首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Crustal structures around the Yamato Basin in the southeastern Sea of Japan, inferred from recent ocean bottom seismography (OBS) and active-source seismological studies, are reviewed to elucidate various stages of crustal modification involved from rifting in the crust of the surrounding continental arc to the production of oceanic crust in the Yamato Basin of the back-arc basin. The northern, central, and southern areas of the Yamato Basin have crustal thicknesses of approximately 12–16 km, and lowermost crusts with P-wave velocities greater than 7.2 km/s. Very few units have P-wave velocities in the range 5.4–6.0 km/s, which corresponds to the continental upper crust. These findings, combined with previous geochemical analysis of basalt samples, are interpreted to indicate that a thick oceanic crust has been formed in these areas of the basin, and that this oceanic crust has been underplated by mantle-derived magma. In the central Yamato Basin, the original continental crust has been fully breached and oceanic crust has been formed. Conversely, the presence of a unit corresponding to the continental upper crust and the absence of a high-velocity part in the lower crust implies that the southwestern edge of the Yamato Basin has a rifted crust without significant intrusion. The Oki Trough has a crust that is 17–19 km thick with a high-velocity lower crust and a unit corresponding to the continental upper crust. The formation of the Oki Trough resulted from rifting with magmatic intrusion and/or underplating. We interpret these variations in the crustal characteristics of the Yamato Basin area as reflecting various instances of crustal modification by thinning and magmatic intrusion due to back-arc extension, resulting in the production of a thick oceanic crust in the basin.  相似文献   

2.
Geological and geophysical data are used to demonstrate the existence of intracrustal high-density/high P-wave velocity bodies in the western Betics. These bodies appear to correspond to buried peridotites similar to those that outcrop in the Ronda area. A gravity study shows how the gravity field is mainly the result of a combined effect of crustal thinning and the presence of ultramafic bodies. The size of the buried high-density body, as interpreted from gravity and seismic results, shows maximum dimensions of about 40 km in length (NNW-SSE), about 8 km in thickness, and a lateral extension (ENE-WSW) of about 70 km. The thinning of the crust from 32–35 km to 20–22 km takes place in a narrow area less than 35 km wide. Our results are compatible with an interpretation in terms of an unrooted peridotite slab. Dismembering of an initial slab of ultramafic rocks is a possible consequence of the extensional regime that originated the Alboran basin.  相似文献   

3.
Two-dimensional crustal velocity models are derived from passive seismic observations for the Archean Karelian bedrock of north-eastern Finland. In addition, an updated Moho depth map is constructed by integrating the results of this study with previous data sets. The structural models image a typical three-layer Archean crust, with thickness varying between 40 and 52 km. P wave velocities within the 12–20 km thick upper crust range from 6.1 to 6.4 km/s. The relatively high velocities are related to layered mafic intrusive and volcanic rocks. The middle crust is a fairly homogeneous layer associated with velocities of 6.5–6.8 km/s. The boundary between middle and lower crust is located at depths between 28 and 38 km. The thickness of the lower crust increases from 5–15 km in the Archean part to 15–22 km in the Archean–Proterozoic transition zone. In the lower crust and uppermost mantle, P wave velocities vary between 6.9–7.3 km/s and 7.9–8.2 km/s. The average Vp/Vs ratio increases from 1.71 in the upper crust to 1.76 in the lower crust.The crust attains its maximum thickness in the south-east, where the Archean crust is both over- and underthrust by the Proterozoic crust. A crustal depression bulging out from that zone to the N–NE towards Kuusamo is linked to a collision between major Archean blocks. Further north, crustal thickening under the Salla and Kittilä greenstone belts is tentatively associated with a NW–SE-oriented collision zone or major shear zone. Elevated Moho beneath the Pudasjärvi block is primarily explained with rift-related extension and crustal thinning at ∼2.4–2.1 Ga.The new crustal velocity models and synthetic waveform modelling are used to outline the thickness of the seismogenic layer beneath the temporary Kuusamo seismic network. Lack of seismic activity within the mafic high-velocity body in the uppermost 8 km of crust and relative abundance of mid-crustal, i.e., 14–30 km deep earthquakes are characteristic features of the Kuusamo seismicity. The upper limit of seismicity is attributed to the excess of strong mafic material in the uppermost crust. Comparison with the rheological profiles of the lithosphere, calculated at nearby locations, indicates that the base of the seismogenic layer correlates best with the onset of brittle to ductile transition at about 30 km depth.We found no evidence on microearthquake activity in the lower crust beneath the Archean Karelian craton. However, a data set of relatively well-constrained events extracted from the regional earthquake catalogue implies a deeper cut-off depth for earthquakes in the Norrbotten tectonic province of northern Sweden.  相似文献   

