首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Most of the research on model-based geoacoustic inversion techniques has concentrated on data collected using moored vertical receiver arrays. However, there are many advantages to considering geoacoustic inversion using a towed horizontal array. Towed arrays are easily deployed from a moving platform; this mobility makes them well suited for surveying large areas for sea-bed properties. Further, if a model-based geoacoustic inversion scheme uses both a towed source and array, the separation between the two can be kept short, which reduces the requirement for range-dependent modeling. Range-independent modeling is used for inverting all the horizontal array data considered in this paper. Using the Inversion Techniques Workshop Benchmark Test Cases, the performance of a horizontal (simulated towed) and vertical arrays are compared and found to be very similar. However, it will be shown that, for Benchmark Test Case 3, where the bathymetry is flat and a hidden bottom intrusion exists, a towed horizontal array is ideal for determining the range-dependent sea-bed properties. The practical advantages of using a towed array are clear and the purpose of this paper is to show that the performance is similar (and in some cases better) than using moored vertical arrays.  相似文献   

2.
An inversion method using a towed system consisting of a source and two receivers is presented. High-frequency chirp signals that have been emitted from the source are received after multiple penetrations and reflections from the shallow water sub-bottom structure and are processed for geoacoustical parameter estimation. The data are processed such that a good resolution and robustness is achieved via matched filtering, which requires information about the source signal. The inversion is formulated as an optimization problem, which maximizes the cost function defined as a normalized correlation between the measured and modeled signals directly in the time domain. The very fast simulated reannealing optimization method is applied to the global search problem. The modeled time signal is obtained using a ray approach. An experiment was carried out in the Mediterranean Sea using a towed source and receiver system. The inversion method is applied to the experimental data and results are found to be consistent with previous frequency-domain analyses using measurements from a towed horizontal array of receivers and measurements on a vertical array.  相似文献   

3.
This paper presents the results obtained using the adaptive simulated annealing (ASA) algorithm to invert the test cases from the Geoacoustic Inversion Techniques Workshop held in May 2001. The ASA algorithm was chosen for use in our inversion software for its speed and robustness when searching the geoacoustic parameter solution space to minimize the difference between the observed and the modeled transmission loss (TL). Earlier work has shown that the ASA algorithm is approximately 15 times faster than a modified Boltzmann annealing algorithm, used in prior versions of our TL inversion software, with comparable fits to the measured data. Results are shown for the synthetic test cases, 0 through 3, and for the measured data cases, 4 and 5. The inversion results from the synthetic test cases showed that subtle differences between range-dependent acoustic model version 1.5, used to generate the test cases, and parabolic equation (PE) 5.0, used as the propagation loss model for the inversion, were significant enough to result in the inversion algorithm finding a geoacoustic environment that produced a better match to the synthetic data than the true environment. The measured data cases resulted in better fits using ASTRAL automated signal excess prediction system TL 5.0 than using the more sophisticated PE 5.0 as a result of the inherent range averaging present in the ASTRAL 5.0 predictions.  相似文献   

4.
This paper describes results from geoacoustic inversion of low-frequency acoustic data recorded at a receiving array divided into two sections, a sparse bottom laid horizontal array (HLA) and a vertical array (VLA) deployed in shallow water. The data are from an experiment conducted by the Norwegian Defence Research Establishment (FFI) in the Barents Sea, using broadband explosives (shot) sources. A two-layer range-independent geoacoustic model, consistent with seismic profiles from the area, described the environment. Inversion for geoacoustic model parameters was carried out using a fast implementation of the hybrid adaptive simplex simulated annealing (ASSA) inversion algorithm, with replica fields computed by the ORCA normal mode code. Low-frequency (40-128 Hz) data from six shot sources at ranges 3-9 km from the array were considered. Estimates of sediment and substrate p-wave velocities and sediment thickness were found to be consistent between independent inversions of data from the two sections of the array.  相似文献   

