首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The detailed processes giving maser line radiation from various molecules in space are not well understood, as can be seen from many recent detailed studies of maser line emission with high spatial and velocity resolution, and with polarization measurements. We now propose an improved maser mechanism based on amplification of the original molecular line emission by stimulated emission in Rydberg Matter (RM) clouds in HII regions, containing clusters H N and (H2) N . This mechanism will amplify the molecular lines, depending on the position, velocity, cluster size and state of excitation of the clusters in the RM cloud. RM will only support certain frequencies, corresponding to rotational transitions of the clusters. The bond lengths in the RM clusters are known within 1% from radio frequency emission measurements in the laboratory, and it is now shown that all the commonly studied maser lines agree well with stimulated emission transitions in several types of RM clusters simultaneously. This may explain the strongly varying intensities of neighboring or related maser lines, an important effect that is not well understood previously. It is also pointed out that the magnetic field due to RM is of the same order of magnitude as observed from the Zeeman splitting in maser lines; thus, the molecules that are the original sources of the lines may be embedded in the RM clouds, for example in dense HII regions that are likely to be RM regions.  相似文献   

2.
We report the Balmer broad absorption lines (BALs) in the quasar SDSS J2220 + 0109 discovered from the SDSS data, and present a detailed analysis of the peculiar absorption line spectrum, including the He I* multiplet at λλ3189, 3889 arising from the metastable 23s-state helium and the Balmer Hα and Hβ lines from the excited hydrogen H I of n = 2 level, which are rarely seen in quasar spectra, as well as many absorption lines arising from the excited Fe II* of the levels 7 955 cm−1, 13 474 cm−1 and 13 673 cm−1 in the wavelength range 3100∼3300 Å. Ca II H, K absorption line doublets also clearly appear in the SDSS spectrum. All absorption lines show a similar blueshifted velocity structure of Δv ≈ − 1500 ∼ 0 km·s−1 relative to the quasar's systematic redshift determined from the emission lines. Detailed analysis suggests that the Balmer absorption lines should arise from the partially ionized region with a column density of NHI ≈ 1021 cm−2 for an electron density of ne ∼ 106 cm−3; and that the hydrogen n = 2 level may be populated via collisional excitation with Lyα pumping.  相似文献   

3.
Dubrovich  V. K.  Grachev  S. I. 《Astronomy Letters》2015,41(10):537-548

The propagation of an instantaneous burst of isotropic radiation from the time of its onset at some redshift z 0 to the time of its detection at the present epoch (at z = 0) is considered within the framework of a flat Universe. Thomson scattering by free electrons and scattering in primordial hydrogen lines (Hα, Hβ, Pα, and Pβ) are believed to be the sources of opacity, with the single-scattering albedo in the lines being calculated by taking into account the deexcitation of the upper levels of the transitions being considered under the action of background blackbody radiation. The profiles of these lines in the burst spectrum at the present epoch have been constructed for various z0 at various distances from the burst center. To a first approximation, these profiles do not depend on the burst radiation spectrum and intensity. It is shown that the lines are purely absorption ones at a sufficiently large distance, but an emission component can appear with decreasing distance, which strengthens as the distance decreases, while the absorption component weakens. The absorption depth in the combined profile can reach 2 ×10?4 for the Hα and Hβ lines and 7 × 10?6 for the Pα and Pβ lines. In this case, the relative amplitude of the temperature fluctuations lies within the range 10?7?10?9. The calculations have been performed for bursts with different characteristic initial sizes. At the same z 0, the hydrogen line profiles essentially coincide for sizes smaller than some value, and the contrast of the lines decreases with increasing burst size for greater ones.

  相似文献   

4.
The warm circumnuclear dust in the inner cometary coma reradiates in the IR in the wavelength range of the ground state rotational band of the dominant atmospheric molecule, H2O. However, the interaction of this radiation with H2O has hitherto not been taken into account in cometary atmospheric models. Here we have extended our earlier two-phase, multifluid model of the dusty atmosphere by including this effect. Although this IR radiation initially pumps the rotational levels of H2O, frequent intermolecular collisions in the inner coma transfer this energy from rotational modes to translational modes. As a result the temperature in the innermost coma no longer decreases to about 10 K, as predicted by the earlier models, but reaches a minimum of only about 120 K.  相似文献   

