首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sediment trap is a container deployed in the water column with the aim of providing a representative sample of the material settling through that water column before it passes to a greater depth and ultimately to the seabed or lake bottom. A review of the previous literature shows cylinders and baffled funnels to be the most efficient sediment trap design in flows less than 0.1 m/s. For flow velocities above 0.1 m/s recent evidence suggests upwelling from the trap base, and possible undercollection. The degree of undercollection depends on the flow velocity, the type of trap, the height: diameter (aspect) ratio of the trap, and the type of sediment. Recent experiments suggest that cylinders with an aspect ratio of 3 may be efficient collectors in velocities up to 0.2 m/s. The use of cylinders is not recommended in velocities above 0.2 m/s. For unbaffled asymmetric funnels a lower limit of 0.12 m/s is suggested.  相似文献   

2.
The DYFAMED sediment trap station in the Ligurian Sea (NW Mediterranean) has been active since 1986 and today comprises the longest time‐series of downward particle flux in the Mediterranean Sea. As such, it provides valuable information on the interannual variability of the particle flux, and also documents possible recent changes in the NW Mediterranean pelagic ecosystems. We report an unprecedented episode of downward flux of mucilaginous material at the DYFAMED station during summer 2002 in association with singular hydrometeorological conditions. The rain of mucilaginous aggregates clogged a PPS5 sediment trap at 260 m depth and was also clearly detected at 1080 m depth. The possible factors governing the development and sinking of the mucilaginous material are discussed. A very sharp increase of sea surface temperature during June and the presence of freshened waters in the surface the following month resulted in a stronger than usual stratification of the upper water column throughout the summer season. We suggest that the steepness of the vertical density gradient was responsible for the unusual accumulation of mucous aggregates. Additionally, a diatom bloom took place during the nutrient‐depleted conditions typical of summer, a factor which may have contributed to feed the pycnocline with transparent exopolymer substances. A storm occurring in the beginning of August relaxed the stratification and promoted the deposition of the mucilaginous aggregates accumulated in the upper water column during the preceding months. Important similarities of ambient conditions preceding the apparition of mucilaginous material in our open‐sea site and those reported in the Adriatic Sea during major mucilage events, suggest that general climatic conditions, rather than local factors, drive the occurrence of major accumulations of mucilaginous material in the water column at both sub‐basins of the Mediterranean Sea. In this regard, the strength of the air temperature increase during the onset of the stratified season is proposed as a major controlling factor.  相似文献   

3.
The flux and compositions of solvent-extractable lipid fractions were measured in particulate matter collected periodically by moored sediment traps in the Santa Monica Basin from 1985–1988. The purpose was to assess the compositional changes during settling, the carbon dynamics in the basin and to estimate the impacts of energy-related by-products on the surface sediments. Sediment traps recorded consistently high lipid fluxes in the eastern slope relative to the central basin, reflecting elevated terrigenous carbon inputs possibly from land-based human activities. Generally, lipid fluxes decrease offshore but increase vertically with water depth below 500m, implying lateral transport of particles. The steep decline of flux in the top 500m of the water is related to the rapid decomposition and mineralization of the marine-derived cellular carbon compounds. Less than 5% of the marine lipid components reach the seabed. In contrast, preferential preservation of terrigenous lipid is clearly evident from the chemistry of deeper traps and surface sediments.The lateral transport of particles is reflected in the presence of higher plant-derived lignin phenols and sewage-derived coprostanol and epicoprostanol in the deep trap material as well as in surface sediment throughout the basin. Petroleum triterpanes characteristic of natural seepage also permeates through the entire basin. Based on the data collected from both the trap particulte matter and surface sediments, a carbon budget for the Santa Monica Basin has been constructed.  相似文献   

