首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A logistic regression model for the probability of arsenic exceeding the drinking water guidelines (10 μg/L) in bedrock groundwater was developed for a selected county in Korea, where arsenic occurrence and release reactions have been investigated. Arsenic was enriched naturally by the oxidation of sulfide minerals in metasedimentary rocks and mineralized zones, and due to high mobility in alkaline pH conditions, concentrations were high in groundwater of the county. When considering these reactions of arsenic release and water quality characteristics, several geological and geochemical factors were selected as influencing variables in the model. In the final logistic regression model, geological units of limestone and metasedimentary rocks, the concentrations of nitrate and sulfate, and distances to closed mines and adjacent granite were retained as statistically significant variables. Predicted areas of high probability agreed well with known spatial contamination patterns in the county. The model was also applied to an adjacent county, where the groundwater has not previously been tested for the presence of arsenic, and a probability map for arsenic contamination was then produced. Through the analysis of arsenic concentrations at the wells of high probability, it was determined that the applied model accurately indicated the arsenic contamination of groundwater. The logistic regression approach of this study can be applied to predict arsenic contamination in areas of similar geological and geochemical conditions to the county used in this model.  相似文献   

2.
Arsenic occurrence in groundwater near the Cimino-Vico volcanoes (central Italy) was analysed considering the hydrostratigraphy and structural setting and the shallow and deep flows interacting within the Quaternary volcanics. Groundwater is the local source of drinking water. As documented in the past, arsenic in the groundwater has become a problem, and the European maximum allowable contaminant level was recently lowered to 10 μg/L. Chemical analyses of groundwater were conducted, sampled over an area of about 900 km2, from 65 wells and springs representative of the volcanic aquifer and thermal waters. Considering the type of aquifer, the nature of the aquifer formation and its substratum, the hydrochemical data highlight that the arsenic content of the groundwater is mainly connected with the hydrothermal processes in the volcanic area. Thermal waters (54–60°C) fed from deep-rising fluids show higher arsenic concentrations (176–371 μg/L). Cold waters sampled from the volcanic aquifer are characterized by a wide variability in their arsenic concentration (1.6–195 μg/L), and about 62% exceed the limit of 10 μg/L. Where the shallow volcanic aquifer is open to deep-rising thermal fluids, relatively high arsenic concentrations (20–100 μg/L) are found. This occurs close to areas of the more recent volcano-tectonic structures.  相似文献   

3.
Exposure to arsenic and fluoride through contaminated drinking water can cause serious health effects. In this study, the sources and occurrence of arsenic and fluoride contaminants in groundwater are analyzed in Dawukou area, northwest China, where inhabitants rely on groundwater as the source of drinking water. The triangular fuzzy numbers approach is adopted to assess health risk. The fuzzy risk assessment model incorporates the uncertainties that are caused by data gaps and variability in the degree of exposure to contaminants. The results showed that arsenic and fluoride in groundwater were mainly controlled by the dissolution–precipitation of Ca-arsenate and fluorite under weakly alkaline conditions. The arsenic and fluoride concentrations were higher in the shallow groundwater. The most probable risk values for arsenic and fluoride were 4.57 × 10?4 and 0.4 in the shallow groundwater, and 1.58 × 10?4 and 0.3 in the deep groundwater. Although the risks of fluoride were almost within the acceptable limit (<1.0), the risk values of arsenic were all beyond the acceptable levels of 10?6 for drinking water. Further, the local administration should pay more attention to the potential health risk through dietary intake and to the safety of deep water by ensuring it is not contaminated under prolonged pumping conditions. The fuzzy risk model treats the uncertainties associated with a quantitative approach and provides valuable information for decision makers when uncertainties are explicitly acknowledged, particularly for the variability in contaminants. This study can provide a new insight for solving data uncertainties in risk management.  相似文献   