4.
首都圈地区精细地壳结构——基于重力场的反演   总被引:4,自引:1,他引:3       下载免费PDF全文
本文以地质与地球物理资料作为约束条件,利用小波多尺度分析方法,对首都圈地区重力场进行了有效分离,应用Parker位场界面反演法及变密度模型对莫霍界面进行了反演分析,并构建了两条地壳密度结构剖面模型,对该区精细地壳结构进行了深入研究.研究结果表明首都圈地区受多期构造运动的改造,形成坳、隆相邻,盆、山相间,密度非均匀性,壳内结构与莫霍面埋深相差比较大的地壳分块构造格局.受华北克拉通岩石圈伸展、减薄以及岩浆的上涌底侵作用,首都圈地区莫霍面起伏比较大,莫霍面区域构造方向呈NE-NNE方向,在盆地向太行山、燕山过渡地带形成了莫霍面陡变带;盆地内部莫霍面形成东西向排列、高低起伏的框架,最大起伏约5 km,但平均地壳厚度比较小,北京、唐山地区地壳厚度最小约29 km,武清凹陷地壳厚度最大约34 km.在重力均衡调整作用下,西部太行山区地壳厚度较大,但地壳密度小于华北裂谷盆地内部;中上地壳重力场特征与地表地形及地貌特征具有很大的相关性.受新生代裂谷作用影响,首都圈中上地壳结构非常复杂,形成了NNE方向为主体的构造单元,断层多下延至中地壳;下地壳发生明显的褶曲构造,表现出高低密度异常相间排列的典型特征;首都圈地区地壳密度具有明显的非均匀性.研究认为首都圈地区地震的发生与上地幔顶部及软流层物质的上涌有一定关系.  相似文献   

5.
南海海盆三维重力约束反演莫霍面深度及其特征   总被引:3,自引:3,他引:0       下载免费PDF全文
利用南海海盆及周边最新的重力,经过海底地形、沉积层的重力效应改正,并采用岩石圈减薄模型的温度场公式,校正了从张裂边缘到扩张海盆的热扰动重力效应.通过研究区的地震剖面和少量声呐数据得到的莫霍面深度点作为约束,采用基于"起伏界面初始模型"的深度修正量反演迭代公式,反演、计算了研究区的莫霍面深度及地壳厚度.结果表明,海盆区莫霍面深度在8~14 km之间,地壳厚度在3~9 km之间;东部海盆和西南海盆残留扩张中心沿NNE向展布向西南延伸至112°E,莫霍面深度超过12 km,地壳厚度在6 km以上,而西北海盆没有明显的增厚扩张中心;在西南海盆北缘的中沙地块南侧,存在一个近EW向地壳减薄带,地壳厚度在9~10 km;莫霍面深度14 km的等深线和地壳厚度9 km的等值线可指示洋陆边界位置.  相似文献   

6.
基于东北地区已有的宽频带流动台阵远震数据,利用波场延拓和分解的H-β网格搜索法,对松辽盆地的沉积层及地壳结构进行了深入分析。结果显示:松辽盆地的沉积层厚度为0.2—2.5 km,整体呈现中央坳陷区厚、边缘薄且西南地区最薄的分布特征;研究区地壳较薄,厚度介于24—34 km之间,其横向变化特征与沉积层厚度分布具有一定的对应性。依据沉积层和地壳的厚度计算了地壳伸展系数,其平均值接近于以往接收函数研究估测的岩石圈伸展因子。因此,本文推测松辽盆地在伸展构造过程中,其地壳和岩石圈的减薄以纯剪切模式为主。此外,松辽盆地具有较高的地壳平均波速比vP/vS,暗示盆地下方岩石圈地幔的减薄过程中可能存在岩浆的底侵作用。   相似文献   

7.
A seismic reflection and gravity profile across the continental margin of the Yucatan Peninsula, Yucatan Basin, Cayman Ridge, and Cayman Trough suggests that sediments in the Yucatan Basin consist of a thick succession of beds dominated by turbidites that overlie a thick but irregular sequence of beds, probably dominated by pelagic deposits. The so-called “Carib beds”, present elsewhere in the Caribbean, are not evident in the part of the basin crossed by this profile. The sedimentary section rests on a acoustic basement that probably represents the top of oceanic layer 2. A gravity model indicates that the crust beneath the Yucatan Basin is thin and therefore probably is oceanic in character. The crust thickens southward under the Cayman Ridge but thins again beneath the Cayman Trough. This local thickening is consistent with the suggestion that the Cayman Ridge is a rifted part of the Nicaraguan Rise.  相似文献   