4.
Downward fluxes of microbial assemblages associated with sinking particles sampled in sediment traps deployed at nominal depths of 1000 m (trap A), 3000 m (trap B) and 4700 m (trap C) were measured between October 1995 and August 1998 on the Porcupine Abyssal Plain (PAP, NE Atlantic). The goal of the study was to provide detailed information on the microbial contributions to the particulate organic carbon and DNA fluxes. Bacterial fluxes associated with settling particles in the PAP area were generally low and significantly lower than bacterial fluxes reported from the same area during 1989–90. Marked seasonal pulses in the microbial assemblages were observed in all years that were associated with particle flux maxima in April–June. No significant differences were found in microbial fluxes between 1000 and 4700 m depth, but both the bacterial biomass flux and the frequency of dividing bacteria increased with depth, suggesting that organic matter turnover and conversion into bacterial biomass increased in the deeper traps. The structure of microbial assemblages displayed clear changes with increasing depth; the ratios of bacteria to both flagellates and cyanobacteria increased up to 4-fold between 1000 and 4700 m, showing a marked increase in bacterial dominance in the deeper layers of the water column. A parallel increase of the bacterial contribution to particulate organic carbon (POC) and DNA fluxes was observed. Total microbial contribution to the POC flux in the PAP area was about 2%, whereas the contribution of cyanobacteria was negligible. Fluxes of microbial assemblages were significantly correlated with DNA fluxes and on average the bacteria accounted for 5% of DNA fluxes. Data reported here confirm that the “rain” of particulate bacterial DNA may represent an important source of nucleotides for deep-sea bacteria, but also suggests that a much larger pool of detrital DNA is potentially available to deep-sea micro-organisms.  相似文献   

5.
Sediment trap experiments were carried out 39 times during the years from 1977 to 1981 in Funka Bay, Hokkaido, Japan. The observed total particulate flux varies seasonally, that is, the particulate fluxes in winter and spring are larger than those in summer. The fluxes in all seasons increased with depth. Major components of settling particles are aluminosilicate in winter, biogenic silicate in spring and organic matter and terrestrial material in summer, respectively. The fluxes of each chemical component observed with sediment traps are normalized to that of Al by assuming that the actual flux of Al is equal to the accumulation rate onto the sediment surface. Vertical changes of the normalized flux of each chemical component indicate the following: Fe was not regenerated from the settling particles in the water column. Mn was regenerated from the settling particles in the lower layer exclusively between 80 m depth and the sediment surface. Cd was actively regenerated in the upper layer above 80 m depth. Phosphate was regenerated in the upper layer, while biogenic silicate was in the lower layer. The silicate regeneration, therefore, occurs after phosphate regeneration. The material decomposing in the water column below 40 m has an atomic ratio of P ∶ Si ∶ C = 1 ∶ 52 ∶ 128.  相似文献   

6.
A one year study of downward particle fluxes conducted in the northwestern Mediterranean Sea is presented. Two mooring lines equipped with sediment traps and current meters were deployed at around 1000 m depth on the northeastern continental slope of the Gulf of Lions, one inside the Grand-Rhône canyon and the other outside on the adjacent open slope. Mean total mass fluxes increased slightly with trap depth inside the canyon, a feature quite typical of fluxes in continental margin environments. The near-bottom trap inside the canyon collected more material than its counterpart deployed at equivalent depth on the open slope, indicating a preferential transport of material within the canyon. Major biogeochemical constituents (organic and inorganic carbon, opal, and siliciclastic residue) revealed a marked difference in particle composition between the sub-surface (80 m) and deeper traps, suggesting the existence of at least two sources of material. The two shallower traps showed a clear biological signal: flux peaks were related to periods of surface biological production, especially perceptible in summer and autumn. The particulate matter trapped at deeper levels in the canyon and on the open slope was characterized by a more stable composition with a major lithogenic contribution, originating from sedimentary material most probably resuspended on the upper- or mid-slope. The seasonal variability was dominated by the summer/winter alternation; the latter period was characterized by a weak stratification of the water column and an enhanced current variability favoring vertical exchanges. The present results are compared with those obtained previously in the Lacaze-Duthiers canyon on the southwestern side of the Gulf of Lions. The comparison shows strong differences between the NE entrance and the SW exit of the gulf, with respect to the general along-slope circulation of water masses, both in terms of intensity of particulate fluxes and transport processes.  相似文献   