4.
Hydrogeochemical and hydrodynamic surface/groundwater interactions were investigated at the urban floodplain aquifer in Delhi, India. The heavily polluted Yamuna River is in hydraulic contact to the groundwater and river seepage results in a contamination plume. A conceptual redox zonation was developed based on the occurrence or absence of terminal electron acceptors. The redox zonation shows an inverted zonation from sulphate-reducing conditions close to the river over manganese- and iron-reducing conditions to a mixed oxic/suboxic zone. This study shows that the occurrence of problematic substances such as ammonium and arsenic in the groundwater is a consequence of the high load of untreated sewage in the river in combination with losing river conditions. Sequential extraction of aquifer material was performed to obtain information on geochemical availability of arsenic associated with different mineral phases and binding forms. Geogenic and anthropogenic arsenic sources contribute to overall arsenic concentration, and arsenic is found to be attributed mainly to amorphous iron oxide and sulphidic phases in the sediment. The contamination plume at the urban floodplain aquifer makes the groundwater unfit for drinking water purposes.  相似文献   

5.
This study investigated the potential factors affecting arsenic concentration in the groundwater system of Lahore, Pakistan. The effects of several factors such as population density (PD), pumping rate (PR), impermeable land use (LU), surface elevation (SE), and water-table elevation (WL) on arsenic concentration were studied in 101 union councils of Lahore. Forty single and multi-factor models were established using geographic information system (GIS) techniques to develop an arsenic contamination map and to investigate the most effective combinations among factors. Additionally, statistical tests were used to evaluate arsenic concentration between classes of the same single factor. The arsenic concentration in the Lahore aquifer varied from 0.001 to 0.143 mg L?1. The highest arsenic concentrations were detected in the Walled City and the town of Shahdara. Among the 40 raster models, groundwater arsenic concentration showed the best matching frequency with single-factor models for PD (50.70 %) and SE (47 %). Thus, PD and SE were used to develop an arsenic distribution raster map, and they were also used to study the effect of aquifer depth on arsenic concentration. PD was found to have hidden latent variables such as PR and LU. The shallow aquifer depth was negatively correlated with arsenic concentration (r?=??0.23) and positively with PR (r?=?0.15). Therefore, when there was high PR in wells with smaller aquifer depth, the arsenic concentration was high. The existing water treatment and alternative water resources are good options, which should be developed to deal with Lahore wells contaminated with arsenic at high concentrations.  相似文献   

6.
Groundwater arsenic survey in Cachar and Karimganj districts of Barak Valley, Assam shows that people in these two districts are drinking arsenic-contaminated (max. 350 μg/l) groundwater. 66% of tubewells in these two districts have arsenic concentration above the WHO guideline value of 10 μg/l and 26% tubewells have arsenic above 50 μg/l, the Indian standards for arsenic in drinking water. 90% of installed tubewells in these two districts are shallow depth (14–40 m). Shallow tubewells were installed in Holocene Newer Alluvium aquifers are characterised by grey to black coloured fine grained organic rich argillaceous sediments and are mostly arsenic contamination in groundwater. Plio-Pleistocene Older Alluvium aquifers composed of shale, ferruginous sandstone, mottle clay, pebble and boulder beds, which at higher location or with thin cover of Newer Alluvium sediments are safe in arsenic contamination in groundwater. 91% of tubewell water samples show significantly higher concentrations of iron beyond its permissible limit of 1 mg/l. The iron content in these two districts varies from 0.5 to as much as 48 mg/l. Most of the arsenic contaminated villages of Cachar and Karimganj districts are located in entrenched channels and flood plains of Newer Alluvium sediments in Barak-Surma-Langai Rivers system. However, deeper tubewells (>60 m) in Plio-Pleistocene Older Alluvium aquifers would be a better option for arsenic-safe groundwater. The arsenic in groundwater is getting released from associated Holocene sediments which were likely deposited from the surrounding Tertiary Barail hill range.  相似文献   