5.
An independent analysis of the molecular hydrogen absorption system at redshift z abs = 2.059 in the spectrum of the quasar J 2123?0050 is presented. The H2 system consists of two components (A and B) with column densities \(\log N_{{H_2}}^A = 17.94 \pm 0.01\) and \(N_{{H_2}}^B = 15.16 \pm 0.02\). The spectrum exhibits the lines of HDmolecules (logN HD A = 13.87±0.06) and the neutral speciesCI and Cl I associated with the H2 absorption system. For the molecular hydrogen lines near the quasar’s Lyβ and OVI emission lines, we detect a nonzero residual flux, ~3% of the total flux, caused by the effect of partial coverage of the quasar’s broad-line region by an H2 cloud. Due to the smallness of the residual flux, the effect does not affect the H2 column density being determined but increases the statistics of observations of the partial coverage effect to four cases. The uniqueness of the system being investigated is manifested in a high abundance of the neutral species H2 and CI at the lowest HI column density, logN HI = 19.18 ± 0.15, among the highredshift systems. The H2 and CI column densities in the system being investigated turn out to be higher than those in similar systems in our Galaxy and theMagellanic Clouds by two or three orders ofmagnitude. The \(N_{HD} /2N_{H_2 }\) ratio for component A has turned out to be also unusually high, (4.26 ± 0.60) × 10?5, which exceeds the deuterium abundance (D/H) for high-redshift systems by a factor of 1.5. Using the HI, H2, HD, and CI column densities as well as the populations of excited H2 and CI levels, we have investigated the physical conditions in components A and B. Component A represents the optically thick case; the gas has a low number density (~30 cm?3) and a temperature T ~ 140 K. In component B, the mediumis optically thin with n H ≤ 100 cm?3 and T ≥ 100 K. The ultraviolet (UV) background intensity in the clouds exceeds the mean intensity in our Galaxy by almost an order ofmagnitude. A high gas ionization fraction, \(n_{H^ + } /n_H \sim 10^{ - 2}\), which can be the result of partial shielding of the systemfrom hard UV radiation, is needed to describe the high HD and CI column densities. Using our simulations with the PDRMeudon code, we can reconstruct the observed column densities of the species within the model with a constant density (n H ~ 40 cm?3). A high H2 formation rate (higher than the mean Galactic value by a factor of 10?40) and high gas ionization fraction and UV background intensity are needed in this case.  相似文献   

6.
Results of calculations of the cross-sections of the basic processes forming continuous absorption in the photospheres of solar-type stars in the visible and infrared spectral ranges are reported. (These processes are photoionization of H ions and excited hydrogen atoms, as well as absorption of photons by “free” electrons being in the partially ionized plasma of the photosphere.) The effective cross-section of hydrogen satisfying the observational data or the results of laboratory experiments was introduced, and its nonmonotonic behavior caused by photoionization of excited hydrogen atoms was ascertained in the spectral range of λ from 650 to 820 nm. For a plane-parallel model of the Sun, the continuous absorption coefficient κ c (λ|z) was calculated as a function of the wavelength and coordinate. Its spectral features caused by the effective cross-section structure in the above-mentioned spectral range were for the first time analyzed. The spectral dependence of the radiation intensity in the solar disk center in the continuous spectral range of λ from 600 to 900 nm was studied. The calculation results were compared to the currently available data of observations. It has been shown that the deviation of the observed radiation intensity from the Planck distribution (i.e., the depression) is caused by the processes of photoionization of the excited hydrogen atoms in the states with a principal quantum number n = 3. In the range of λ from 650 to 820 nm, the mean relative deviation is approximately 4%. It has been established that the magnitude of the depression effect significantly depends on the effective temperature of the photosphere of a solar-type star.  相似文献   

7.
D. Goorvitch  C. Chackerian 《Icarus》1977,32(3):348-361
With the advent of high-resolution instruments and their use high above most of the telluric water vapor, we can expect to observe the hydrogen pure rotational quadrupole lines at 28, 17, and 12 μm from the atmospheres of the outer planets. We have calculated the best values for the line strengths, pressure-broadening coefficients, diffusion constants, and pressure shifts for these rotational transitions. We have used the collisionally narrowed Galatry profile to calculate brightness temperature line profiles for these H2 transitions for the outer planets Jupiter and Uranus. We have also included the effect of the H2 rotational-translational continuum and the NH3ν2 band.  相似文献   