7.
In order to study particle behaviour and its time-variability in the near-bottom layer on the Porcupine Abyssal Plain (48°50′N, 16°30′W, 4850 m), long-term measurements were made of currents, and nephelometry and particle samples were collected using an autonomous lander between mid-1996 and mid-1998. Water samples, collected in the Bottom Nepheloid Layer within 1000 m of the bottom, were filtered for suspended particles whose contents of organic carbon, nitrogen and pigments were determined. This study was co-ordinated with a water column flux study and a detailed programme of benthic studies to understand how the abyssal boundary layer responds to and modifies inputs of organic matter from the water column (MAST3/BENGAL programme).There were strong seasonal fluctuations in the near-bottom (2 m above the bottom, mab) particle flux, whose variation were correlated in time with the water column fluxes. During the periods of peak flux, the near-bottom flux was sometimes higher than that recorded higher up in the water column, but not always at other times. These excesses were attributed to the resuspension events, since we observed a correlation between current speed and nephelometry. However, in summer the peak in the particle resuspension flux could not be explained by the variations in the tidal amplitude. Instead we attribute it to the large quantities of fresh large particles (aggregations) that had just arrived on the bottom; it was probably linked to the feeding activity and sediment reworking by the rich and varied benthic and benthopelagic megafauna.In both 1997 and 1998, the nephelometry signal (directly related to fine particle concentration) and its variability increased after the peaks in large particle flux with a time-lag of 2–3 months. We assume that this time lag corresponds to the time it takes for the large fresh particles, once they have settled on the bottom, to be disaggregated into smaller particles, and hence become subject to resuspension in the quiet current conditions then prevailing in the BENGAL area. The suspended particle analyses confirm the vertical structure of the Bottom Nepheloid Layer, the lower part of which corresponds to the Bottom Mixed Layer (BML) where resuspension and mixing are higher.  相似文献   

8.
Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49°N within the EU-funded Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid-slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off-slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of particulate organic carbon exceed the primary flux by over a factor of 2 at 1440 m on the outer slope. Estimated lateral fluxes of suspended particulate matter in the water column and intermediate nepheloid layers at the outer slope are potentially large compared to sinking fluxes measured by sediment traps. A comparison is made of particle flux at three continental margin sites and two sites in the adjacent open North Atlantic, from which it is seen that bulk and organic matter flux increases exponentially with proximity to the shelf break. The percentage contribution of particulate organic carbon to biogenic fluxes increases from a mean of 5.7% in the abyssal N. Atlantic to 13.9% at the continental margins.  相似文献   

9.
The flux of planktonic foraminifera between 100 μm and 1 mm to the seafloor has been estimated for the central Pacific (abyssal plain east of Hawaii) and the tropical Atlantic (Demerara Abyssal Plain) based on sediment trap samples collected from various water depths. The faunas in each region are quite similar, with 4 to 5 species generally accounting for 70–80% of the total assemblage.

At both study sites, the total foraminiferal flux and the carbonate flux tend to decrease with depth. In addition, the flux of individual species of planktonic foraminifera varies significantly with depth, with the number of small, solution-susceptible species decreasing with increasing water depth. These results suggest that there is significant dissolution of small (< 150 μm) foraminifera as they settle through the water column. Material collected from the sediment-water interface directly below the Pacific sediment trap array contains no planktonic foraminifera, suggesting that the residence time of an individual on the seafloor before it dissolves, is extremely short.  相似文献   