7.
More than 2.5 billion people on the globe rely on groundwater for drinking and providing high-quality drinking water has become one of the major challenges of human society.Although groundwater is considered as safe,high concentrations of heavy metals like arsenic(As) can pose potential human health concerns and hazards.In this paper, we present an overview of the current scenario of arsenic contamination of groundwater in various countries across the globe with an emphasis on the Indian Peninsula.With several newly affected regions reported during the last decade, a significant increase has been observed in the global scenario of arsenic contamination.It is estimated that nearly 108 countries are affected by arsenic contamination in groundwater(with concentration beyond maximum permissible limit of 10 ppb recommended by the World Health Organization.The highest among these are from Asia(32) and Europe(31), followed by regions like Africa(20), North America(11), South America(9) and Australia(4).More than 230 million people worldwide, which include 180 million from Asia, are at risk of arsenic poisoning.Southeast Asian countries, Bangladesh, India, Pakistan,China, Nepal, Vietnam, Burma, Thailand and Cambodia, are the most affected.In India, 20 states and 4 Union Territories have so far been affected by arsenic contamination in groundwater.An attempt to evaluate the correlation between arsenic poisoning and aquifer type shows that the groundwater extracted from unconsolidated sedimentary aquifers, particularly those which are located within the younger orogenic belts of the world, are the worst affected.More than 90% of arsenic pollution is inferred to be geogenic.We infer that alluvial sediments are the major source for arsenic contamination in groundwater and we postulate a strong relation with plate tectonic processes, mountain building, erosion and sedimentation.Prolonged consumption of arsenic-contaminated groundwater results in severe health issues like skin, lung, kidney and bladder cancer; coronary heart disease;bronchiectasis; hyperkeratosis and arsenicosis.Since the major source of arsenic in groundwater is of geogenic origin, the extend of pollution is complexly linked with aquifer geometry and aquifer properties of a region.Therefore, remedial measures are to be designed based on the source mineral, climatological and hydrogeological scenario of the affected region.The corrective measures available include removing arsenic from groundwater using filters, exploring deeper or alternative aquifers, treatment of the aquifer itself, dilution method by artificial recharge to groundwater, conjunctive use, and installation of nano-filter, among other procedures.The vast majority of people affected by arsenic contamination in the Asian countries are the poor who live in rural areas and are not aware of the arsenic poisoning and treatment protocols.Therefore, creating awareness and providing proper medical care to these people remain as a great challenge.Very few policy actions have been taken at international level over the past decade to reduce arsenic contamination in drinking water, with the goal of preventing toxic impacts on human health.We recommend that that United Nations Environment Programme(UNEP) and WHO should take stock of the global arsenic poisoning situation and launch a global drive to create awareness among people/medical professionals/health workers/administrators on this global concern.  相似文献   

8.
The Gilt Edge Superfund Site is a former heap-leach gold mine that currently is being remediated in the Black Hills of South Dakota. Mine runoff water is treated before release from the site. The field pH, before treatment, is about 3; the water contains arsenic at low levels and some trace metals at elevated levels, in addition to total dissolved solids concentrations of more than 1,900 mg/L. In the Keystone area of the Black Hills, naturally occurring arsenic has been detected at elevated concentrations in groundwater samples from wells. The City of Keystone’s Roy Street Well, which is not used currently, showed arsenic concentrations of 36 parts per billion and total dissolved solids of 320 mg/L. With field samples of water from the Gilt Edge site, a limestone-based method was successful in reducing trace metals concentrations to about 0.001 mg/L or less; at the Keystone site, the limestone method reduced arsenic levels to about 0.006 mg/L. The results are significant because previous research with the limestone-based method mainly had involved samples prepared with distilled water in the laboratory, in which interference of other ions such as sulfate did not occur. The research indicates the potential for broader applications of the limestone-based removal method, including scale-up work at field sites for water treatment.  相似文献   