5.
Inversion methods have been developed over the past decade to extract information about unknown ocean-bottom environments from acoustic field data. This paper summarizes results from the Office of Naval Research/Space and Naval Warfare Systems Command (SPAWAR) Geoacoustic Inversion Techniques Workshop, which was designed to benchmark present-day inversion methods. The format of the workshop was a blind test to estimate unknown geoacoustic profiles by inversion of synthetic acoustic field data. The fields were calculated using a high-angle parabolic approximation and verified using coupled normal modes for three range-dependent shallow-water test cases: a monotonic slope; a shelf break; and a fault intrusion in the sediment. Geoacoustic profiles were generated to simulate sand, silt, and mud sediments in these environments. Several different approaches for inverting the acoustic field data were presented at the workshop: model-based matched-field methods; perturbation methods; methods using transmission loss data; and methods using horizontal array information. An effective inversion must provide both an estimate of the bottom parameters and a measure of the uncertainty of the estimated values. New methods were presented at the workshop to formalize the measure of uncertainty in the inversion. Comparisons between the different inversions are discussed in terms of a metric-based transmission loss calculated using the inverted profiles. The results demonstrate the effectiveness of present-day inversion techniques and indicate the limits of their capabilities for range-dependent waveguides.  相似文献   

6.
A perturbative inversion method for estimating sediment compressional-wave-speed profiles from modal travel-time data is extended to include range-dependent environments. The procedure entails dividing a region into range-independent sections and obtaining estimates of the sediment properties for each region. Inversion results obtained using synthetic data show that range-dependent properties can be obtained if an experiment is designed to include multiple source/receiver combinations. This approach is applied to field data collected during the 2006 Shallow Water Experiment (SW06). The sediment compressional-wave-speed profiles resulting from analysis of the field data are evaluated by comparing acoustic fields predicted based on the inversion to acoustic fields measured during a different experiment conducted in the same region. The model is also compared to seismic reflection survey data collected during SW06. Resolution and variance estimated for the inversion results are also presented.   相似文献   

7.
This paper describes results from an experiment carried out to investigate geoacoustic inversion with a bottom-moored hydrophone array located in the shallow waters of the Timor Sea off the northern coast of Australia. The array consisted of two arms in a V shape, horizontally moored at a site that was essentially flat over a large area. Hydrophone positions were estimated using an array element localization (AEL) technique that established relative uncertainties of less than 1 m on the seafloor. The data used for geoacoustic inversion were from experiments with continuous wave (CW) tones in the 80- to 195-Hz band transmitted from a towed projector. A hybrid search algorithm determined the set of geoacoustic model parameters that maximized the Bartlett fit (averaged coherently spatially at each tone and incoherently over frequency) between the measured and modeled data at the array. Due to the long range experimental geometry, the inversion was sensitive to attenuation in the sediment. The inverted geoacoustic profile performed well in a simple test for localizing the sound source at other sites in the vicinity of the array. Range-depth localization performance for the horizontal array was comparable to that for an equivalent vertical array.  相似文献   

8.
This paper examines the effectiveness of horizontal line arrays (HLAs) for matched-field inversion (MFI) by quantifying geoacoustic information content for a variety of experiment and array factors, including array length and number of sensors, source range and bearing, source-frequency content, and signal-to-noise ratio (SNR). Emphasis is on bottom-moored arrays, while towed arrays are also considered, and a comparison with vertical line array (VLA) performance is made. The geoacoustic information content is quantified in terms of marginal posterior probability distributions (PPDs) for model parameters estimated using a fast Gibbs sampler approach to Bayesian inversion. This produces an absolute, quantitative estimate of the geoacoustic parameter uncertainties which can be directly compared for various experiment and array factors.  相似文献   

9.
This paper presents the results of a perturbative inverse approach applied to the range-dependent acoustic data provided as part of the Geoacoustic Inversion Techniques Workshop. The method is based on the Hankel transform relationship between complex-pressure field data measured on a horizontal array and the depth-dependent Green's function for a horizontally stratified medium. The input data to the inversion algorithm are discrete values of horizontal wavenumbers estimated for locally range-independent subapertures of the acoustic data. Inversion results are presented with emphasis placed on inverting for compressional wave speed as a function of both range and depth in the bottom.  相似文献   

10.
Sediment compressional wave speeds were estimated using broad-band data in range-dependent environments. The environment was assumed as mildly range dependent and was modeled using adiabatic theory. The inversion scheme was based on group speed-dispersion behavior. A genetic algorithm (GA) combined with a neighborhood approach was used for the search. The top layer of sediment was mapped in the shelf region using acoustic data from explosive sources collected on a vertical line array.  相似文献   