10.
Disequilibrium between 234Th and 238U in water column profiles has been used to estimate the settling flux of Th (and, by proxy, of particulate organic carbon); yet potentially major non-steady-state influences on 234Th profiles are often not able to be considered in estimations of flux. We have compared temporal series of 234Th distributions in the upper water column at both coastal and deep-water sites in the northwestern Mediterranean Sea to coeval sediment trap records at the same sites. We have used sediment trap records of 234Th fluxes to predict temporal changes in water column 234Th deficits and have compared the predicted deficits to those measured to determine whether the time-evolution of the two coincide. At the coastal site (327 m water depth), trends in the two estimates of water column 234Th deficits are in fairly close agreement over the 1-month deployment during the spring bloom in 1999. In contrast, the pattern of water column 234Th deficits is poorly predicted by sediment trap records at the deep-water site (DYFAMED, 2300 m water depth) in both 2003 and 2005. In particular, the transition from a mesotrophic to an oligotrophic system, clearly seen in trap fluxes, is not evident in water column 234Th profiles, which show high-frequency variability. Allowing trapping efficiencies to vary from 100% does not reconcile the differences between trap and water column deficit observations; we conclude that substantial lateral and vertical advective influences must be invoked to account for the differences.Advective influences are potentially greater on 234Th fluxes derived from water column deficits relative to those obtained from traps because the calculation of deficits in open-ocean settings is dominated by the magnitude of the “dissolved” 234Th fraction. For observed current velocities of 5–20 cm s−1, in one radioactive mean-life of 234Th, the water column at the DYFAMED site can reflect 234Th scavenging produced tens to hundreds of kilometers away. In contrast, most of the 234Th flux collected in shallow sediment traps at the DFYFAMED site was in the fraction settling >200 m d−1; in effect the sediment trap can integrate the 234Th flux over distances 40-fold less than water column 234Th distributions. In some sense, sediment trap and water column sampling for 234Th provide complementary pictures of 234Th export. However, because the two methods can be dominated by different processes and are subject to different biases, their comparison must be treated with caution.  相似文献   

11.
Sinking particulate matter were obtained from twelve depths using free-drifting sediment trap arrays which were deployed in the upper 2,000 m water column of the Izu Trench, northwest Pacific Ocean. The largest flux of 146 mgC m–2 day–1 was observed at 150 m depth. The flux generally decreased with depth below the maximum, however, minor flux peaks occurred at 1,000 and 1,250 m depth (>30 mgC m–2 day–1). Sinking large particles (>100 µm) were composed of fecal pellets typical of crustaceans, macroscopic aggregates, and planktonic organisms and their fragments. Three major components constituted 19%, 20% and 29%, respectively, of the total carbon flux (averaged from the fluxes at five depths; 50, 100, 150, 1,000 and 2,000 m). Among them, fecal pellet flux and large organism flux were well correlated with the total flux. The close correspondence between the fecal flux and the total carbon flux suggests that the latter is derived from a group of variables including other biogenic matter, among which fecal pellet is one of the leading factors controlling total flux, though the latter is only a minor covariable in quantity. Vertical flux profiles of fecal pellets and their internal constituents revealed some new inputs of feces occurring through the water column. This phenomenon implies that downward transportation of organic material is characterized by feeding and egestion activities of zooplankton, including overlapping processes of sinking and dispersion of large fecal particles and repackaging of dispersed small particles.  相似文献   

12.
Seasonal and depth variations in alkenone flux and molecular and isotopic composition of sinking particles were examined using a 21-month time-series sediment trap experiment at a mooring station WCT-2 (39°N, 147°E) in the mid-latitude NW Pacific to assess the influences of seasonality, production depth, and degradation in the water column on the alkenone unsaturation index UK′37. Analysis of the underlying sediments was also conducted to evaluate the effects of alkenone degradation at the water–sediment interface on UK′37. Alkenone sinking flux and UK′37-based temperature showed strong seasonal variability. Alkenone fluxes were higher from spring to fall than they were from fall to spring. During periods of high alkenone flux, the UK′37-based temperatures were lower than the contemporary sea-surface temperatures (SSTs), suggesting alkenone production in a well-developed thermocline (shallower than 30 m). During low alkenone flux periods, the UK′37-based temperatures were nearly constant and were higher than the contemporary SSTs. The nearly constant carbon isotopic ratios of C37:2 and C38:2 alkenones suggest that alkenones produced in early fall were suspended in the surface water until sinking. The alkenone sinking flux decreased exponentially with increasing depth. The decreasing trend was enhanced during the periods of high alkenone flux, suggesting that fresh and labile particles sank from spring to fall, while old and stable particles sank from fall to spring. The UK′37-based temperature usually increased with increasing depth. The preservation efficiency of alkenones was ∼2.7–5.2% at the water–sediment interface. Despite the significant degradation of the alkenones, there was little difference in UK′37 levels between sinking particles and the surface sediment.  相似文献   