9.
Arsenic in groundwater is a serious environmental problem. The contamination of groundwater with arsenic has been of utmost concern worldwide. Steel slag is a solid waste generated from steel production. Although steel slags have been used for arsenic removal from water, this process has not been systematically or integratively researched. In this study, the arsenic removal capacity and mechanism were investigated for carbon steel slag, stainless steel slag and Fe-modified stainless steel slag based on an in-depth study. The study also evaluated the potential utilization of different steel slag for regeneration. The maximum adsorption of arsenic on carbon steel slag, stainless steel slag and Fe-modified stainless steel slag was 12.20, 3.17 and 12.82 mg g?1 at 25 °C, respectively. The modification of stainless steel slag by FeC13 can generate more pore structures and larger surface areas, and 300 °C treatment produces the best regeneration efficiency. The ΔG values were negative for all of the steel slags, indicating the spontaneous nature of the adsorption process. The solution pH was a critical parameter for the removal of arsenic for steel slags. Under highly alkaline solution conditions, the mechanism of arsenic removal by carbon steel slag and stainless steel slag can be attributed to chemisorption, including chemical precipitation and coordination reactions, and under weakly alkaline solution conditions, electrostatic interaction and specific adsorption are the arsenic removal mechanisms by Fe-modified stainless steel slag. Regeneration of the Fe-modified stainless steel slag was better achieved than that of the other steel slags in the application of high-temperature treatment.  相似文献   

10.
High arsenic levels in groundwater of the aquifers, belonging to the Pliocene terrestrial layers and Quaternary alluvial sediments, have become a significant problem for the inhabitants living in Sarkisla (Turkey). The main objective of this study was to determine the origin and arsenic contamination mechanisms of the Sarkisla drinking water aquifer systems. The highest arsenic concentrations were found in Pliocene layers and alluvial sediments with concentrations ranging from 2.1 to 155 mg/kg. These rocks are the main aquifers in the study area, and most of the drinking groundwater demand is met by these aquifers. Groundwater from the Pliocene aquifer is mainly Ca-HCO3 and Ca-SO4 water type with high EC values reaching up to 3,270 μS/cm, which is due to the sulfate dissolution in some parts of the alluvial aquifer. Stable isotope values showed that the groundwater was of meteoric origin. Tritium values for the groundwater were between 8.31 and 14.06 TU, representing a fast circulation in the aquifer. Arsenic concentrations in the aquifers were between 0.5 and 345 μg/L. The highest arsenic concentrations detected in the Pliocene aquifer system reached up to 345 μg/L with an average value of 60.38 μg/L. The arsenic concentrations of the wells were high, while the springs had lower arsenic concentrations. These springs are located in the upper parts of the study area where the rocks are less weathered. The hydrogeochemical properties demonstrated that the water–rock interaction processes in sulfide-bearing rocks were responsible for the remarkably high groundwater arsenic contamination in the study area. In the study area, the arsenic levels determined in groundwater exceeded the levels recommended by the WHO. Therefore, it is suggested that this water should not be used for drinking purposes and new water sources should be investigated.  相似文献   

11.
Groundwater pollution by arsenic is a major health threat in suburban areas of Hanoi, Vietnam. The present study evaluates the effect of the sedimentary environments of the Pleistocene and Holocene deposits, and the recharge systems, on the groundwater arsenic pollution in Hanoi suburbs distant from the Red River. At two study sites (Linh Dam and Tai Mo communes), undisturbed soil cores identified a Pleistocene confined aquifer (PCA) and Holocene unconfined aquifer (HUA) as major aquifers, and Holocene estuarine and deltaic sediments as an aquitard layer between the two aquifers. The Holocene estuarine sediments (approximately 25–40 m depth, 9.6–4.8 cal ka BP) contained notably high concentrations of arsenic and organic matter, both likely to have been accumulated by mangroves during the Holocene sea-level highstand. The pore waters in these particular sediments exhibited elevated levels of arsenic and dissolved organic carbon. Arsenic in groundwater was higher in the PCA (25–94 μg/L) than in the HUA (5.2–42 μg/L), in both the monitoring wells and neighboring household tubewells. Elevated arsenic concentration in the PCA groundwater was likely due to vertical infiltration through the arsenic-rich and organic-matter-rich overlying Holocene estuarine sediments, caused by massive groundwater abstraction from the PCA. Countermeasures to prevent arsenic pollution of the PCA groundwater may include seeking alternative water resources, reducing water consumption, and/or appropriate choice of aquifers for groundwater supply.  相似文献   

