首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
内蒙古乌达矿区煤中硫的同位素组成及演化特征   总被引:13,自引:0,他引:13  
代世峰  马凤学 《岩石学报》2000,16(2):269-274
通过对内蒙古乌达矿区高硫煤9煤层和低硫煤13煤层剖而上有机硫和黄铁矿硫同位素的测定,结合煤岩学综合分析,着重论述了煤中硫同位素的分布特点及成因,分析了有机硫同位素和黄铁矿硫同位素之间及其和全硫的关系,提出高硫煤硫同位素形成过程中在剖面上具有层次性和时间上具有相向性,层次性表现为随泥炭沼泽深度的增加,体系对SO4^2-和H2S的开放程度及黄铁矿的形成对^32SO4^2-的过滤性;相向性有仅表现为泥岩  相似文献   

2.
程晨  赵峰华  任德贻  苗雪娜 《地质学报》2018,92(9):1959-1969
本文采用Dumas燃烧法测定了部分中国煤样的氮同位素组成(δ~(15 )N),并结合文献数据和煤样品的地质背景初步探讨了影响煤中氮同位素组成的因素。研究表明:(1)中国煤的δ~(15 )N值介于+1.4‰~+5.1‰之间,与世界其他地区煤的δ~(15 )N值范围(+0.3‰~+5.4‰)相吻合;同一煤层剖面分层煤样(煤级相似)的δ~(15 )N值具有非均质性特征,最大可达2.5‰。(2)煤的δ~(15 )N值是煤变质作用、沉积环境等多种因素耦合作用的结果。变质作用对煤的δ~(15 )N值的影响主要包括原始煤级、变质程度(煤级)和煤变质作用类型;沉积环境对煤的δ~(15 )N值的影响包括成煤植物的氮源以及沼泽介质的物理化学条件和微生物活动性等因素。(3)就煤变质作用(煤级)而言,中国煤的δ~(15 )N值随煤级升高呈现增高的趋势,到无烟煤又有所降低,这是煤中氮同位素稳定性差异的结果。在高级烟煤阶段(贫瘦煤)之前,随煤级升高稳定性较差的14 N优先脱除,δ~(15 )N值增高,增高幅度约1‰。在高级烟煤至初级无烟煤阶段,煤中剩余的14 N已趋于稳定,随煤级升高,部分不稳定15 N优先脱除,δ~(15 )N值降低。在无烟煤阶段,随煤级升高,14 N和15 N同步脱除,δ~(15 )N值几乎不变。在不考虑含氮地质流体影响的情况下,深成变质作用和接触变质作用对煤中δ~(15 )N值的影响应相似。(4)就沉积环境而言,形成于海陆过渡相的中高硫煤/高硫煤的δ~(15 )N值最高,形成于陆相的特低硫煤和低硫煤的δ~(15 )N值次之,而形成于碳酸盐岩台地相的超高有机硫煤的δ~(15 )N值最低,这主要与沉积环境中成煤植物的氮源以及泥炭化作用阶段植物有机质降解程度的差异有关。一般以富集15 N的海水硝酸盐为氮源的成煤植物形成的煤(海陆过渡相中高硫煤/高硫煤)较以相对亏损15 N的大气氮为氮源的成煤植物形成的煤(陆相特低硫煤和低硫煤)要富集15 N。当成煤母质在泥炭化作用阶段受到微生物降解作用较弱时(陆相特低硫煤和低硫煤),形成的煤氮含量较高,δ~(15 )N会有所上升;当成煤母质在泥炭化作用阶段受到强烈的微生物降解作用时(碳酸盐岩台地相超高有机硫煤)成煤植物蛋白质(富15 N)被降解损失的较多,形成煤的氮含量较低,δ~(15 )N值又会有所降低。此外,煤的δ~(15 )N值还与惰质组含量有关,因为在丝炭化过程中大量损失氮使得惰质组的δ~(15 )N值偏低,当成煤母质遭受的降解作用较弱时(四台煤矿12号特低硫煤),惰质组含量变化对煤δ~(15 )N值的控制作用尤为明显。(5)就成煤时代而言,中国的晚古生代煤与中生代煤的δ~(15 )N值相近,都高于新生代煤的δ~(15 )N值。δ~(15 )N值的这种差异并不是因为不同成煤时代的成煤植物不同造成的,而是因为新生代煤样为尚未经历煤变质作用的褐煤,其氮损失较少,所以新生代褐煤δ~(15 )N值较低。  相似文献   