13.
Sinking matter collected by sediment traps, which were deployed in the equatorial Pacific Ocean at 175°E for about 11 months during 1992–1993, were analyzed for their flux and labile components in terms of amino acids and hexosamines. The samples provided a temporal resolution of 15 days and were collected from 1357 (shallow trap) and 4363 m (deep trap) depths where sea floor depth was 4880 m. Particle flux along with major components (carbonate, organic matter, biogenic opal and lithogenic material) and amino acid parameters showed distinct temporal variations, which were more pronounced in the shallow trap relative to deep trap. A coupling between the fluxes in the shallow and deep traps was more evident during the period of maximum particle flux, which seems to be connected with the short reappearance of non-El Niño conditions in equatorial Pacific during the 1991–1993 El Niño event. The biogeochemical indicators C/N, Asp/Bala, Glu/Gaba, Bala+Gaba mol%, THAA-C% and THAA-N% implied that the increase in sinking flux was associated with upwelling and enhanced surface production. Degradation of sinking particulate organic matter between the shallow and deep traps was also evident. Occasionally higher mass and major component fluxes in the deep trap relative to the shallow trap are attributed to contribution of resuspended particulates from sea floor (nepheloid layer) or to laterally advected particulates from nearby areas. Carbonate and opal composition of the sinking flux showed a predominance of calcareous plankton; however, Asp/Gly mol ratio and Ser+Thr mol% indicated enhanced occurrence of diatoms during the periods of higher flux.  相似文献   

14.
为研究内孤立波与沙波的相互作用,本文对基于OpenFOAM的SedWaveFoam求解器进行改进,建立了内孤立波-泥沙运动欧拉两相流模型。在利用试验资料对模型进行验证的基础上,在南海北部典型代表性条件下,模拟分析了500 m水深位置沙波床面上内孤立波作用下的水动力变化和泥沙运动。结果表明,内孤立波逐渐离开沙波时,海底沙波背流面处出现与内孤立波背景流速反向的流速,在内孤立波导致的流场作用下,沙波床面上的泥沙悬起并运动到床面以上的水体中。振幅100 m的内孤立波可以导致床面以上14 m高的位置处出现约0.07 kg/m3的悬沙浓度。  相似文献   

15.
北戴河海滩泥沙捕获实验及其初步结果分析   总被引:2,自引:1,他引:2  
介绍了利用泥沙捕获器观测破波带泥沙垂直分布结构的现场实验方法和基本程序,以及利用实验结果计算泥沙通量的方法。研究表明,近岸带泥沙运移通量及其在垂向上的分布受破波带相对位置和海滩地形变化的影响。在破波点附近,波浪的搅动和流场作用强,泥沙运移通量增大,泥沙在波浪的作用下可以大量进入垂直水体以悬移和跃移的方式运移。在本实验中,破波点附近的泥沙在距海底100cm的垂直水体中运移,通量垂向向上逐渐减小。远离破波点,泥沙运移通量和进入垂直水体的高度明显下降。在地形变化复杂的有坝海滩,沙坝顶部的泥沙运移通量最大,泥沙进入垂直水体运移的机率增加,而在沙坝问的沟槽内,波浪和海流作用减弱,泥沙通量和垂向进入水体运移的比例下降。  相似文献   