12.
The occurrence of uranium in groundwater is of particular interest due to its toxicological and radiological properties. It has been considered as a relevant contaminant for drinking water even at a low concentration. Uranium is a ubiquitously occurring radionuclide in the environment. Four hundred and fifty-six (456) groundwater samples from different locations of five districts of South Bihar (SB) were collected and concentrations of uranium (U) were analyzed using a light-emitting diode (LED) fluorimetric technique. Uranium concentrations in groundwater samples varied from 0.1 µg l?1 to 238.2 µg l?1 with an average value of 12.3 µg l?1 in five districts of Bihar in the mid-eastern Gangetic plain. This study used hot spot spatial statistics to identify the distribution of elevated uranium concentration in groundwater. The hypothesis whether spatial distribution of high value and low value of U is more likely spatially clustered due to random process near a uranium hotspot in groundwater was tested based on z score and Getis-Ord Gi* statistics. The method implemented in this study, can be utilized in the field of risk assessment and decision making to locate potential areas of contamination.  相似文献   

13.
金爱芳  李广贺  张旭 《地球科学》2012,37(2):247-252
由于目前缺乏一套完整成熟的地下水污染风险源准确识别与分级方法, 在综合解析污染源结构、污染物输移过程评价的基础上, 构建了涵盖地下水易污性和地下水污染源两部分多因素耦合的风险源识别模型, 其中从污染源特性和污染物性质两方面建立了污染源危害性评价参数体系.以地下水易污性指数和污染源潜在危害性评价指数作为风险源分级指标, 采用乘积模型进行了风险源的评价与分级.选择某水源地对所建方法进行实例分析, 确定了地下水污染的高风险源区.结果表明, 污染源和地下水易污性共同决定了地下水污染的风险源, 所建方法对地下水污染的预防及污染源的有效监管有重要意义.   相似文献   

14.
High As contents in groundwater were found in Rayen area and chosen for a detailed hydrogeochemical study. A total of 121 groundwater samples were collected from existing tube wells in the study areas in January 2012 and analyzed. Hydrogeochemical data of samples suggested that the groundwater is mostly Na–Cl type; also nearly 25.62 % of samples have arsenic concentrations above WHO permissible value (10 μg/l) for drinking waters with maximum concentration of aqueous arsenic up to 25,000 μg/l. The reducing conditions prevailing in the area and high arsenic concentration correlated with high bicarbonate and pH. Results show that arsenic is released into groundwater by two major phenomena: (1) through reduction of arsenic-bearing iron oxides/oxyhydroxides and Fe may be precipitated as iron sulfide when anoxic conditions prevail in the aquifer sediments and (2) transferring of As into the water system during water–acidic volcanic rock interactions.  相似文献   

15.
High fluoride and arsenic concentrations in groundwater have led to serious health problems to local inhabitants at Yuncheng basin, Northern China. In this study, groundwater with high fluoride and arsenic concentration at Yuncheng basin was investigated. A majority of the samples (over 60%) belong to HCO3 type water. The predominant water type for the shallow groundwater collected from southern and eastern mountain areas was Ca/Mg-Ca-HCO3 types. For the shallow groundwater from flow through and discharge area it is Na-HCO3/SO4-Cl/SO4/Cl type. The predominant water type for the intermediate and deep groundwater is of Na/Ca/Mg-Ca-HCO3 type. According to our field investigation, fluoride concentration in groundwater ranges between 0.31 and 14.2 mg/L, and arsenic concentration ranges between 0.243 and 153.7 μg/L. Out of seventy collected groundwater samples, there are 31 samples that exceed the World Health Organization (WHO) standard of 1.5 mg/L for fluoride, and 15 samples exceeds the WHO standard of 10 μg/L for arsenic. Over 40% of high fluoride and arsenic groundwater are related to the Na-HCO3 type water, and the other fifty percent associated with Na-SO4-Cl/HCO3-SO4-Cl type water; little relation was found in calcium bicarbonate type water. A moderate positive correlation between fluoride and arsenic with pH were found in this study. It is due to the pH-dependent adsorption characteristics of F and As onto the oxide surfaces in the sediments. The observed negative correlation between fluoride and calcium could stem from the dissolution equilibrium of fluorite. The high concentration of bicarbonate in groundwater can serve as a powerful competitor and lead to the enrichment of fluoride and arsenic in groundwater. Most of the groundwater with high fluoride or arsenic content has nitrate content about or over 10 mg/L which, together with the observed positive correlations between nitrate and fluoride/arsenic, are indicative of common source of manmade pollution and of prevailing condition of leaching in the study area.  相似文献   