3.
乌达矿区高硫煤层的聚积环境与煤中硫的分布   总被引:5,自引:0,他引:5  
对乌达矿区高硫煤层的沉积相、煤相和煤中硫在平面上的分布进行了研究。结果表明,10煤层泥炭聚积时的古水系对煤中硫的分布有明显的影响,9煤层泥炭聚积时的三环境决定了煤中硫的分布,浅水陆棚或分流间湾环境中形成的煤层具有较高GI、V/I值和硫含量,在障壁砂坝中形成的煤层具有高的硫含量、低的GI、V/I值,在泻湖中具有高GI、V/I值和相对较少的硫含量。  相似文献   

4.
四川晚二叠世煤中硫与成煤环境的关系   总被引:2,自引:0,他引:2  
唐跃刚  姚光华 《沉积学报》1996,14(4):161-167
本文从沉积学、成煤环境、地球化学等方面研究了煤中硫的分布规律,并详细阐明了煤中硫与成煤环境的关系。研究表明:煤中硫的赋存状况,不仅受成煤环境的影响,而且受其顶板沉积环境的影响。成煤环境奠定了煤中硫的分布基础,而顶板环境则是促使煤富硫、高硫的重要因素。微咸水浑水潮坪的顶板沉积环境,导致了下伏煤高黄铁矿硫,而咸水的清水潮坪顶板环境则导致下伏煤高有机硫。  相似文献   

5.
我国煤的稳定同位素组成特征   总被引:2,自引:0,他引:2  
总结了煤及其煤化作用产物稳定同位素地球化学研究成果。煤的δ^13C值主要在-22.5‰~-25.5‰之间,中值为-24.4‰。煤化作用及地质年代影响极微,但煤岩显微组分对δ^13C值有明显影响,壳质组含量增加,煤的δ^13C值变轻。煤的热模拟演化产物δ^13C值;甲烷在液态烃产出峰值处有最烃的碳同位素组成,液态烃与煤有相似的δ^13C值,其族组分中烷烃部分随温度增高,δ^13C值有变重的趋势。煤的  相似文献   

6.
煤显微组分中有机硫的微区分析和分布特征   总被引:6,自引:1,他引:6  
应用扫描电镜、能谱仪和波谱仪测定了煤中有机硫含量。a.在镜质体有机硫含量低于0.50%的煤中,惰质体的有机硫含量与其相近。而在镜质体有机硫含量高于0.5%的煤中,惰质体的有机硫含量大多为镜质体的40%~50%。各种镜质体和惰质体的有机硫含量随其凝胶化程度增高而增加。b.聚煤古地理环境对煤中有机硫含量起决定性作用。以镜质体为例,形成于湖滨三角洲平原环境的神木煤含有机硫0.21%,形成于滨海三角洲平原环境的水城大河边煤含有机硫0.84%,形成于泻湖海湾环境的兖州晚石炭世煤含有机硫2.24%。  相似文献   

7.
脉冲黝铜矿型铜矿床是产于兰坪-思茅盆地中的一种新的铜矿床类型。碳酸盐及CO2包裹体的δ^13C值大多在-4‰~-7‰之间变化,显示碳来自地幔。矿石中铅同位素组成与盆地中喜马拉雅期碱性岩长石中铅的同位素组成一致,方解石和铁白云石的^87Sr/^86Sr比值接近或稍高于碱性岩的^87Sr/86Sr的比值,显示矿石锶、铅与碱性岩锶、铅是同源的,均来自于上地幔。硫化物中硫的δ^34S值大多集中在0~-4‰  相似文献   

8.
依据井田地质勘查资料及煤质测试结果,对马依西二井田内可采煤层中硫的特征及与沉积环境的关系进行了探讨。结果表明,区内各煤层煤中硫含量变化较大,自下而上以底部30、29煤为高硫煤,煤中硫分最高可达7.2%,下部19至26为中高硫-高硫煤,17-1煤层为低硫煤,上部3至12-1煤层为中高硫煤;在平面上总体呈东南高、北西低的分布态势。聚煤环境是造成煤中硫差异的主要因素,17-1煤发育于泛滥平原相中,以成煤植物所含的原生硫为主,煤中硫含量低,而其它煤层形成环境因受海水影响较大,存在更多以硫化铁硫为主的次生硫而使硫含量较高。  相似文献   