8.
中国东北-华北地区地壳厚度与泊松比及其地质意义   总被引:4,自引:4,他引:0       下载免费PDF全文
本文通过收集和综合分析已有的接收函数H-k研究结果,给出了中国东北-华北地区的地壳厚度与波速比/泊松比分布图.本研究表明该区地壳最薄的地方出现在松辽盆地和华北平原地区(28~35 km);大兴安岭、燕山-太行地区的地壳厚度介于36~45 km范围,其中燕山造山带地壳厚度由东向西逐渐增加;而最厚的地方则出现在鄂尔多斯盆地西南缘(~55 km).研究区平均波速比为1.76±0.05,较全球大陆平均值明显偏高,这可能与中、新生代以来该区显著的岩石圈减薄与破坏过程相关.其中地壳波速比最高的地方出现在山西地堑、长白山、大同-张家口等新生代火山区,意味着这些地区可能具有较高的地壳温度或存在广泛的壳内部分熔融.本文研究显示,大兴安岭造山带地区地壳厚度与波速比/泊松比成负消长关系,推测大兴安岭在形成过程中,地壳的增厚以长英质上地壳增厚为主.与大兴安岭地区不同,松辽盆地及周边地区地壳厚度与泊松比没有明显的相关性,表明松辽盆地可能具有复杂的形成与演化过程.  相似文献   

9.
Crustal and lithospheric thicknesses of the southeastern Mediterranean Basin region were determined using 3D Bouguer and elevation data analysis. The model is based on the assumption of local isostatic equilibrium. The calculated regional and residual Bouguer anomaly maps were employed for highlighting both deep and shallow structures. Generally, the regional field in the area under study is considered to be mainly influenced by the density contrast between the crust and upper mantle. Use of the gravity and topographic data with earthquake focal depths has improved both the geometry and the density distribution in the 3-D calculated profiles. The oceanic-continental boundary, the basement relief, Moho depth and lithosphere-asthenosphere boundary maps were estimated. The results point to the occurrence of thick continental crust areas with a thickness of approximately 32 km in northern Egypt. Below the coastal regions, the thickness of crust decreases abruptly (transition zone). An inverse correlation between sediment and crustal thicknesses shows up from the study. Furthermore, our density model reveals the existence of a continental crustal zone below the Eratosthenes Seamount block. Nevertheless, the crustal type beneath the Levantine basin is typically oceanic; this is covered by sedimentary sequences more than 14 km thick. The modeled Moho map shows a depth of 28–30 km below Cyprus and a depth of 26–28 km beneath the south Florence Rise in the northern west. However, the Moho lies at a constant shallow depth of 22–24 km below the Levantine Basin, which indicates thinning of the crust beneath this region. The Moho map reveals also a maximum depth of about 33–35 km beneath both the northern Egypt and northern Sinai, both of which are of the continental crust. The resulting mantle density anomalies suggest important variations of the lithosphere-asthenosphere boundary (LAB) topography, indicating prominent lithospheric mantle thinning beneath south Cyprus (LAB ~90 km depth), followed by thickening beneath the Eratosthenes seamount, Florence Rise, Levantine Basin and reaching to maximum thickness below Cyprian Arc (LAB ~115–120 km depth), and further followed by thinning in the north African margin plate and north Sinai subplate (LAB ~90–95 km depth). According to our density model profiles, we find that almost all earthquakes in the study area occurred along the western and central segments of the Cyprian arc while they almost disappear along the eastern segment. The active subduction zone in the Cyprian Arc is associated with large negative anomalies due to its low velocity upper mantle zone, which might be an indication of a serpentinized mantle. This means that collision between Cyprus and the Eratosthenes Seamount block is marked by seismic activity. Additionally, this block is in the process of dynamically subsiding, breaking-up and being underthrusted beneath Cyprus to the north and thrusted onto the Levantine Basin to the south.  相似文献   