8.
We present evidence for Ly pumping of the Lyman band system of molecular hydrogen in Herbig-Haro 7 and the bipolar outflow DR 21. For this study we have measured several vibrational-rotational emission lines of H2 whose energy levels are widely spaced and ranging from 6000 (v = 1) to 25000 Kelvin (v = 4). We show that the near-infrared H2 emission from the shocked gas in HH 7 can be well described by a bow C-type shock. The enhanced emission observed from the higher energy levels (v > 3) can be well modelled by employing the Ly pumping mechanism.In the DR 21 outflow the multi-line study showed that different physical conditions exist in the eastern and western emission lobes. The higher H2 line ratios measured in the eastern lobe suggests a higher Ly pump rate which may be locally produced in the fast bowshocks. The FUV radiation field emanating from the central HII regions may in addition be exciting the Lyman and Werner bands of H2 in the molecular lobes.We show that the observed H2 emission can be interpreted in terms of a simple model consisting of a C-type bowshock, which produces the low excitation H2 emission, and a FUV radiation field with enough Ly line radiation to produce the high excitation H2 emission through fluorescence.  相似文献   

9.
We report the first detection of molecular hydrogen emission in the vicinity of a Wolf-Rayet star and nebula. The spatial distribution of the excited molecular gas is filamentary and is not correlated with the distribution of the ionised gas as traced by optical emission lines. The typical H2 surface brightness in the filaments is 5× 10–5 ergs s–1 cm–2 str–1. We demonstrate that the excitation mechanism can be shocks or fluorescence from the strong ultraviolet flux of the WR star.  相似文献   

10.
High velocity jets from young stars interact with the surrounding molecular environment and molecular outflows quite possibly are the result. This interaction can take place through the formation of a turbulent mixing layer. Models have been constructed (following Cant/'o and Raga) of a plane mixing layer in the boundary between a high velocity, atomic wind (i.e., the stellar jet) and a stationary, molecular environment, computed considering a detailed chemical network.The chemical composition of the mixing layer initially corresponds to the direct mixture of the (atomic) jet and (molecular) environmental material. However, we find that the mixing layer is hot (with temperatures exceeding 104 K), and the surprising only partial dissociation of H2 means that a number of molecules are either created or survive in the high velocity gas. This contrasts with the slower, cooler flows that have tended to be termed a molecular outflow.The emission from such atomic jet/molecular environment mixing layers is dominated by emission in the rotational and vibrational lines of H2. As a result of the high temperatures and velocities (ranging from zero to the jet velocity) of these mixing layers, the predicted H2 emission line spectrum has interesting characteristics.  相似文献   

11.
We discuss the detection of redshifted line and continuum emission at radio wavelengths using a Square Kilometer Array (SKA), specifically from low-excitation rotational molecular line transitions of CO and HCN (molecular lines), the recombination radiation from atomic transitions in almost-ionized hydrogen (radio recombination lines; RRLs), OH and H2O maser lines, as well as from synchrotron and free–free continuum radiation and HI 21-cm line radiation. The detection of radio lines with the SKA offers the prospect to determine the redshifts and thus exact luminosities for some of the most distant and optically faint star-forming galaxies and active galactic nuclei, even those galaxies that are either deeply enshrouded in interstellar dust or shining prior to the end of reionization. Moreover, it provides an opportunity to study the astrophysical conditions and resolved morphologies of the most active regions in galaxies during the most active phase of star formation at redshift z 2. A sufficiently powerful and adaptable SKA correlator will enable wide-field three-dimensional redshift surveys at chosen specific high redshifts, and will allow new probes of the evolution of large-scale structure (LSS) in the distribution of galaxies. The detection of molecular line radiation favours pushing the operating frequencies of SKA up to at least 26 GHz, and ideally to 40 GHz, while very high redshift maser emissions requires access to about 100 MHz. To search for LSS the widest possible instantaneous field of view would be advantageous.  相似文献   

12.
The pumping of 22.2-GHz H2O masers in the circumstellar envelopes of asymptotic giant branch stars has been simulated numerically. The physical parameters adopted in the calculations correspond to those of the circumstellar envelope around IK Tau. The one-dimensional plane-parallel structure of the gas-dust cloud is considered. The statistical equilibrium equations for the H2O level populations and the thermal balance equations for the gas-dust cloud are solved self-consistently. The calculations take into account 410 rotational levels belonging to the five lowest vibrational levels of H2O. The stellar radiation field is shown to play an important role in the thermal balance of the gas-dust cloud due to the absorption of emission in rotational-vibrational H2O lines. The dependence of the gain in the 22.2-GHz maser line on the gas density and H2O number density in the gas-dust cloud is investigated. Gas densities close to the mean density of the stellar wind, 107?108 cm?3, and a high relative H2O abundance, more than 10?4, have been found to be the most likely physical conditions in maser sources.  相似文献   