11.
根据珠江口2015年7月6日至17日航次的CTD(conductivity, temperature, and depth)观测结果,分析得到:珠江口附近海域存在海水的垂向逆温现象,逆温差平均值为0.42 oC,上界深度在1 m-6 m间,下界深度在3 m-10 m间,逆温层平均厚度约为4 m。根据时空分布差异的不同,逆温现象可区分为以下三种情况:(1)在狮子洋、太平水道和蕉门水道的出口汇集处,存在温、盐差异的不同水体的交互过程中,由于潮汐和径流的作用所形成的水平流场差异导致了垂向温度的逆转现象。(2)在珠江口西侧的盐度锋面区域附近,第一航段观测期间锋面内侧低盐水团的温度低于锋面外侧高盐水团约2 oC,此时可观测到逆温现象;但在同一区域的第二航段观测期间由于河口内表层水温的上升,导致了逆温现象消失。该区域盐度锋面附近的两个水团在锋面位置附近发生叠置,冲淡水覆盖于海水之上,两个水团的温、盐差异是温度逆转现象的主因。(3)香港西南侧的上升流区域与盐度锋面的相互作用导致了该区域逆温现象的产生。  相似文献   

12.
An extended version of the three-dimensional hydrodynamic model, ADCIRC 3D-DSS, was utilized to simulate both horizontal and vertical flows in a (quarter) annular harbor (QATP and ATP) and rectangular basin with an idealized ship channel (RBSC). Comparison of horizontal and vertical solutions to the analytical solution and results of other researchers are in good agreement. The vertical velocity solution is highly sensitive to the horizontal velocity solutions. The presence of the sidewall boundary may also affect the vertical solutions. Around the sloping bank of RBSC channel with one-third gradient, the vertical velocity becomes important. The maximum vertical velocity approaches ±50% of the sediment fall velocity of fine sand.  相似文献   

13.
This paper examines geoacoustic inversion over a range-dependent multiple-layer seabed using a towed acoustic source and towed horizontal array. The approach is based on combining the results of a series of short-range, range-independent inversions to form a range-dependent representation of the environment. The data were collected in the Strait of Sicily during the MAPEX 2000 experiment. Issues such as the resolvability of multilayer structure and the sensitivity of various geoacoustic parameters are investigated by inversion of simulated data and by comparison of the MAPEX 2000 inversion results to a high-resolution seismic profile and to sediment core measurements. It appears that two, and in some cases possibly three, sediment layers can be resolved.  相似文献   

14.
Ivo  &#x;ime  Stipe 《Ocean Engineering》2008,35(5-6):523-535
The importance of hydroelastic analysis of large and flexible container ships of today is pointed out. A methodology for investigation of this challenging phenomenon is drawn up and a mathematical model is worked out. It includes definition of ship geometry, mass distribution, structure stiffness, and combines ship hydrostatics, hydrodynamics, wave load, ship motion and vibrations. Based on the presented theory, a computer program is developed and applied for hydroelastic analysis of a flexible segmented barge for which model test results of motion and distortion in waves have been available. A correlation analysis of numerical simulation and measured response shows quite good agreement of the transfer functions for heave, pitch, roll, vertical and horizontal bending and torsion. The tool checked in such a way can be further used for reliable hydroelastic analysis of ship-like structures.  相似文献   

15.
利用多光谱卫星遥感影像反演浅海水深是水深测量的一种重要方式。提出一种基于主成分分析的地理加权回归模型(PCA-GWR),采用WorldView-2多光谱卫星遥感影像数据,对经过数学变换后的波段反射率数据先进行主成分分析,将得到第一主成分量进行地理加权回归分析,并与双波段比值模型、多波段线性模型和地理加权回归模型(GWR)的水深反演结果进行比较。结果显示,各个反演模型反演水深值与实测水深值的相关系数r均大于0.75,其中PCA-GWR模型水深反演结果最好,r为0.96、RMSE为1.56 m、MAE为1.06 m。研究表明,PCA-GWR模型可有效去除数据变换后的冗余信息,降低数据空间非平稳性,具有较高的反演精度与可靠性,适用于浅海水深反演。  相似文献   