10.
《Journal of Geodynamics》1999,27(4-5):609-622
The Laxmi Ridge is the most intriguing structural feature of the northeastern Arabian sea. It is char- acterized by unusual crustal structure and anomalous gravity signature. Though the earlier geophysical examinations provide some vital information about its crustal configuration, its origin and evolution have remained unsolved. Using the available seismic information, the present 2-D together with 3-D gravity modelings of the Laxmi Ridge crust:mantle system brought out a transitional layer between the depth of 11-22 km. This anomalous layer is not confined beneath the ridge axis but found to be present in the entire eastern basin and interpreted as a massive mafic intrusion beneath the region. Thickness of this layer at the base of the crust beneath the Laxmi Ridge decreases gradually towards the north-west. However, its extension towards the southeast and ultimate connection with the Chagos-Laccadive Ridge makes the western bound- ary of the magmatic crustal accretion along the west coast of India. It is suggested that the Deccan plume head mushrooming beneath the region has modified the crust with a huge magmatic intrusion. The then spreading centre coupled with the Deccan volcanic eruption is held responsible for the present day con- figuration of the Laxmi Ridge.  相似文献   

11.
云南思茅—中甸地震剖面的地壳结构   总被引:7,自引:7,他引:7       下载免费PDF全文
张智  赵兵  张晰  刘财 《地球物理学报》2006,49(5):1377-1384
云南思茅—中甸宽角反射/折射地震剖面切割松潘—甘孜、扬子和华南三个构造单元的部分区域. 我们利用初至波和壳内反射波走时层析成像获得地壳纵波速度结构. 在获得新的地壳速度结构模型基础上,利用地震散射成像思想和低叠加次数的叠前深度偏移方法重建了研究区的地壳、上地幔反射结构. 综合分析研究区地壳P波速度模型和壳内地震反射剖面发现:沿测线从北至南地壳厚度从约50 km减薄至35 km左右,地壳厚度的减薄量主要体现在下地壳,剖面北段下地壳厚度约为30 km,剖面南段下地壳厚度仅为15 km左右;上地幔顶部局部位置P波速度值偏低,一般为76~78 km/s,反映出云南地区是典型的构造活动区的特点.剖面沿线地壳内地震反射发育,其中莫霍强反射出现在景云桥下方;在景云桥弧形断裂带8~10 km深处出现宽约50 km的强反射带.  相似文献   

12.
南海东北部首次成功实施海陆联合深地震探测,填补了海陆过渡带深地震探测的空白. 利用该次海陆联测地震数据,通过数据处理、震相分析、射线追踪、走时模拟等方法,获得了滨海断裂带附近的纵波地壳速度结构,探明了海陆联测剖面中滨海断裂带可能位置. 地壳速度结构为陆壳结构,地壳厚度由陆地向海区逐步变薄;在上地壳下部普遍存在一层速度为5.5~5.9km·s-1、厚度为2.5~4.0km的低速层,并向海区方向减薄,该区未发现明显的高速层. 滨海断裂带为一纵向低速带,位于南澳台东南35km处,对应于重、磁异常带,断裂带断至莫霍面,是华南陆区正常型陆壳与海区减薄型陆壳的分界地壳断裂.  相似文献   

13.
Heat flow values from some additional locations in the Cenozoic Cambay Basin have been determined. Together with the previously published data, they show that the heat flow is moderate (55–67 mW/m′) in the southern part of the basin towards Broach and Ankleswar, and that there is a clear trend of high heat flow (75–93 mW/m2; range of average values for six different, widely separated, locations) in a part of the basin located north of the Mahisagan river between Cambay and Mehsana along a stretch of about 140 km. Conductive steady state geotherms, calculated using observed high surface heat flow values and appropriate models show, beneath the Cambay-Mehsana area, a large degree of melting in the lower crust and upper mantle, which is not suggested by the existing geodata. Considering this aspect and taking into account the existence of a normal crust about 37 km thick below the Cambay-Tarapur and Ahmedabad-Mehsana blocks (as obtained from deep seismic soundings), it has been inferred that the heat flow anomaly is due to transient thermal perturbations introduced from tectonic activity in the form of magmatic intrusions. A careful analysis of heat flow, gravity and other related geodata point out and support the possibility of a Miocene/Pliocene basic intrusive body at a depth of around 10 km under the Cambay-Mehsana area. Further, the consistent trend of the thermal and gravity fields indicates thinning of the postulated intrusive body from Cambay towards Mehsana.  相似文献   