13.
We present continuous and time‐resolved R = 55 000 optical échelle spectroscopy of ε Aurigae from 2006–2013. Data were taken with the STELLA Echelle Spectrograph of the robotic STELLA facility at the Observatorio del Teide in Tenerife. Contemporaneous photometry with the Automatic Photoelectric Telescopes at Fairborn Observatory in Arizona is presented for the years 1996–2013. Spectroscopic observations started three years prior to the photometric eclipse and are still ongoing. A total of 474 high‐resolution échelle spectra are analyzed and made available in this paper. We identify 368 absorption lines of which 161 lines show the characteristic sharp disk lines during eclipse. Another 207 spectral lines appeared nearly unaffected by the eclipse. From spectrum synthesis, we obtained the supergiant atmospheric parameters Teff = 7395 ± 70 K, log g ≈ 1, and [Fe/H] = +0.02 ± 0.2 with ξt = 9 km s–1, ζRT = 13 km s–1, and v sin i = 28 ± 3 km s–1. The residual average line broadening expressed in km s–1 varies with a period of 62.6 ± 0.7 d, in particular at egress and after the eclipse. Two‐dimensional line‐profile periodograms show several periods, the strongest with ≈110 d evident in optically thin lines as well as in the Balmer lines. Center‐of‐intensity weighted radial velocities of individual spectral lines also show the 110‐d period but, again, additional shorter and longer periods are evident and are different in the Balmer lines. The two main spectroscopic Hα periods, ≈ 116 d from the line core and ≈ 150 d from the center‐of‐intensity radial velocities, appear at 102 d and 139 d in the photometry. The Hβ and Johnson V I photometry on the other hand shows two well‐defined and phase‐coherent periods of 77 d and 132 d. We conclude that Hα is contaminated by changes in the circumstellar environment while the Hβ and V I photometry stems predominantly from the non radial pulsations of the F0 supergiant. We isolate the disk‐rotation profile from 61 absorption lines and found that low disk eccentricity generally relates to low disk rotational velocity (but not always) while high disk eccentricity always relates to high velocity. There is also the general trend that the disk‐absorption in spectral lines with higher excitation potential comes from disk regions with higher eccentricity and thus also with higher rotational velocity. The dependency on transition probability is more complex and shows a bi‐modal trend. The outskirts of the disk is distributed asymmetrically around the disk and appears to have been built up mostly in a tail along the orbit behind the secondary. Our data show that this tail continues to eclipse the F0 Iab primary star even two years after the end of the photometric eclipse. High‐resolution spectra were also taken of the other, bona‐fide, visual‐binary components of ε Aur (ADS 3605BCDE). Only the C‐component, a K3‐4‐giant, appears at the same distance than ε Aur but its radial velocity is in disagreement with a bound orbit. The other components are a nearby (≈ 7 pc) cool DA white dwarf, a G8 dwarf, and a B9 supergiant, and not related to ε Aur. The cool white dwarf shows strong DIB lines that suggest the existence of a debris disk around this star. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We present the equivalent width measurements of the hydrogen H α line, the oxygen near-IR triplet OI 7772–5 Å\AA and of a number of FeII lines in several B, Be, and shell stars in optical and near-infrared regions. A study of the correlations between all these measured quantities has been made. The correlations of strength of lines with collected data of the near-IR color excess, the rotational velocity and the intrinsic polarization are also obtained and presented.  相似文献   

15.
The ultraviolet spectra of the star RU Lup obtained with the Hubble Space Telescope are analyzed. Emission lines are identified. The presence of absorption components with a nearly zero residual intensity in the Mg II resonance doublet lines is indicative of mass outflow with a velocity V ?300 km s?1. These lines also exhibit a broad (?1400 km s?1 at the base) component originating in the star itself. The profiles of the (optically thin) Si II] and Si III]1892 Å lines for the first time unequivocally prove that these lines originate in an accretion shock wave rather than in the chromosphere, with the gas infall velocity being V 0?400 km s?1. The intensity ratio of the C IV 1550 Å and Si IV 1400 Å resonance doublet components was found to be close to unity, suggesting a high accreted-gas density, logN 0>12.5. Molecular H2 Lyman lines formed in the stellar wind were detected. The H I Lα luminosity of RU Lup was found from their intensities to exceed 10% of L bol. Radiation pressure in the Lα line on atomic hydrogen may play a significant role in the initial acceleration of stellar-wind matter, but the effect of Lα emission on the dynamics of molecular gas is negligible.  相似文献   