16.
Sinking particles collected from year-long time-series sediment traps at 1674, 4180, 5687 and 8688 m depths, the underlying bottom sediment at 9200 m depth, and suspended particles from surface and subsurface waters in the northwestern North Pacific off Japan were analyzed for long-chain alkenones and alkyl alkenoates (A&A) which are derived mainly from Gephyrocapsacean algae, especially Emiliania huxleyi and Gephyrocapsa oceanica. Alkenone temperature records in sediment trap samples at 1674 m were almost similar to observed sea surface temperatures (SST) with a time delay of one half to one full month. However, alkenone temperatures in trap samples were about slightly lower than measured SST in late spring to early fall. The lowering might be caused by formation of the seasonal thermocline. Nevertheless, these temperature drops observed in trap samples were smaller than those actually observed in a subsurface layer off central Japan. Vertical profiles of A&A concentrations and alkenone temperatures in suspended particles collected from the subsurface waters in early fall indicated that these compounds were produced mostly in a surface mixed layer above the depth of the chlorophyll maximum even in warm seasons. These results suggested that alkenone temperatures strongly reflected SST rather than the temperatures of thermocline waters in these study areas even in such a warm season. Pronounced maxima in A&A fluxes found in sediment trap samples at 1674 m in late spring to summer showed that A&A productions were highest during the periods of spring bloom, according to a time delay between alkenone temperatures and observed SST. Seasonal patterns of alkenone records in trap samples at 4180 and 5687 m could also preserve SST signals well, suggesting that A&A in deep sea waters were mainly derived from primary products in the surface layer. A&A fluxes tended to decrease with water depth, and the ratios of A&A to particulate organic carbon (POC) rapidly decreased in underlying bottom sediment. This clearly indicates that A&A were decomposed and diluted by other refractory organic materials in either the water column or the sediment–water interface. However, A&A compositions were consistently uniform between the trap samples and the underlying bottom sediments, so that A&A could not qualitatively alter during early diagenetic processes.  相似文献   

17.
Understanding biogenic silica (bSi) dissolution kinetics in margin environments is important in assessing the global silicon cycle, a cycle closely linked to the global carbon cycle. This understanding is also essential to answer the question of whether bSi content in marine sediment is a valid indicator of productivity in the overlying surface ocean. In this study, plankton tow, sediment trap, and sediment samples were collected at sites in three Southern California borderland basins. Batch dissolution experiments with plankton tow and sediment trap materials (conducted in the laboratory at 22 °C) showed linear dissolution kinetics, from which mean dissolution rate constants of 0.05 d? 1 for plankton tow samples and 0.07 d? 1 for sediment trap samples could be calculated. The dissolution rate constants for both types of samples showed seasonal variability but not the same seasonal patterns. Faster dissolution was observed with sediment trap samples collected at 800 m than at 550 m. With sediment multi-core samples, non-linear dissolution kinetics was observed, which complicates the direct comparison of dissolution rates. Nonetheless, dissolution appeared to be slower for the sediments samples than for samples collected from the water column and to decrease with depth in the sediments. Rate constants for surface sediment (0–0.5 cm) were at least 3–5 times less, and sediments at depths > 2 cm had rate constants at least 6–13 times less than those for material sinking to the sediment surface at these sites. Dissolution experiments conducted with Santa Barbara Basin surface sediment samples amended with dissolved aluminum (Al) and San Pedro Basin trap samples amended with enriched detrital materials (obtained by leaching bSi from sediment samples) suggested that dissolution was inhibited by Al and that the sediments from the different basins varied in the extent of Al release.  相似文献   

18.
Seasonal changes in the shape and size composition of fecal pellets were investigated with sediment trap samples from 50 and 150 m in Kagoshima Bay to evaluate how the mesozooplankton community affects fecal pellet flux. Deep vertical mixing was evident in March, and thermal stratification was developed above 50 m in June, August and November. Chlorophyll a, suspended particulate organic carbon (POC) and copepod abundance were uniform throughout the water column during the seasonal mixing and concentrated above 50 m in the stratified seasons. Calanoids were the most predominant copepods in March and poecilostomatoids composed more than 45% of the copepod community in June, August and November. Fecal pellet fluxes at 50 and 150 m were the highest in March, nearly half of POC flux. The relative contribution declined considerably in the other months, especially for less than 4% of POC flux in August. The decline was corresponded to the predominance of cyclopoids and poecilostomatoids. Cylindrical pellets dominated the fecal matters at both depths throughout the study period, while larger cylindrical pellets nearly disappeared at 150 m in June, August and November. Copepod incubation revealed that cylindrical and oval pellets were egested by calanoids and the other copepods, respectively. We suggest that cylindrical fecal pellets produced by calanoid copepods contribute to feces flux but the predominance of poecilostomatoids and/or cyclopoids decreases feces flux via the increase of oval pellets and fragmentation of larger cylindrical pellets.  相似文献   