14.
First results are presented of a recent onshore seismic survey complementary to the Valsis-2 Cruise, which consisted of ESP, COP and CDP marine seismic profiles across the Valencia Trough (Western Mediterranean).The marine energy source used was an airgun array of 5800 cubic inch recorded at 2 land stations on the western flank of the Valencia Trough, at distances between 10–120 km.The experiment has resulted in an extended sampling of the deep crustal structure of the eastern Mediterranean flank of the Iberian peninsula, as well as the offshore-onshore transition.Three transverse NW-SE profiles have been interpreted. Local thinning of the sedimentary cover has been determined towards the centre of the basin which, together with the shallow high velocities observed on the southern profile, could be related to volcanic episodes.A seismic continental basement has been found at depths between 3 and 5 km. A thin lower crust (3–5 km) with velocities around 6.8 km/s has been identified in the northern part of the basin. Alternative crustal models considered for the 3 profiles have been tested, not only from arrival times but also from relative amplitude distributions. A first-order Moho discontinuity fits the data best. The welldefined Moho boundary results in energetic PMP reflections, and a clear updoming is observed towards the interior of the basin, from depths about 20–21 km inshore of Barcelona to 15–17 km depths 60 km offshore. An anomalous upper mantle with low Pn velocities of about 7.7 km/s is confirmed in most of the sampled areas.  相似文献   

15.
For the first time, we present the variation of crust–mantle boundary beneath the northeast Iran continental collision zone which is genetically part of the Alpine–Himalayan orogeny and beneath Central Iran which is a less-deformed tectonic block. The boundary was imaged by stacking teleseismic P–S converted phases and shows a strong variation of Moho from 27.5 km under Central Iran to 55.5 km beneath the Binalud foreland basin. The thickest crust is not located beneath the high topography of the Kopeh Dagh and Binalud mountain ranges suggesting that these mountain ranges are not supported by a crustal root. The simple gravity modeling of the Bouguer anomaly supports this idea.  相似文献   

16.
Data from ten magnetotelluric (MT) stations over the Wind River Uplift and adjacent basins are interpreted with constraints from the Consortium for Continental Reflection Profiling (COCORP) seismic reflection data and from gravity data. The MT data reveal the general configuration of the conductive basins and resistive uplifts; low resistivity zones are interpreted as faults which correspond to those visible in the COCORP sections.

The Wind River Thrust Fault is modelled as a conductive zone that can be traced to a depth of at least 20 km, and the crust beneath the Green River Basin is about 40 km thick.

The modelled constant dip of the Wind River Thrust is consistent with a tectonic model of lateral compressive stress.  相似文献   


17.
The structure of the crust and the crust-mantle boundary in the Vogtland/West Bohemian region have been a target of several seismic measurements for the last 25 years, beginning with the steep-angle reflection seismic studies (DEKORP-4/KTB, MVE-90, 9HR), the refraction and wide-angle experiments (GRANU’95, CELEBRATION 2000, SUDETES 2003), and followed by passive seismic studies (receiver functions, teleseismic tomography). The steep-angle reflection studies imaged a highly reflective lower crust (4 to 6 km thick) with the Moho interpreted in a depth between 30 and 32 km and a thinner crust beneath the Eger Rift. The refraction and wide-angle reflection seismic studies (CELEBRATION 2000) revealed strong wide-angle reflections in a depth of 26–28 km interpreted as the top of the lower crust. Long coda of these reflections indicates strong reflectivity in the lower crustal layer, a phenomenon frequently observed in the Caledonian and Variscan areas. The receiver function studies detected one strong conversion from the base of the crust interpreted as the Moho discontinuity at a depth between 27 and 37 km (average at about 31 km). The discrepancies in the Moho depth determination could be partly attributed to different background of the methods and their resolution, but could not fully explain them. So that new receivers function modelling was provided. It revealed that, instead of a first-order Moho discontinuity, the observations can be explained with a lower crustal layer or a crust-mantle transition zone with a maximum thickness of 5 km. The consequent synthetic ray-tracing modelling resulted in the model with the top of the lower crust at 28 km, where highly reflective lower crustal layer can obscure the Moho reflection at a depth of 32–33 km.  相似文献   