16.
Access to water resources is one of the major challenges being faced worldwide. Water scarcity, particularly groundwater resource, is the major ubiquitous concern for the country. Almost half of the country is reeling under severe ground water crisis due to anthropogenic and natural reasons (basalt rock surface). Agra region situated in the western part of Uttar Pradesh state of India has a semi-arid climate. The study area, which has a history of water scarcity since medieval ages, has seen a spurt of acute water shortage in recent times owing to the expansion of a very dense built-up area and excessive haulage accompanied by decline in rainfall. A study was under taken for identifying the trends in pre- and post-monsoon groundwater levels for Agra city, Uttar Pradesh. Pre-monsoon and post-monsoon groundwater depth data of 16 observation wells for the 2007–2016 period were collected and analyzed using ARC GIS 10.2 software. The rainfall trend during the study period was also studied to understand its role in groundwater fluctuation level. Statistical tests like Mann-Kendall, Sen’s slope estimator, and linear regression model were applied to understand the trend and rate of change in groundwater level. The land use/land cover map of the study area was integrated with groundwater map to have a primary understanding of the spatial trend of groundwater scenario of the study area. The result obtained is quite alarming for the city’s groundwater scenario. Results showed that the groundwater levels had significantly declined during 2007–2016. Average rates of water level decline were 0.228 and 0.267 m/year during pre- and post-monsoon seasons, respectively. There was a rapid decline in water level between 2008 and 2009 and between 2013 and 2014. The average rate of decline of pre- and post-monsoon groundwater level in the city during this period is 0.32 and 0.30 m/year, respectively. Significant decrease in groundwater level is found in 84.21% of wells for pre- and post-monsoon as obtained through Mann-Kendall analysis at 95% confidence level. During pre-monsoon season, the rate of decline according to Sen’s slope estimator varied between 0.74 and 2.05 m/year. Almost similar picture of decline is portrayed through linear regression slope wherein the computed rate of decline varied between 0.75 and 2.05 m/year. During post-monsoon, the rate of decline according to Sen’s slope varied between 0.13 and 1.94 m/year. Similar trend statistic is obtained through linear regression method where the declining rate is between 0.14 and 1.91 m/year. Comparison of the three statistical tests indicates similar nature of declining trend. The result of this research raises concern about the future of groundwater resources in Agra city. The findings of this study will assist planners and decision-makers in developing better land use and water resource management.  相似文献   

17.
In the Hetao area of Inner Mongolia, Quaternary alluvial aquifers used for the water supply are contaminated by naturally occurring arsenic, which heavily affects the health of 200,000 local residents. This study on the isotopes of strontium and relevant elements contained in the groundwater as well as the arsenic in the groundwater and residents’ hair indicates that the arsenic originally derives from the upper reaches of this area where arsenic levels are high in groundwater, rock, and soil. Over, respectively, 44 km (work-line AA′) and 36 km (work-line BB′) away from there, the levels of arsenic in the water, corresponding to the trend of the residents’ arseniasis, decrease along the direction of the flow from 0.251 to 0.05 mg/L and 0.232 to 0.036 mg/L. The result of this research suggests that long-term strategies to deal with this arseniasis should involve finding hydrous terrains uncontaminated by water from the upper reaches and developing routes to prevent water from taking arsenic.  相似文献   