9.
本文研究了韩国14个金-银矿床硫化物矿物硫同位素比值。尽管这些矿床的δ^34(CDT)显示了-0.2‰~+9.8‰的一个相对较宽的范围,但是90%的δ^34S值落在1‰~7‰范围内。单个矿床的硫同位素值的变化范围通常小于3‰。这样小的偏差范围和观察到的硫化物矿物之间的分馏作用表明了它们的沉淀主要来自平衡条件下的H2S。连同从前资料中获得的数据,得出了不同地质环境,形成时代和有用金属组分的矿床之间  相似文献   

10.
熊耳群碲化物型金矿硫铅同位素及其在矿作用探讨   总被引:5,自引:0,他引:5  
丁士应  任富根 《河南地质》1995,13(4):241-247
熊耳群火山岩中产出各种类型的金矿床,碲化物型(构造蚀变岩型)是金矿主要类型,该类型金矿以出现大量碲化物或富碲、硒为特征。硫化物δ^34S以较大的负值为特征,δ^34S=-19.24‰-+6.68‰。本文通过综合研究及与国内外有关矿床对比,认为该碲化物型金矿δ^34S负值的主要原因是地表水的渗透参与导致成矿热液物理化学条件改变,fo2升高、PH降低,从而引起硫同位素强烈分馏形成的。有关铅同位素组成具  相似文献   

11.
江西留龙金矿矿质来源及硫,铅,氢,氧同位素组成研究   总被引:2,自引:0,他引:2  
留龙金矿存在两种不同类型的金矿体,一类为毒砂石英脉;另一类为铅锌硫化物石英脉。它们都受上施组火山沉积凝灰岩中近南北向断裂控制,具有不同的矿物组合、成矿温度和同位素组成。毒砂石英脉形成于140 ̄220℃,δ^34S的值-0.04‰ ̄-1.04‰,铅同位素组成与变沉凝灰岩一致,成矿流体以大气降水为主,是加热了大气降水热液改造围岩而形成的改造型矿体。铅锌硫化物石英脉形成于260 ̄325℃,δ^34S值-  相似文献   

12.
辽东半岛金矿床稳定同位素特征   总被引:4,自引:0,他引:4  
辽东半岛金矿床与中生代中酸性侵入体有比较密切的空间和时间关系。不同矿床类型,其硫同位素组成有较大差别,但其初始硫同位素均表现为岩浆硫特征(δ^34S∑S≈1‰),与碳、铅、氢、氧等同位素的研究结果相吻合。说明本区金矿化与岩浆活动具有比较密切的成因联系。  相似文献   

13.
火山岩型银多金属矿床是滇东南地区的重要矿床类型、矿床中硫的δ^34S值分布于-6.9‰-+7.3‰之间,并且呈波浪式分布;铅同位素组成以正常铅为主,并受异常铅的混染。硫,铅同位素具有相似的变化趋势。这些硫,铅同位素特征表明,该矿床成矿物质可能具有多种来源,除了直接来自玄武岩外,还有来自古海水硫酸盐和地层的贡献;该矿床的成因与玄武岩海底中心喷发有密切的关系。  相似文献   

14.
濮英英  雷加锦 《岩石学报》1995,11(4):462-470
对煤中形态硫的分析测试结果表明,1)碳酸盐台地潮坪成因的煤以有机硫为主,黄铁矿硫占少数,但其类型、产状多样,全硫含量在剖面上虽有波动变化,但幅度较小,硫分布模式说明成煤环境受海水影响强烈且持久稳定。2)下三角洲平原泥炭沼泽成因的煤属以黄铁矿硫为主的高硫煤,按形态和产状可分5种类型的黄铁矿,煤层剖面上全硫含量由底到顶部逐渐增加,说明成煤环境亦受海水影响强烈,但有一逐渐增强的过程。3)上三角洲平原沼泽成因煤为富有机硫的低硫煤,黄铁矿量少、类型单调,全硫含量在煤层剖面上的变化为顶底高、中部低,表明煤层顶、底板性质控制着煤中硫的分布。  相似文献   