16.
In an earlier research the employment of a radiation transport model with angle-dependent partial frequency redistribution, self-absorption by interplanetary hydrogen, realistic solar HLyαemission profile, and a time dependent `hot' hydrogen model to analyze 5 interplanetary HLyα glow spectra obtained with theHubble–Space–Telescope–GHRS spectrometer, has not resulted in unequivocal determination of a set of thermodynamical parameters of the interstellar hydrogen The residual discrepancies between the model and the data concern the observations performed within an interval of 1 year close to the solar minimum from very similar lines of sight. In this paper we investigate by calculating interplanetary HLyα lines with the use of a one hydrogen distribution and several solar HLyα line profiles whether this residual may be caused by possible variations in time of the shape of the solar HLyα emission line profile which cause variable illuminations of the interplanetary gas. These variations of illuminations cause variations in Doppler shift of the resonant interplanetary HLyα line that can amount to ≃ 4 km s-1in the line peak. Consequently we conclude that without adequate knowledge of the solar HLyα emission line profile during spectral observations of the interplanetary hydrogen gas it is impossible to obtain an agreement between models and observations better than by this value. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A general analysis of the absorption of the Schumann-Runge bands of molecular oxygen has been made in order to compare the various experimental and theoretical results which have been obtained for an application to the O2 atmospheric absorption and its photodissociation in the mesosphere and stratosphere. The different values of the oscillator strengths deduced from the laboratory absorption spectra and of the predissociation linewidths used for the calculation of the absorption have been compared.Calculations based on a Voight profile of the O2 rotational lines have led to simple formulas for atmospheric applications taking into account that the total photodissociation rate in the stratosphere depends strongly on the absorption of solar radiation in the spectral range of the O2 Herzberg continuum. Specific examples are given.  相似文献   

18.
Based on a self-consistent solution of the equations of gas dynamics, kinetics of hydrogen atomic level populations, and radiative transfer, we analyze the structure of a shock wave that propagates in a partially ionized hydrogen gas. We consider the radiative transfer at the frequencies of spectral lines by taking into account the effects of a moving medium in the observer's frame of reference. The flux in Balmer lines is shown to be formed behind the shock discontinuity at the initial hydrogen recombination stage. The Doppler shift of the emission-line profile is approximately one and a half times smaller than the gas flow velocity in the Balmer emission region, because the radiation field of the shock wave is anisotropic. At Mach numbers M1?10 and unperturbed gas densities σ1=10?10 g cm?3, the Doppler shift is approximately one third of the shock velocity U1. The FWHM of the emission-line profile δ ? is related to the shock velocity by δ ? k ? U1, where k ? = 1, 0.6, and 0.65 for the Hα, Hβ, and Hγ lines, respectively.  相似文献   

19.
In this paper I will review the mid- and far-infrared observations obtained by the Infrared Space Observatory (ISO) in jets and outflows from Young Stellar Objects (YSOs). The spectral range covered by ISO, from ~ 2.5 to 200 μm,includes transitions of the main gas cooling species (i.e. H2, CO, H2O, O) excited at temperatures of ~100–2000 K, which are not usually investigated through ground-based facilities. I will in particular focus on few important science cases addressed by the ISO spectroscopic observations, namely the observations of pure rotational H2 lines, the detection of thermal H2O lines, and the analysis on how the far infrared spectra of jets change with the evolution.  相似文献   

20.
The effects of the production on dust grain surfaces of molecular hydrogen in excited states have been investigated. On the assumption that all of the H2 formed on the surface of grains has a sufficient level of excitation too vercome the energy barriers in the formation reactions for the important OH and CH+ radicals, we consider the likely abundances of excited H2 (H2 *), OH and CH+ in various situations. Two different models are employed; the first links the H2 * abundance directly to that of H2 using a steady-state approximation, whilst the second considers the time-dependence of H2 *. The second model is applied to gas that has been subjected to a strong isothermal shock (specifically, the shock-induced collapse of a diffuse cloud), which results in an extreme (high density, high atomic hydrogen abundance) environment. In general, it is found that the presence of the excited H2 has only marginal effects on the chemistry of interstellar clouds. However, in the isothermal shock model, the abundances of CH+ are significantly enhanced, but only on short timescales, whilst the effects on the OH abundances are smaller, but last longer. We conclude that other than in such exceptional environments there are no obvious chemical signatures of the formation of H2 *. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号