18.
At present,due to shortage of water resources,especially in arid and semiarid areas of the world such as Iran,exploitation of groundwater resources with suitable quality for drinking is of high importance.In this regard,contamination of groundwater resources to heavy metals,especially arsenic,is one of the most important hazards that threaten human health.The present study aims to develop an approach for presenting the groundwater quality of Sirjan city in Kerman Province,based on modern tools of spatial zoning in the GIS environment and a fuzzy approach of evaluating drinking water in accordance with the standards of world health organization(WHO).For this purpose,qualitative data related to 22 exploitation wells recorded during 2002 to 2017 were used.In addition,fuzzy aggregate maps were prepared in two scenarios by neglecting and considering arsenic presence in groundwater resources.The results showed a decrease in groundwater quality over time.More specifically,neglecting the presence of arsenic,in 2002,all drinking wells in the area were located in an excellent zone,while in 2017 a number of operation wells were located in the good and medium zone.Also,the final map,considering the presence of arsenic as a limiting factor of drinking water,indicated that parts of the southern regions of the plain would be the best place to dig wells for drinking water.Therefore,the use of new methods can contribute significantly to the usage of groundwater aquifers and provide a good view of the aquifer water quality.  相似文献   

19.
The study area is a part of central Ganga Plain which lies within the interfluve of Hindon and Yamuna rivers and covers an area of approximately 1,345 km2. Hydrogeologically, Quaternary alluvium hosts the major aquifers. A fence diagram reveals the occurrence of a single aquifer to a depth of 126 m below ground level which is intercalated by sub-regional clay beds. The depth to water level ranges from 9.55 to 28.96 m below ground level. The general groundwater flow direction is northwest to southeast. Groundwater is the major source of water supply for agricultural, domestic, and industrial uses. The overuse of groundwater has resulted in the depletion of water and also quality deterioration in certain parts of the area. This has become the basis for the preparation of a groundwater vulnerability map in relation to contamination. The vulnerability of groundwater to contamination was assessed using the modified DRASTIC-LU model. The parameters like depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, hydraulic conductivity of the aquifer, and land use pattern were considered for the preparation of a groundwater vulnerability map. The DRASTIC-LU index is computed as the sum of the products of weights and rating assigned to each of the inputs considered. The DRASTIC-LU index ranges from 158 to 190, and is classified into four categories, i.e., <160, 160–170, 170–180, and >180, corresponding to low, medium, high, and very high vulnerability zones, respectively. Using this classification, a groundwater vulnerability potential map was generated which shows that 2 % of the area falls in the low vulnerable zone, 38 % falls in the medium vulnerable zone, and 49 % of the area falls in the high vulnerable zone. About 11 % of the study area falls in the very high vulnerability zone. The groundwater vulnerability map can be used as an effective preliminary tool for the planning, policy, and operational levels of the decision-making process concerning groundwater management and protection.  相似文献   

20.
In the densely populated semi-arid territory around Delhi, the water demand is rising continuously, while the surface- and groundwater resources are threatened by contamination and overexploitation. This is a typical scenario in many newly industrialising and developing countries, where new approaches for a responsible resources management have to be found. Bank filtration holds a great potential, thus being a low tech method and benefiting from the storage and contaminant attenuation capacity of the natural soil/rock. For this study, three field sites have been constructed to investigate bank filtration in different environments in and around the megacity with a main focus on inorganic contaminants. Hydraulic heads, temperature gradients and hydrochemistry of surface water and groundwater were analysed in three different seasons. Depending on site-specific conditions, distinct hydrogeological conditions were observed and both positive and negative effects on water quality were identified. Most concerning issues are the impact of anthropogenic ammonia, the mixing with ambient saline groundwater and the mobilisation of arsenic during the reductive dissolution of manganese- and iron-(hydr)oxides. Positive aspects are the dilution of contaminants during the mixing of waters from different sources, the sorption of arsenic, denitrification, and the precipitation of fluoride under favourable conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号