古河雏形已经基本形成,中新世起昆莺琼古河可能向西有一定程度的退缩。  相似文献   

20.
Dissolution of evaporite formations, emergence of salty water springs, and intrusion of deep saline waters are important causes in changing the quality of surface water. The study area is part of the reservoir and downstream of Chamshir Dam, which is located in watershed of the Zohreh River 20?km southeast of Gachsaran City (southwest Iran). To construct powerhouse and related structures for supplying water to agricultural lands located in downstream of dam, water quality of Zohreh River was studied by eight sampling stations in the study area. Early studies showed that water quality of the Zohreh River decreases severely downstream of the Chamshir Dam. Spatial variations diagram of major ions, Piper and composition diagrams of water samples in selected stations mark the presence of two slight and major contaminating zones at sampling station R4 and R5. In these zones, concentration of Ca, SO4 and Na, Cl ions increase suddenly. Results of hydrogeological, hydrochemical, lithological and tectonics studies showed that even though there are several low discharges springs in the contaminated zone they cannot be related to surface dissolution of evaporate layers by Zohreh River. There is an important fault zone including Chamshir faults I and II in the contamination zones through which intrusion of sulfate brackish and chloride brine waters occur along the fault zone and then enter Zohreh River below its base level. In the absence of any surface evidence, the fault zone is the main cause of salinity. Evaluation of water balance salinity in contaminated zones shows that the discharge rate of saline waters to the river is not low and cannot be separated. These findings show that there are serious restrictions upon the purposes of the project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号