18.
We present new seismic refraction/wide-angle-reflection data across the Altyn Tagh Range and its adjacent basins. We find that the crustal velocity structure, and by inference, the composition of the crust changes abruptly beneath the Cherchen fault, i.e., ∼100 km north of the northern margin of the Tibetan plateau. North of the Cherchen fault, beneath the Tarim basin, a platform-type crust is evident. In contrast, south the Cherchen fault the crust is characterized by a missing high-velocity lower-crustal layer. Our seismic model indicates that the high topography (∼3 km) of the Altyn Tagh Range is supported by a wedge-shaped region with a seismic velocity of 7.6–7.8 km/s that we interpret as a zone of crust–mantle mix. We infer that the Altyn Tagh Range formed by crustal-scale strike-slip motion along the North Altyn Tagh fault and northeast–southwest contraction over the range. The contraction is accommodated by (1) crustal thickening via upper-crustal thrusting and lower-crustal flow (i.e., creep), and (2) slip-parallel (SW-directed) underthrusting of only the lower crust and mantle of the eastern Tarim basin beneath the Altyn Tagh Range.  相似文献   

19.
Receiver functions are widely employed to detect P-to-S converted waves and are especially useful to image seismic discontinuities in the crust. In this study we used the P receiver function technique to investigate the velocity structure of the crust beneath the Northwest Zagros and Central Iran and map out the lateral variation of the Moho boundary within this area. Our dataset includes teleseismic data (M b ≥ 5.5, epicentral distance from 30° to 95°) recorded at 12 three-component short-period stations of Kermanshah, Isfahan and Yazd telemetry seismic networks. Our results obtained from P receiver functions indicate clear Ps conversions at the Moho boundary. The Moho depths were firstly estimated from the delay time of the Moho converted phase relative to the direct P wave beneath each network. Then, we used the P receiver function inversion to find the properties of the Moho discontinuity such as depth and velocity contrast. Our results obtained from PRF are in good agreement with those obtained from the P receiver function modeling. We found an average Moho depth of about 42 km beneath the Northwest Zagros increasing toward the Sanandaj-Sirjan Metamorphic Zone and reaches 51 km, where two crusts (Zagros and Central Iran) are assumed to be superposed. The Moho depth decreases toward the Urmieh-Dokhtar Cenozoic volcanic belt and reaches 43 km beneath this area. We found a relatively flat Moho beneath the Central Iran where, the average crustal thickness is about 42 km. Our P receiver function modeling revealed a shear wave velocity of 3.6 km/s in the crust of Northwest Zagros and Central Iran increasing to 4.5 km/s beneath the Moho boundary. The average shear wave velocity in the crust of UDMA as SSZ is 3.6 km/s, which reaches to 4.0 km/s while in SSZ increases to 4.3 km/s beneath the Moho.  相似文献   

20.
The Central European Geodynamics Project CERGOP-2, funded by the European Union from 2003 to 2006 under the 5th Framework Programme, benefited from repeated measurements of the coordinates of epoch and permanent GPS stations of the Central European GPS Reference Network (CEGRN), starting in 1994. Here we report on the results of the systematic processing of available data up to 2005. The analysis has yielded velocities for some 60 sites, covering a variety of Central European tectonic provinces, from the Adria Indenter to the Tauern Window, the Dinarides, the Pannonian Basin, the Vrancea Seismic Zone and the Carpathian Mountains. The estimated velocities define kinematical patterns which outline, with varying spatial resolution depending on the station density and history, the present-day surface kinematics in Central Europe. Horizontal velocities are analyzed after removal from the ITRF2000 estimated velocities of a rigid rotation accounting for the mean motion of Europe: a 2.3 mm/year north–south oriented convergence rate between Adria and the Southern Alps that can be considered to be the present-day velocity of the Adria Indenter relative to the European Foreland. An eastward extrusion zone initiates at the Tauern Window. The lateral eastward flow towards the Pannonian Basin exhibits a gentle gradient from 1 to 1.5 mm/year immediately east of the Tauern Window to zero in the Pannonian Basin. This kinematic continuity implies that the Pannonian plate fragment recently suggested by seismic data does not require a specific Eulerian pole. On the southeastern boundary of the Adria microplate, we report a velocity drop from 4 to 4.5 mm/year motion near Matera to 1 mm/year north of the Dinarides, in the southwestern part of the Pannonian Basin. A positive velocity gradient as one moves south from West Ukraine across Rumania and Bulgaria is estimated to be 2 mm/year on a scale of 600–800 km, as if the crust were dragged by the counterclockwise rotation along the North Anatolian Fault Zone. This regime apparently does not interfere with the Vrancea Seismic Zone: earthquakes there are sufficiently deep (>100 km) that the brittle deformation at depth can be considered as decoupled from the creep at the surface. We conclude that models of the Quaternary tectonics of Central and Eastern Europe should not neglect the long wavelength, nearly aseismic deformation affecting the upper crust in the Romanian and Bulgarian regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号