19.
The DYFAMED time-series station, located in the open Ligurian Sea, is one of the few pluriannual flux programs in the world and the longest in the Mediterranean Sea. The trap data series is one of only three multi-decadal data sets in existence, and it provides flux information for an environment that is distinct from the other long-term data sets. At DYFAMED, downward fluxes of particles, carbon and other major elements have been regularly measured with sediment traps since 1986 at fixed depths of 200 and 1000 m. An overview is presented of the main trends of particle and carbon fluxes observed during the period 1988–2005, period when the mooring was located on the northern side of the Ligurian Sea. In spite of considerable interannual variability, fluxes displayed a marked seasonal pattern with the highest fluxes occurring during winter and spring and lowest fluxes throughout the stratified season (summer–autumn). Organic carbon fluxes measured at both depths were highly variable over time, ranging from 0.3 to 59.9 (mean 6.8) mg C m−2 d−1 at 200 m, and from 0.2 to 37.1 (mean 4.3) mg C m−2 d−1 at 1000 m. Mass fluxes were maximal in winter, whereas carbon fluxes were maximal in late spring. Reasonably good agreement existed between particle fluxes at both depths over the years, indicating a relatively efficient and rapid transport of particles from the upper ocean to the deep sea. However, during certain periods mass flux increased with depth suggesting lateral inputs of particles that by-pass the upper trap. Since 1999, the system has apparently shifted towards an increasing occurrence of extreme flux events in response to more vigorous mixing of the water column during the winter months. Although annual mass fluxes have increased in the last years, mean POC fluxes have not substantially changed over time, due mainly to lower carbon contents of the sinking particles during maxima of mass flux.  相似文献   

20.
Chemistry of organic materials of the suspended and sinking particles, and the evaluation of the particulate materials for the carbon cycle of the ocean are described in this paper. Organic carbon (POC) and nitrogen (PON) of the suspended particles collected from various areas of the North through South Pacific were determined with considerably high variabilities in their concentration. Higher values of the POC and PON were obtained in the surface water of the higher latitudinal areas of both northern and southern hemispheres and the equatorial Pacific, while the lower values of these organic elements were measured in the middle latitudinal areas of the Pacific. These facts clearly indicate that inorganic nutrients supply to the surface water layers from the underlying water is primarily determinative factor to govern the concentration of the POC and PON in the surface water layer. POC and PON concentrations in the intermediate through deep waters, however, are much less variable in time and space. Carbohydrates, free and combined amino acids and lipid materials were major organic constituents of the suspended particles. The organic composition of the particles was extensively variable in region, time and depth. Such change in the organic composition was mainly caused by the production and decay of the free and combined amino acids, lipid materials and water extractable carbohydrate. Sinking particle which has high sinking rate over 100 m day−1 and can be collected only by sediment trap, also consists of carbohydrates, free and combined amino acids and lipid materials. A detailed analysis of the particle indicate that the sinking particle was much different from the suspended particle from the intermediate through deep waters in terms of the abundance of the biologically susceptible organic materials such as unsaturated hydrocarbon, fatty acid and water extractable carbohydrate often found in phytoplankton. These facts clearly indicate that the sinking particle plays an important role on the vertical transport of the biologically susceptible organic materials from the surface water to the deep water. Vertical flux of organic materials in various water depths was extensively measured in the North Pacific and Antarctic Ocean using the depth-series sediment trap system to collect the sinking particles from various depths of the waters. Regional and seasonal variabilities of the organic carbon flux at the various depths were obviously observed, however the attenuation rate of the organic carbon flux in the intermediate through deep water was not changed so much irrespective of the sampling time and region. The time-series sediment trap system was also using to determine the seasonal variation of the organic carbon flux. An average organic carbon flux at 1 km depth from this trap system was almost comparable to the amount of organic carbon degraded in the water deeper than 1 km depth, which was calculated from oxygen consumption rate of the deep water. Thus, it is clear that the sinking particle must play an important role in the carbon cycle of the deep water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号