16.
A rotated coordinates inversion algorithm is used on subsets of the Inversion Techniques 2001 Geoacoustic Workshop data, to which white Gaussian noise is added. The resulting data sets are equivalent to noisy broad-band signals received on a horizontal line array (HLA) during a single integration time interval. The inversions are performed using a technique called systematic decoupling using rotated coordinates (SDRC), which expands the original idea of rotated coordinates by using multiple sets of rotated coordinates, each corresponding to a different set of bounds, to systematically decouple the unknowns in a series of efficient simulated annealing inversions. The cost function minimized in the inversion is based on the coherent broad-band correlation between data and model cross spectra, which increases the coherence gain of the signal relative to incoherent noise. Using the coherent broad-band cost function with sparse HLA-like data sets, the SDRC inversion method yields good estimates for the sensitive environmental parameters for signal-to-noise ratios as low as -15 dB.  相似文献   

17.
Geoacoustic inversion results based on data obtained during the Asian Seas International Acoustics Experiment (ASIAEX) 2001 East China Sea experiment are reported. The inversion process uses a genetic-algorithm-based matched-field-processing approach to optimize the search procedure for the unknown parameters. Inversion results include both geometric and geoacoustic variables. To gauge the quality of the inversion, two different analyses are employed. First, the inversion results based upon discrete source-receiver ranges are confirmed by continuous source localization over an interval of time. Second, separate inversions at many different ranges are carried out and the uncertainties of the parameter estimation are analyzed. The analysis shows that both methods yield consistent results, ensuring the reliability of inversion in this study.  相似文献   

18.
The peculiarities of the vertical fine thermohaline structure of waters in the north-west Tropical Atlantic are considered on the data of STD surveys recorded in winter-spring 1984. The variability of the characteristics of staircase and inversion elements of stratification with depth is analysed over the horizontal as well as related to the mesoscale and large-scale dynamics of waters. The coefficients of horizontal turbulent exchange are estimated within the framework of Joyce's hypothesis on quasi-compensation of vertical and turbulent horizontal transport. The effects of double diffusion are considered to dominate in vertical transport.UDK 551.465.15Translated by Mikhail M. Trufanov.  相似文献   

19.
In this paper, we use matched-field inversion methods to estimate the geoacoustic parameters for three synthetic test cases from the Geoacoustic Inversion Techniques Workshop held in May 2001 in Gulfport, MS. The objective of this work is to use a sparse acoustic data set to obtain estimates of the parameters as well as an indication of their uncertainties. The unknown parameters include the geoacoustic properties of the sea bed (i.e., number of layers, layer thickness, density, compressional speed, and attenuation) and the bathymetry for simplified range-dependent acoustic environments. The acoustic data used to solve the problems are restricted to five frequencies for a single vertical line array of receivers located at one range from the source. Matched-field inversion using simplex simulated annealing optimization is initially used to find a maximum-likelihood (ML) estimate. However, the ML estimate provides no information on the uncertainties or covariance associated with the model parameters. To estimate uncertainties, a Bayesian formulation of matched-field inversion is used to generate posterior probability density distributions for the parameters. The mean, covariance, and marginal distributions are determined using a Gibbs importance sampler based on the cascaded Metropolis algorithm. In most cases, excellent results were obtained for relatively sensitive parameters such as wave speed, layer thickness, and water depth. The variance of the estimates increase for relatively insensitive parameters such as density and wave attenuation, especially when noise is added to the data.  相似文献   

20.
Hamilton-type geoacoustic models were developed for Area Foxtrot, a shallow water test bed south of Long Island, for emerging active sonar systems where the surface sediment type is highly spatially variable. Reverberation levels (RL) were modeled using the finite-element parabolic equation (FEPE) propagation model to augment the generic sonar model (GSM) propagation model because the bottom loss model in GSM did not estimate transmission loss (TL) accurately in shallow water. FEPE estimates reveal that there is a greater than 15 dB difference between TL for sand and that for silt-day sediments in Area Foxtrot. The comparison between modeled RL and measured RL (from a 1991 active sonar exercise) enabled bottom scattering strength kernels to be developed for Area Foxtrot. Bottom scattering strength was found to be a function of sediment type. Hard sand sediment has a bottom scattering strength which obeys Lambert's law (sin2 &thetas;) while that of silt-clay sediment is consistent with sub-bottom volume scattering (sine). The RLs in Area Foxtrot are azimuth-dependent and are a function of TL and bottom scattering strength (and hence bottom sediment type). Sonar beams steered towards the hard sand show higher RLs than for silt-clay, and knowledge of the sediment type and its spatial variation must be known to model RL accurately. A method to determine sediment type using measured RLs and RL slopes is given  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号