15.
蔡家营铅—锌—银矿床的稳定同位素地球化学研究   总被引:3,自引:0,他引:3  
河北蔡家营矿床是大型中温热液充填-交代脉型铅-锌-银矿床。其硫化物的δ^34S值为2.2‰-7.8‰,同世代共存的10个硫化物对的Δ^34S值表明,Fe-(Zn、Pb)-S系统的硫同位素非平衡分馏占主导,硫是岩浆(为主)与老变质岩层硫的混合来源。石英及其流体包裹体的δ^18OSMOW和δDSMOW值(‰)按混合模式计算表明,成矿流体为混合的岩浆和大气降水,早期成矿流体以岩浆为主,尔后则变为以大气降  相似文献   

16.
王铭生  赵瑞 《河南地质》1998,16(2):81-86
沿马超营断裂带分布有石英脉型手构造蚀变岩型金矿床。据硫同位素研究表明:石英脉型δ^34S为小正值,成矿深度大,温度高(200 ̄250℃);构造蚀变岩型δ^34S多为负值,成矿温度低(150℃左右),且大气降水的参与对成矿起重要作用。本区金在热液中主要以氢硫铬合物的形式存在。  相似文献   

17.
广东长坑金银矿床的成矿地球化学——硫同位素研究   总被引:10,自引:1,他引:10  
张生  李统锦 《地球化学》1997,26(4):78-85
长坑矿床金、银矿石硫化物的δ^34S分别以高离散的负值和相对较集中的正值为特征。在主要成矿阶段硫同位素基本达到平衡或近平衡分馏条件下,采用大本模式分析表明,硫同位素分布特征可能与成矿流体物理化学条件不同有关,即形成金矿石的热液偏酸性、fo2较高,而银矿化期的流体近中性、fo2较低;此外,伴随硫化物沉淀的储库效应对此也有一定的影响。热液的总硫同位素组成可取为4‰-7‰,应主要来自围岩中的沉积硫。成矿  相似文献   

18.
四川盆地海相三叠系地层发育齐全。通过盆地海相三叠系各层段众多的硫酸盐( 石膏、硬石膏) 和盐卤水硫同位素分析样的系统整理和研究,可见同一层段的硫同位素(δ34S)组成稳定,而沿剖面由下而上δ34S呈阶梯状递减轻化趋势,与已知全球海相三叠硫酸盐δ34S的研究的结果有明显差异,这对全球海相三叠系硫酸盐δ34S的研究是一个重要的补充和贡献。对地层划分对比、盐卤水产层和成因、蒸发岩形成环境、咸化发展方向及成钾预测等方面的研究,也有重要意义。  相似文献   

19.
黔中沉积磷灰石的硫碳同位素及其地质意义   总被引:5,自引:0,他引:5  
陈其英  封兰英 《岩石学报》1996,12(4):594-597
本文研究了黔中磷块岩中磷灰石的结构硫同位素组成。磷灰石的δ34S值为34.2‰~42.4‰,它高于同期海水的δ34S(约34.2‰),也高于共生的成岩黄铁矿的δ34S(15.4‰~19.8‰),表明磷灰石形成于富有机质沉积物早期成岩作用硫酸盐还原带的最上部,其间同时伴有大量硫酸盐细菌的还原过程。磷灰石的碳同位素组成(δ13C=-3.63‰~1.0‰),表明它含有微生物有机质分解演化而来的CO2-3,而磷灰石比胶结白云石更富集轻同位素则反映出沉积阶段生物作用的影响比成岩阶段更为明显  相似文献   

20.
中国煤中有机硫的分布及其成因   总被引:2,自引:0,他引:2  
对来自全国26个省、市、自治区的290个煤样中有机硫的质量分数测试及研究,发现煤中有机硫质量分数基本分布在0%1.0%范围内。在低硫煤中硫分以有机硫为主,在高硫煤中以无机硫为主。中、高硫煤中,广西、湖南等地区很大一部分煤中硫分以有机硫为主。在所采集的样品中,高有机硫煤(有机硫>1%)均分布在华南、华北两大聚煤区,属于石炭、二叠纪煤。高有机硫煤中有机硫质量分数的变化与变质程度无明显关系。煤炭形成过程中海水作用的影响,是导致煤中有机硫含量偏高的最主要原因。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号